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Abstract—We study transmission rate control and performance
delay in cognitive radio (CR) links from a cross-layer perspective.
We assume a hierarchical CR network where the secondary
users (SU) access the spectrum band in an opportunistic and
noncooperative way. The SU goal is to transmit a fixed-size
file (fixed amount of data packets) during the sojourn time
of the primary users (PU’s) idle state. We assume that the
SU’s support frames retransmission through an automatic repeat
request (ARQ) mechanism. By formulating the problem as a
Markov decision process, we demonstrate that there is always
an optimal stationary rate adaptation policy, and we propose
a simple algorithm to obtain it. We derive an exact closed-
form expression for the probability of successful transmission
as a function of the PU’s access probability and the signal-to-
noise ratio at the link receiver. We also study the performance
delay, understood as the time required to transmit the entire
data file, taking into account frames retransmission. To do that,
we analyze the Markov process associated with the optimal rate
policy in the transform domain. Then, using probabilistic flow-
graph techniques, we derive exact closed-form expressions for
the statistical distribution of transmission delay.

I. INTRODUCTION

Recently, IEEE 802.22 working group has released the first
cognitive radio standard for wireless regional area networks
[1]. This standard supports rate adaptation using adaptive
modulation and coding. It also allows SU’s to support frames
retransmission through an ARQ mechanism so that SU’s can
setup ARQ enabled connections.

This work focuses on opportunistic spectrum access (OSA)
in hierarchical CR networks where the SU’s only use the li-
censed spectrum when primary users PU’s are not transmitting.
We consider noncooperative spectrum sharing where each SU
makes his/her own decision on the spectrum access strategy,
based on local observation of the spectrum dynamics. We
assume that the SU’s can adapt the transmission rate according
to the channel fading conditions and the PU’s channel access
statistics. We also assume that the SU’s support ARQ protocol,
so when a frame is decoded with error, its data is retransmitted
in a further frame.

By formulating the rate adaptation problem as a Markov
decision process (MDP), we demonstrate that there is always
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a stationary optimal policy that maximizes the probability of
successful transmission, and we derive a simple algorithm to
obtain such policy. Then, we derive a closed-form expression
for the probability of successful transmission under the optimal
policy. Also, we analyze the performance delay of the SU link
for the optimal rate adaptation policy. By using probabilistic
flow-graph techniques, we derive simple closed-from expres-
sions for the distribution and moments of the total transmission
delay for both successful and failed transmissions.

To the best of our knowledge, optimal rate adaptation while
considering retransmissions of failed frames has not been
addressed so far in the context of OSA. Rate adaptation
in CR has been addressed in the technical literature, [2],
[3], [4]. However, none of the above works consider frames
retransmission. There are also a number of works that have
studied the delay performance of SU links in the context
of OSA [5], [6], [7], [8], but they do not consider frames
retransmission either. Note that when ARQ is used the delay
due to frames retransmission can be an important fraction of
the transmission delay.

II. SYSTEM MODEL

Let us consider a SU that periodically sense the spectrum
band. Once it detects an idle channel, it starts the transmission
with the goal to transmit a fixed-size file, comprising N
packets. These packets have been previously arrived from the
higher layer application and was placed in the buffer of the
SU transmitter. During the transmission, the SU adapts the
transmission rate with the goal to maximize the probability of
transferring the entire file before a PU reclaims the channel.

All packets have the same number of information bits
and the data of each packet is encoded in a single frame
for transmission. We consider K available transmit rates.
Therefore, the frames duration t(k) depends on the selected
rate where, k = 1, . . . ,K . We assume that the channel remains
constant during the sojourn time of the PU’s idle state. We
also assume constant transmit power, so the SNR at the CR
link receiver does not change during the transmission. Let
p(k), k = 1, ...,K denote the frame error rates (FER) for each
rate according to the SNR.

We consider a conventional ARQ mechanism to overcome
transmission errors. Once the receiver receives a frame, it
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sends an ACK (acknowledgement) packet back to the trans-
mitter through an instantaneous error-free feedback channel to
inform whether the frame has been correctly decoded or not.
If a frame is decoded with error, the corresponding packet
must be retransmitted under a further frame. Therefore, a
data packet remains in the transmit buffer until the receiver
informs the transmitter of the corresponding frame has been
successfully decoded.

