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ABSTRACT

In this paper a new regularized digital filtering tech-
nique for the simultaneous approximation of a function
and its derivatives is proposed. First, a simple and local
method is presented that interpolates the specified sam-
ple values exactly. The solution obtained by this method
belongs to the space of splines functions, and can be im-
plemented using filter banks. Unfortunately, like most of
the methods used to solve interpolation problems using
derivatives, it is very sensitive to noise. To overcome this
drawback we extend the interpolation method to func-
tion approximation by defining a regularized functional,
which includes a term forcing the smoothness of the so-
lution. The minimization of this functional is performed
by solving a simple linear system of equations or using
gradient descent based techniques. Some examples show
the improved performance of this technique in noisy en-
vironments.

1. INTRODUCTION

In some applications it is necessary to get a close ap-
proximation of both a function and its derivatives. For
instance, to predict the intermodulation behavior of a
microwave transistor, it is necessary to approximate not
- only its current/voltage (//V') nonlinear characteristic
but also up to its third order derivative [1]. Another ex-
ample is the work carried out by Jordan in robotics [2].
In such applications, we usually collect samples of
a function and its derivatives and the goal is to use all
this information in the reconstruction process. More-
over, there are some applications such as aircraft com-
munications, traffic control simulation or telemetry where
the derivatives are easily accessible, and to use them in
the reconstruction of the function can be interesting even
when there is not an explicit interest in the derivatives.
In such cases, the motivation to do this would be to be
able to sample less frequently or to obtain some degree
of immunity in noisy environments.
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Several approaches have been proposed in the liter-
ature to solve this problem. For example, Neural Net-
works have the theoretical capability of approximating
a function and its derivatives [3], although there are not
constructive approaches in this direction. On the other
hand, when the signal is known to be bandlimited we can
use an extension of the Shannon sampling theorem [4],
or the iterative method proposed by Razafinjatovo for ir-
regular sampling [5]. Recently, a method using perfect
reconstruction (PR) filter banks has been proposed [6].
Unlike the methods in [4, 5], the reconstructed function
obtained by [6] belongs to the space of splines functions
and therefore it is not bandlimited. All these approaches,
however, present the drawback of a high sensitivity to
noise.

To overcome this shortcoming, in this paper we pres-
ent a new regularized reconstruction method in the space
of polynomial splines. By relaxing the interpolation con-
ditions we can impose additional constraints forcing the
smoothness of the function. This can be helpful in noisy
environments where a smooth solution can reduce the
degradation in the reconstruction process. The proposed
method is not restricted to the reconstruction of bandlim-
ited signals, and it is applicable to both regular and irreg-
ular sampling.

2. INTERPOLATION IN THE SPACE OF
SPLINES

Our problem can be stated as follows: given a set of
samples of a function and its first D derivatives (d =
0,---,D):

Dn] =2zP(nT), n=0,-.- ,N—1; 1)
to reconstruct a function z(t), which fulfills the inter-
polation conditions (1). For the sake of simplicity we
will consider here the interpolation problem using only
samples of the function and its first derivative (D = 1).
The method, however, can be easily extended to higher
derivatives and even to irregular sampling. Moreover, in
the sequel the superindex d = 0 will be understood.



Our goal is to obtain a function in the space of splines
of order D + 1 (i.e., quadratic splines for D = 1) that
fulfills the interpolation conditions (1). This quadratic
spline reconstruction can be performed through a set of
synthesis functions obtained using perfect reconstruction
filter bank theory as it is shown by Djokovic and Vaidya-
nathan in [6). Here we describe an alternative method,
which will be useful in the next section for the extension
of the interpolation method to a regularized approxima-
tion.

The main idea of the method is that the original se-
quences of the function and its derivative z[n}, (d =
0, 1), can be interpolated by 2 to obtain the sequences
a:f) [n},n = 0,1, --- ,2N — 2. Then, since the deriva-
tive of the function in the space of quadratic splines is
piecewise-linear, we can use this knowledge and the con-
straints imposed by the continuity of the function and its
derivative to obtain the samples of the interpolated se-
quences :cf) [n],n=0,1,--- ,2N — 2. In particular, the
polyphase components of wf) [n] are given by

=0 [2n]) = 2],

d=0,1 @

1 T
zi2n+1] = S (alnl+aln+ 1)+ (@0 ] -2V n+1))
3)
2 1
2D [2n+1] = 7 (] +aln+ 1])—§(w1)[n]+x1){n+1])
C))
where index 7 in (2) runs from O to N — 1, while in (3)
and (4) runs from 0 to NV — 2.
Once the interpolated sequences z;[n] and &, ) [n] have
been obtained, the reconstruction of the function z(t)

within the interval nT/2 < t < (n + 1)T/2 is given
by

2(t) = xi[n] + x})[n]At +

2P +1) - 2]
ey

®
where At = ¢t — nT/2. It can be shown that this re-
construction can be implemented using the filter bank
structure shown in Figure 1.

