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ABSTRACT which uses a set of coupled recursive least-squares (RLS) al

We describe two formulations of the kernel canonical corre:gor'thms’ one per data set, to retrieve the linear CCA swiuti

lation analysis (KCCA) problem for multiple data sets. The'" @7 onlm_e manner. We wil resort to _kernel methods [5],
kernel-based algorithms, which allow to measure nonlinea"?mOI in particular to kernel adaptive filtering [13, 14], tdldu

. : . ._“a nonlinear version of this framework.
relationships between the data sets, are obtained as aanlin In order to retrieve the KCCA solution. the adaptive
extensions of the classical maximum variance (MAXVAR) g P
and minimum variance (MINVAR) canonical correlation framework u;esaset of.coupled kgrnel recursive leastregua
analysis (CCA) formulations. We then show how adaptive(KRLS) algor|thms. While there exist several d|fferent|{RL
versions of these algorithms can be obtained by reformuIa{mplementatlons' the proposed KCCA framework requires an

ing KCCA as a set of coupled kernel recursive Ieast-squareaslgomhm with tracking capability, which has become pos-

algorithms. We illustrate the performance of the propose Ible through recent advances in the field of kernel adaptive

algorithms on a nonlinear identification application and aa'lltgl'_nsg a&gl'a g.g.);brjd .?dg:mrlgl_t?ﬁdo??h;Couhplc'gghgl;
cognitive radio detection problem. o Iding-window gonthm, whi

only limited tracking capability, was previously employed
Index Terms— Kernel methods, canonical correlation in [12] to nonlinear channel identification. In this paper we

analysis, recursive least-squares, adaptive filtering formalize the kernel-based approach, we derive two praictic
adaptive KCCA algorithms and we perform simulations using
1. INTRODUCTION the more sophisticated KRLS-T algorithm from [15].

The rest of this paper is structured as follows: In Section 2

Canonical Correlation Analysis (CCA) is a well-known tech-we provide an overview of two basic generalized KCCA for-
nique in multivariate statistical analysis. The original& mulations, followed by a derivation of their adaptive vers
formulation was introduced by Hotelling in 1936 [1] as ain Section 3. The results of two numerical experiments are re
way to measure the linear relationship between two multivar ported in Section 4, and, finally, the main conclusions df thi
ate variables. Given two data sets, CCA retrieves the linea¥ork are listed in Section 5.

projections of both that are maximally correlated. Sinse it

original formulation, many extensions have been proposed t 2. GENERALIZED KERNEL CANONICAL

the standard CCA technique. Among others, there exist sev- CORRELATION ANALYSIS

eral generalized versions of CCA that deal with multipleadat

sets [2, 3], and also extensions to nonlinear versions of CCAVe are givenM data sets{x;(1),x;(2),...,x;(N)}, i =
[3, 4, 5], in particular kernel canonical correlation arsdy 1,..., M, each containingv multivariate data. Kernel meth-

(KCCA). An adaptive version of linear generalized CCA wasods require the data to be transformed into a high-dimeasion

proposed in [6], which allows to perform CCA online and feature spaces — ®(x), where the corresponding Gram ma-

in time-varying environments. The range of fields in whichtrices (or “kernel” matricesK; can be calculated as

CCA has been applied is wide and varied, including economy, , T .

meteorology, functional magnetic resonance imaging (fMRI Ki(j: k) = @i(xi(7)) " i(xi(k)) = milxi(5), xi(k)), (1)

[7, 8, 9], blind source separation [5, 10], multivariater®s  in which (-, -) represents a kernel function. The problem of

sion [6] and communication theory [11, 12]. KCCA consists in finding the projections of the transformed
In this paper we propose an online framework for genergata setsz; = K;a, that have maximal correlation [3, 5].

alized kernel canonical correlation analysis. This framw The generalized canonical correlation betweenthérans-
builds upon the linear adaptive CCA formulation from [6], formed data sets is defined as
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in which transformations that minimize the mutual information agpnon
JR— the recovered signals. In the next section we will derivgpada
— D_Pii