We assume that an SU does not distinguish different PU’s
and treat the collective of all PU’s as one ”aggregated” PU.
Let β(k) denotes the probability of the PU’s do not access the
spectrum band during the transmission of a frame of length
t(k). We assume that these probabilities do not change during
the file transmission.

III. OPTIMAL RATE

In this section we formulate the rate adaptation problem as
a MDP as follows,

• Stages: Each stage corresponds to a frame transmission.
The process can finish in two different ways: 1) The SU
has successfully transmitted the N packets, and 2) A PU
has reclaimed the frequency band so the transmission has
been interrupted.

• Controls: The controls at the stages are the available rates:
k ∈ {1, 2, ...,K}.

• States: There are NS = N + 2 possible states, that are
indexed and classified as follows

– Transient states: 1 ≤ i ≤ N .
– Success state (S): i = N + 1
– Fail state (F): i = N + 2

Each transient state is defined by the number of packets
successfully transmitted during the process, so the system
is in state i when i − 1 packets have been already
transmitted. The success state (S) corresponds to the sit-
uation where all packets have been transmitted, whereas
the system falls in the fail state (F) when a PU has
reclaimed the frequency band before all packets have
been transmitted. Both, S and F are absorbing states in
the sense that once the system has fallen in one of these
states, it remains in it indefinitely. To illustrates it, figure 1
shows the transition graph for K = 2 available rates. The
states are represented by labeled boxes and the arrows
represent the possible transitions between states.

• Transition probabilities: There are three types of tran-
sitions: 1) transitions from a transient state to itself
when the transmitted frame has been decoded with error,
2) transition from a transient state to another transient
state or to the success state when the frame has been
successfully transmitted, 3) transitions from a transient
state to the fail state when a PU reclaims the channel.
Therefore, the transient probability from state i to j when
control k is applied is
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Fig. 1. Transition graph in the case of K = 2 available rates

pki,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, i = j > N

β(k)p(k), i = j ≤ N

1− β(k), i ≤ N ∧ j = N + 2

β(k)(1 − p(k)), i ≤ N ∧ j = i+ 1

0, otherwise.

(1)

• Rewards: We define the transition reward from state i to
j when control k is applied as follows

rki,j =

{
1, i = N ∧ j = N + 1

0, otherwise.
(2)

In words, there is not reward until all blocks have
been successfully decoded. Then, the system remains
indefinitely in the success state with zero reward. The
expected immediate reward when the system is in state i
and control k is applied will be

qki =

N∑
j=1

pki,jr
k
i,j = pki,N+1 (3)

=

{
β(k)(1 − p(k)), i = N

0, otherwise.

• Policies: A policy is defined by vector d =
{d1, d2, ..., dN}, where di denotes the control to use when
the system is in state i. Each policy determines a Markov
chain with rewards, where the transition probabilities are
pdi

i,j and the immediate rewards are qdi

i .

A. Probability of successful transmission

Let us consider a given policy d. Let us consider its value
vector vd = {vd

1, v
d
2 , ..., v

d
N}, where vd

i is the expected total
reward when the system is in state i. In other words, v d

i is the
probability of the system to reach the success at the end of
the process, starting from state i. According to the Bellman
equation [9], [10], [11]

vd
i = qdi

i +

N∑
j=1

pdi

i,jv
d
j , i = 1, 2, . . . , N, (4)
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In words, the expected total reward from state i equals the
immediate expected reward plus the expected total reward
from the subsequent state out state i. As it was mentioned,
when the system reach an absorbing state it remains in it
indefinitely with no additional reward so vd

N+1 = vd
N+2 = 0.

From (4), considering (1) and (3)

vd
i =

{
β(di)p(di) v

d
i + β(di)(1 − p(di)) v

d
i+1, i < N

β(di)p(di) v
d
i + β(di)(1 − p(di)), i = N.

,

Then,

vd
i = a(di)

{
1, i = N

vd
i+1, i < N.