Fig. 1. Filter bank representation of the interpolation
procedure
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Here, the poliphase filters, H;;(z), can be easily ob-
tained from (2)-(4), and the analog reconstruction filters
are
I]

’

ho(t) =1 -

k3
-1,
2 T;
where T; = T/2.

Obviously, the reconstructed signal, which is a spline
function, can also be characterized in terms of a B-spline
expansion from the sequence z;[n].

Moreover, it can be seen that the whole process of
reconstruction is local, i.e., the value of z(t) in nT <
t < (n + 1)T depends only on z¥[n] and 29 n + 1],
d = 0, 1. This fact makes the method directly applicable
to nonuniform sampling.
~-. This interpolation method can be extended to two-
dimensional input spaces using the one-dimensional fil-
ter bank as basic reconstruction structure [7]. With this
method it is possible to interpolate the partial derivatives
of the function with respect to each variable of the input
space and also the crossed derivatives.

for|t| < T;.  (6)

hi(t) = for|t| <T;. (7

2.1. Noise Sensitivity Analysis

In this section we analyze the degradation caused by the
measurement noise in the interpolation procedure. We
assume that the noise in the function and its derivative
can be modeled as a zero-mean white Gaussian noise
with variances o2 and o , respectively. Then, taking
into account Eq. (2) to (5), it is easy to obtain the noise
variance at any point of the reconstructed signals. Specif-
ically, for 0 < t < T/2, the noise variance in the re-
constructed function o3, (¢) and its derivative o7,.(¢) are

given by

2 2 22 \%, agt 2 32\2, ¢

5r(t) = (1—"7:7> +7w | +oi ( “W) +tar |
. ®

of,(t) =t [(1- $)" + &] ©)

The interesting point is that the noise variance for the
derivative, o%,.(t), varies as 3203t%/T*. For instance, at
t = T'/2, the noise variance in the reconstructed deriva-
tive depends on 803 /T'2. This points out the noise sensi-
tivity of this method, mainly when the signals are over-
sampled. This noise sensitivity is shared by all the meth-
ods employed to solve this interpolation problem, and it
is the main reason to search for a regularization proce-
dure.

32t2 2
+ FT 0o

3. PROPOSED REGULARIZATION
TECHNIQUE

When the measurements are corrupted with noise, in-
stead of requiring an exact interpolation a more adequate



alternative is to force some degree of smoothness in the
solution. This can be achieved by minimizing the fol-
lowing functional

N-1

D
J=Y (,\d Y (@P[n] - 2 [n])2) +AJ, (10)
d=

0 n=0

where mf) [n] are the regularized sequences, which now
do not fulfill the interpolation conditions (1). The first
term measures the error of the solution with respect to
the measurements, and the second one is the regular-
ization term, that measures the smoothness of the so-
lution. Here we will use one of the more usually em-
ployed measures of smoothness, which is the integral
of the squared second derivative of the solution. For
the particular case we are dealing with (function + first
derivative, i.e., D = 1) it takes the following expression

2N-3

= Z_; @'l -z [+1)% an

Similarly to (2) and (4), the polyphase components
of zll ) are now given by

) [2n] = =[], 12)

and

2Pln+1] = 2 (@] +2fo + 1)
] 13)
— 2@Vl + 2V [+ 1),

Therefore, substituting (12) and (13) into (11), we
see that functional (10) only depends on the regularized
sequences ) [n],n=0,--- ,N —1. To obtain the min-
imum of (10) we evaluate its derivatives with respect to
the components of the regularized sequences

aJ aJ,
5l = 2Xo(z,[n] — z[n]) + )\Téz[—n], (14)

aJ aJ,
—— =2\ (P[] — 2V[n)) + Ap——. (15
sy = el =)+ 0 S )

Taking into account (12) and (13), it can be seen that
forn =20

8J, 16

+ @l el o
8y = 8 n] — z.[n + 1])
5o = plednl =l +

+ 522 [n] + 320 [n + 1;
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whereas for0 <n < N — 1
oJy 16

B, 12

+ 2@+ 1] = 2Pl - 1)

oJr 8

sz[n] T

+ 3z [n + 1] + 32V [n — 1]).