Jj=1

Pi= 37 G tive algorithms for both the MAXVAR and MINVAR criteria.
i

is a measure of the correlation associated toittiedata set, 3. ADAPTIVE KCCA

pi; = z; z; = o] K;K;a;. The trivial solution is avoided

by applying the following constraint on the energy of the3-1. MAXVAR

canonical variates The GEV problem (8) can be interpreted as a setfotou-
1M M pled kernel regression problems
- Z; 2o — OéTKiKiOéi =1. 4
M;H | M; ! @ BK; + ey = 2, 1=1,..., M, (9)

Overfitting problems can be avoided by adding a regularizawherez = % Zij‘il z; andz; = K, a;, and we have assumed
tion factorc to the norm of the projectors in this restriction, thatK; is invertible. For a giver, the weightso; can thus

" be retrieved by performing kernel least-squares regressio

1 T T
— «; K, K,o; + coy K,a; =1, (5) 1 _
M ; o; = B(KZ +cI) a. (10)
see [3]. By defining the matrices Let us assume now that we are operating in an online scenario,
KK, - KKy in Which one datumc%(n) of ea_ch data ;et is mz?lde available
per time stem. In this scenario @ecursivesolution can be
R = : : ; (6)  formulated for Eq. (10), which is known in the literature as
KyK, - KuyKy kern_el recursive Ieast-squar_es (KRLS). l\_Ieverthe_Iess,SKRL
requires that the output(n) is known during training. In-
Ki(Ki+c) --- 0 terestingly, however, the KCCA framework implies that the

M KRLS algorithms are coupled and that they should pro-

D= : . : (M duce the same output$n). Eq. (9) indicates that this can be
0 o Ky (Kag + ) achieved by estimating(n) in each iteration as
the solutions of the KCCA problem can now be found by solv- M
ing the following generalized eigenvalue problem (GEV) z(n) = Y Z zi(n), (11)
i=1
1
MRO‘ = ADa, (8) wherez;(n) is the output of the-th KRLS algorithm eval-

- - L (M—1)p uated onx;(n). Given the estimate(n) from Eq. (11), the
wherea = [a;,ay,..., o]  andf = ——57—=. The ,_th jteration of the algorithm concludes by training each
canonical weightsy; that provide the projections that admit KRLS individually on its corresponding input-output data
the best possible one-dimensional representation arevedr pair (x;(n), z(n)).

as the eigenvector corresponding to the largest eigenadlue
the GEV problem (8). This general formulation, which in
the case of a linear kernel(x;,x;) = x, x; corresponds
to the maximum variance (MAXVAR) formulation from [2], A few remarks need to be made on this procedure. First, due
reduces to the standard KCCA algorithm from [3] in case onlyto space restrictions, we will not discuss the inner meatgni
two data sets are used. With a linear kernel and only two dataf KRLS in more detail, but rather refer to [15]. For the scope
it reduces to the classical CCA formulation from [1]. of this paper it is sufficient to know that KRLS solves Eq. (10)
Analogously to the MAXVAR generalization of CCA, the recursively. The only two operations used by the adaptive
minimum variance (MINVAR) generalization of CCA is de- KCCA framework are: 1) training the KRLS algorithm on
fined as the problem of finding the projections that admit thénput-output data pairs, and 2) evaluating it on input data.
best possiblé¢ M — 1)-dimensional representation [2]. In the Furthermore, since the design of online kernel methods
context of KCCA, the KCCA-MINVAR generalization is de- presents certain difficulties, such as growing matrices and
fined as the problem ahinimizingthe generalized canonical complexities, several different implementations of KRLS
correlationp subject to restriction (5), and thus it amounts tohave been proposed in the last decade. One of the research
retrievinga: corresponding to the minimum eigenvalue of (8).goals in this area has also been to design a KRLS algorithm
This formulation is used for instance in [5] for kernelinéep  capable of tracking. This is a necessary property in the pro-
dent component analysis, where the goal is to filter nontinegposed KCCA framework, since the initial estimatesz6f.)

3.1.1. Kernel recursive least-squares



1 Initialize the target output(1) randomly. 10 T CCA o SWKRLS

2 Initialize thei-th KRLS with (x;(1), 2(1)), Vi. ob¥he S — KCOA usmg KRLS-T
3forn=2,3,...do W o | ;

4 | Receivex;(t), the input to the-th KRLS, Vi. Q10 Wegen e

5 Obtain the corresponding outpui(n), Vi. -20p----- X2 LR B s b

6 | Calculatez(n) through (11). 20 e ‘ 3

7 | Center and normalize(n). 0 500 1000 1500

8 | if MAXVARthen fteration

12 e|3(;rirf?\l/|r;,fk/e,§g?hﬁﬁl_s with (xi(n), 2(n)), vi. Fig. 1. Wiener system identification results of experiment 1.
11 Calculater;(n) through (15)Vs.