, (5)

where

a(k) =
β(k)(1 − p(k))

1− β(k)p(k)
, k = 1, 2, . . . ,K. (6)

Let us consider now the transition probability from a
transient state i to the subsequent state i + 1 (distinct to F),
considering frames retransmission, when frames of type k are
used. It will be

β(k)(1 − p(k))
∞∑
n=0

(β(k)p(k))n, (7)

where the n-th term in (7) is the transition probability from i
to i+1 when the frame has been retransmitted n times. Note
that (7) equals (6), so a(k) is merely the packet transmission
probability (considering frames retransmission) when frames
of type k are used.

B. Optimal policy

We are interested in policies that maximize the probability
of successful transmission vd

1 . Equation (5) shows that the
values vd

i are simply the product of the factors a(di), which
do not depend on the state. Therefore, the optimal control will
be identical for all states (stationary), regardless the number of
packets N to transmit. Among the K stationary policies, the
optimal one and the corresponding probability of successful
transmission will be

d∗ = argmax
k

a(k), P{S} = v∗1 = a(d∗)N . (8)

IV. ANALYSIS OF TRANSMISSION DELAY

The transition diagram of the Markov process for the
optimal stationary policy (d∗) is depicted in figure 2, where
β = β(d∗) and p = p(d∗). Under the optimal stationary
policy the total transmission delay equals the number of
transitions before entering a trapping state multiplied by the
frames duration t(d∗). Therefore, to analyze the transmission
delay we will focus exclusively on the number of transitions
to reach the absorbing states. Since there are two absorbing
states, we distinguish between successful transmissions and
failed transmissions. Let n/S denote the number of transitions
required to enter state S in successful transmissions, and let

1 … 
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F

Fig. 2. Transition diagram of the Markov chain under optimal policy.

n/F denote the number of transitions to reach state F in failed
transmissions. In the following sections we will derive closed-
form expressions for the probability distributions and moments
of these random variables.

A. Delay of successful transmissions

Let pS(n) the probability of enter state S in the n-th transi-
tion. In the appendix we derive an expression for the geometric
transform of pS(n) by analyzing the Markov process in the
geometric transform domain,

pS(z) =
βN (1− p)NzN

(1− βpz)N
(9)

Then, pS(n) can be obtained by inverting the geometric
transform of (9)

pS(n) = βN (1 − p)N (βp)n−N

(
n− 1

n−N

)
, (10)

where we assume that the binomial coefficient equals zero
when the second entry (n − N ) is negative. pS(n) is, in
fact, the joint probability of reaching state S at transition n.
Then, the conditional probability distribution pS(n/S) that the
process will reach state S on his n-th transition given that the
transmission will finish successfully is

pS(n/S) =
pS(n)

P{S} = (1− βp)N (βp)n−N

(
n− 1

n−N

)
(11)

B. Delay of failed transmissions

Analogously, we can obtain the distribution and moments
of n/F . First, let us consider the probability of enter state F
in the n-th transition, pF (n). In the appendix we derive the
following closed-form expression for its geometric transform

pF (z) = (1− β)
N∑
i=1

βi−1(1 − p)i−1zi

(1− βpz)i
(12)

Then, by transform inversion

pF (n) = (1− β)

N∑
i=1

βi−1(1 − p)i−1(βp)n−i

(
n− 1

n− i

)
(13)
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TABLE I
RATE ADAPTATION PARAMETERS

k Modulation Coding rate Data rate (Mbps) Frames duration (μs)
1 BPSK 1/2 6 2020
2 BPSK 3/4 9 1352
3 QPSK 1/2 12 1020
4 QPSK 3/4 18 688
5 16-QAM 1/2 24 520
6 16-QAM 3/4 36 352
7 16-QAM 2/3 48 272
8 16-QAM 3/4 54 244

The probability of F being the final state is

P{F} =

∞∑
n=1

pF (n) = pF (z = 1) (14)

= (1− β)

N∑
i=1

βi−1(1 − p)i−1(1 − βp)−i,

which also equals 1 − P{S}. The quantity pF (n) given by
equation (13) is, in fact, the joint probability of reaching
state F at the n-th transition and of failed transmission.
Then, the conditional probability distribution pF (n/F ) that
the process will reach state F on his n-th transition given that
the transmission fails will be

pF (n/F ) =
pF (n)

P{F} =

∑N
i=1 β

i−1(1− p)i−1(βp)n−i
(
n−1
n−i

)
∑N

i=1 β
i−1(1− p)i−1(1− βp)−i

(15)

V. NUMERICAL RESULTS

Let us assume that the SU link uses the
coding-modulation rate adaptation scheme em-
ployed in the IEEE 802.11 wireless standards
(http://standards.ieee.org/about/get/802/802.11.html). It is
based on a set of K = 8 RCPC codes (rate-compatible
punctured convolutional codes) whose characteristics are
shown in table I. The data rate values assume 20 MHz
channel bandwidth and the frames duration, tC(k), have been
obtained assuming fixed packets length of 1500 bytes, which
is a common value in many practical systems.