22},["] - ZET[’I?,—].] - ZT[TH_]'J)

(22, [n—1]~ z,.[n+1]) + 102D [n]

an
and, finally, forn =N —1

aJ, 16
ol ‘ﬁ(xr[n] —z.[n—1])
5
- =(@P[n] + 2P [n — 1));
o, T (18)

dz[n]

= e, n—1)-z,ln)

+520[n] + 3zP[n - 1];

Equating the derivatives (14) and (15) to zero, we obtain
a linear system of equations

b= Ax (19)

where
b= [)‘O(m[OL i) 'T[N_ 1])> ’\l(xl)[OL ) ml) [Nf 1])]T
(20

x = [£,[0], ...,z [N—1],zP[0], ..., aD[N-1]]T 1)
and A is an 2N x 2N matrix. Typically, rank(A) = 2N
and therefore the solution can be obtained as

x=A"1b. (22)

Eq. (22) directly provides the regularized solution; how-
ever matrix inversion can be computationally expensive
when the number of samples [V is high. In this case,
the problem can be solved more efficiently by using an
iterative gradient-based algorithm. It is important to no-
tice the local behavior of expressions (16) to (18), which
makes that the computational burden of a gradient-based
approach grows only linearly with N.

Once the regularized sequences have been obtained,
the function is reconstructed using the fiter bank struc-
ture presented in Figure 1.

We now comment how to select the appropriate val-
ues of the weight parameters A4, (d = 0, 1); and the reg-
ularization parameter A,. If there is not any knowledge
about the noise power in the samples of the function (08)
and of the derivative (0%), we should fix A\g = A = 1
and select A, using cross-validation techniques. When it
is possible to estimate these parameters, a simple alter-
native that provides suitable results, is to fix A; = 1 and
then select
o, _ R
o2 T PRI
where Py and P, are the power of the function and the
derivative respectively, which can be easily estimated.

Again, it is possible to extend this method of regu- -
larization to two-dimensional input spaces [7].

A= (23)



4. RESULTS

In this section we present some results obtained with the
proposed regularized digital filtering method and com-
pare its performance with the results provided by a non-
regularized solution (interpolation), and by the exten-
sion of the Shannon sampling theorem using derivatives
[4]. We have generated bandlimited signals as a linear
combination of 100 sinusoids with random amplitudes,
phases and frequencies. For this example, both signals
z(t) and z)(t) are sampled at four times its Nyquist
rate, i.e., T is four times the inverse of the maximum
frequency in Hz. The weight parameters are selected ac-
cording to (23). Fig. 2 and 3 show the signal to noise
ratio (SNR) for the reconstructed function and its deriva-
tive, respectively. The signal to noise ratio for the origi-
nal sampled signal was SNR0O=10 dB, and we have con-
sidered different SNR1 values for the sampled deriva-
tive. It can be seen that the regularized solution provides
the best results, especially for the reconstruction of the
derivative.
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Fig. 2. Reconstruction of the function
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Fig. 3. Reconstruction of the first derivative

5. CONCLUSIONS

A new digital filtering method for the simultaneous re-
construction of a function and its derivatives has been
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presented. The interpolation problem can be solved very
efficiently using a local technique, which provides a so-
lution in the space of polynomial splines and can be im-
plemented by means of a poliphase filter bank. This in-
terpolation technique, however, is very sensitive to noise.
The regularization of the sampled sequences before re-
constructing the signal considerably improves the per-
formance of the proposed method in noisy environments.
The improvement is more important when the sampling
frequency increases, because the noise sensitivity of the
interpolation method is higher in this case (see equations
(8) and (9)). In particular, we have presented expres-
sions for the case of a function and its first derivative.
Nevertheless the model can be extended to higher order
derivatives and irregular sampling. Some results have
been presented showing the efficiency of this regulariza-
tion method in noisy environments.
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