12 Train thei-th KRLS with (x;(n), r;(n)), Vi. 4. NUMERICAL EXPERIMENTS

13 end

14 end In this section we demonstrate the validity of the proposed

Algorithm 1: Adaptive KCCA using MAXVAR/MINVAR.  aigorithms through two different experiments. The KRLS
algorithms used in these experiments are Matlab implemen-

tations from KMBOX. The kernel we use is a radial basis
are likely to be erroneous and KRLS must have a mechanistnction (RBF) kernel of the form(x;, x;) = exp(—||x; —

to “forget” these data over time. Among the existing KRLSXj||2/2w2), wherew is the kernel width.
algorithms only a few are truly adaptive in this sense. In

the simulations of Section 4 we will use the recently pro- i ) o

posed KRLS-T algorithm from [15], which combines all the 4-1- Wiener system identification

necessary properties. In the first experiment, we consider the online identifica-

tion of a Wiener system, which is a block-based nonlinear
3.2. MINVAR system that consists of a static linear filter followed by a

nonlinear channel. The experimental setup is taken from
In order to retrieve the eigenvector corresponding to the mi [12]. Specifically, the linear filter has impulse response
imum eigenvalue of the GEV problem (8), we first rewrite ith = [1,0.3668, —0.5764,0.2070] " and the nonlinearity is

as follows y = tanh(x).
b . In [12], a simplified version of the proposed algorithm
(D MR) @ =1Da, (12) was presented for two data sets, specifically designed for

Wiener system identification. It couples a linear RLS al-
gorithm , which identifies the linear channel, with a KRLS
\ algorithm, which identifies the (inverse) nonlinearity. €Th
kernel regression problems, KRLS algorithm used in [12] is sliding-window KRLS (SW-
. KRLS), which is capable of performing some tracking albeit

YKitcdai =r;, i=1...,M, (13)  \ith limited results. We repeat this experiment and compare
the results to the proposed KCCA approach in which the
newer KRLS-T algorithm from [15] is used, which is a more
sophisticated tracker. Note that in the case of two data sets
the formulations of KCCA-MAXVAR and KCCA-MINVAR
,o..»M,  (14)  coincide. For SW-KRLS and KRLS-T we use a memory
of 20 bases, and the forgetting factor of KRLS-T is set to

whenr; is given. Hence, an adaptive KCCA-MINVAR algo- A = 0.99. The remaining setup parameters can be found in

rithm can be obtained by applyinty coupled KRLS algo- [12].

rithmsi which use the fo”owing estimate of the Output The identification results are dISplayed in F|g 1. The dis-
played MSE is measured between the true system’s internal

wherey = 1 — 5. Analogously to the MAXVAR case, the
GEV problem (12) can be interpreted as a selbtoupled

wherer; = z; — z. The weightsy; can therefore be retrieved
by solving the kernel least-squares regression problem

1
o, = —(Kl'—i-CI)_lI‘i, 1=1
Y

1 M signalz(n) and the estimate obtained by the RLS and KRLS
ri(n) = z(n) — i Z zi(n), (15) algorithms. The results were averaged out oM&isimula-
i=1 tions. As can be observed, using KRLS-T in adaptive KCCA
Lo has a positive effect, as it is capable of avoiding the error
as indicated by Eq. (13). peaks produced by SW-KRLS.

The proposed KCCA-MAXVAR and KCCA-MINVAR
algorithms are summarized in Alg. 1. 1Available atht t p: / / sour cef or ge. net / p/ kmbox/




4.2. Detection in cognitive radio

In the second experiment, we deal with a detection problem
that uses a set af/ sensors. Such detection problems appear
for instance in multiantenna spectrum sensing for cogmitiv
radio networks [16, 17, 18], where the secondary users per-’
form spectral sensing in order to identify whether a wirgles
communication channel is in use by a licensed primary user =
or not. While in this scenario each sensor corresponds to a ‘
subchannel within the sensed spectrum band, one can easil | | |
imagine other applications such as sensor networks that fal 0 0.2 04 06 0.8 1
under the description of this experiment. False Positive Rate

Here, each sensor measures realizations of a zero-mean
Gaussian distribution with variances We consider the fol-
lowing hypotheses:

04rk ------ Neyman-Pearson H
w . .| | ——KCCA-MAXVAR (batch)

) S P | |~ = ~KCCA-MAXVAR (online)||
: ! KCCA-MINVAR (batch)

i KCCA-MINVAR (online)

rue Positive Rate
\

Fig. 2. Detection ROCs for experiment 2.