Figure 3 shows the FER’s (p(k)) for the different rates as a
function of the SNR (they have been obtained after intensive
simulations).

In the following simulations we model the PU’s access to
the spectrum band as a Poisson process with access rate λ, so
the probability of PU’s do not accessing the band during the
transmission of a frame of type k is β(k) = exp−λt(k).

Figure 4 shows the probability of successful transmission
(P{S}) as function of the number of packets for optimal
rate adaptation, for different values of SNR, assuming that
the number of packets is N = 50.

Figure 5 shows the probability of successful transmission
(P{S}) as function of the PU’s access parameter λ, for
different values of SNR. The figure also shows the optimal
policy in each case. The number of packets is N = 50.
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Fig. 3. Frame error probability vs. SNR for the eight available rates.
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Fig. 5. Probability of successful transmission vs. PU’s access parameter λ.
The number of packets is N = 50.

Figure 6 show pS(n) and pF (n) (the probabilities of reach-
ing states S and F when the n-th frame has been transmitted) as
function of n, for the optimal policy. In this case we consider
SNR= 15dB, λ = 5 and N = 20, so the optimal policy is
d∗ = 6 (see figure 4).

VI. APPENDIX

In this appendix we derive the expressions (9) and (12)
for pS(z) and pF (z), respectively. In a Markov process, the
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Fig. 7. Flow graph of the Markov chain for the optimal stationary policy.

geometric transform of the probability of reaching state j from
state i in n transitions equals the transmission factor, ti,j , from
node i to node j in the probabilistic flow graph associated with
the Markov process [12]. The probabilistic flow graph of the
Markov process for the optimal stationary policy is depicted
in Fig. 7, where β = β(d∗) and p = p(d∗). Therefore, pS(z)
and pF (z) will be the transmission factors t1,S and t1,F in
Fig. 7, respectively.

The transmission factors can be calculated using the Ma-
son’s method [13]. According to this, the transmission factor
between nodes i and j is given by

ti,j =
1

Δ

∑
k∈Si,j

tki,jΔ
k
i,j , (16)

where Si,j is the set of paths leading from node i to node
j and tki,j is the product of the branches gains along the k-
th path. The quantities Δ and Δk

i,j are related to the loops
in the graph. The loop product of a simple loop is defined
as the product of all branches gains of the loop with minus
algebraic sign. There are also loop products associated with
all sets of simple loops that have not common nodes. The loop
products have an algebraic sign which is plus (or minus) for
an even (or odd) number of loops in the set. The quantity Δ
is one plus the sum of all loop products in the graph, whereas
Δk

i,j is equal to one plus the sum of the loop products of all

loops that share no node with the k-th path. The one-branch
loops associated with absorbing nodes (with gain z) are not
considered to compute ti,j .

In our flow graph there are N simple loops, all of them
with loop factor −βpz. Considering them and all possible set
of loops

Δ = (1 − βpz)N . (17)

Let us consider the transmission factor t1,S . There is only
one path connecting 1 and S with the following parameters

t11,S = βN (1− p)NzN , (18)

Δ1
1,S = 1.

Then, from (16), (17) and (18),

t1,S = pS(z) =
βN (1− p)NzN

(1− βpz)N
.

Let us consider now the transmission factor t1,F . There are
N different paths connecting nodes 1 and F with the following
parameters

tk1,F = (1− β)βk−1(1 − p)k−1zk, (19)

Δk
1,F = (1− βpz)N−k, k = 1, 2, ..., N.

Then, from (19), (16) and (17),

t1,F = pF (z) = (1− β)

N∑
k=1

βk−1(1− p)k−1 zk

(1− βpz)k
.
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