Ho : x ~ N(0, diag(ro)) oo = [o o0.n] We compare the results of KCCA-MAXVAR and KCCA-
o P ERE0)) 0= 70,1 T0.MD MINVAR, both first in batch mode and then in online mode.
My :x ~ N(0,diag(a1)), o1 =011, ,01m] The parameters of the batch and online algorithms are chosen

(16)  as follows: the kernel width is fixed as = 0.5, and the

. ) regularization is set te = 10~°. For adaptive KCCA the
Under hypothesig{o, the pdf measured by theth sensor KRLS-T algorithm from [15] is used, with forgetting factor

is N'(0,03,;), fori = 1,..., M. Under hypothesist1, it \" (999 and a limited memory a0 bases.

. 0 )

is N(0,01,). Note that the measurements of the different e yoceiving operator characteristic (ROC) curves of
sensors are conditionally independent given the hyp(Hhe5|a” algorithms, calculated on a test seti6£000 points, are

For reasons of simplicity, we assume thgl; < o1, Ifthe g1 in Fig. 2. Several observations can be made. First
variancesro ando are known, one can apply the classical ot 51 the ROCs of both batch KCCA algorithms fall very
Neyman-Pearson test on each sensor individually, which igj,se to the optimal (Neyman-Pearson) detector, which has
this case decide, if the test statistic complete knowledge of the statistics while the KCCA algo-
ziln)(o1s — 00.s)wa[n] (17) rithms operate completely blindly in this sense. Furtheemo

! ! L the KCCA-MINVAR algorithms have a noticeable advantage
is greater than a threshotg, wherez;[n] is the sample re- ©OVer KCCA-MAXVAR. The reason is that they use the result

ceived by sensor at timen (see [19, Chapter 3] for further of the M — 1 most informative tests in order to explain the re-
details). By exploiting the knowledge that all measureraentMaining test. KCCA-MAXVAR, on the other hand, uses the

at a given time follow the same hypothesis, the individustire  "€SUlt Of @ single test in order to explain thé — 1 remain-
can be combined into the following optimal test ing ones, which is clearly a disadvantage in this particular
scenario. Finally, note that the adaptive algorithms perfo

M slightly worse compared to their batch equivalents, sineg t
in[n](au — 00,5)xi[n] > T. (18) are trained on the same data set but in an online manner.
i=1 Nevertheless, their execution times are lower compardukto t

We consider the more challenging case in which the varipatch algorithms, since they are based on lower-complexity

. KRLS implementations.

anceso ando; are unknown. In this case, we can only
exploit the knowledge that the test statistics should be cor
related for all sensors. Since this implies that the indiaid 5. CONCLUSIONS
hypothesis tests should be correlated, CCA can be applied.
As discussed above, however, the optimal test statisti€s (1 We have proposed KCCA-MAXVAR and KCCA-MINVAR
are nonlinear (quadratic) functions of the data, and tleeeef formulations that allow to perform nonlinear CCA with mul-
the solution requires to use a nonlinear kernel. tiple data sets, both in batch and online (adaptive) forne Th

The experimental setup is as followkf = 3 sensors are online algorithm is made possible thanks to recent advances
considered, andv = 300 samples are used to blindly learn in kernel adaptive filtering.
the hypothesis tests. The true variances of each diswibuti The first experimental results of these algorithms are very
under the different hypotheses arg = [0.5,0.5,0.5] and  promising. In particular, we have described a new appbeati
o1 = [0.5,2,2]. In particular, the variances for one of the of KCCA in the context of cognitive radio, in which it can be
sensors coincide under both hypotheses, while the vagancased to construct a hypothesis test for detection withangus
for the other sensors are significantly different. any knowledge of the signal statistics.
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