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ABSTRACT
In this paper we propose an algorithm to design interference align-
ment (IA) precoding and decoding matrices for MIMO X networks
(XN). The proposed algorithm is rooted in the homotopy continua-
tion techniques commonly used to solve systems of nonlinear equa-
tions. Homotopy methods find the solution of a target system by
smoothly deforming the known solutions of a start system which
can be trivially solved. The key observation leading to a simple start
system is realizing that the inverse IA problem, i.e., finding the chan-
nels that satisfy the IA conditions given a set of precoders and de-
coders, is linear and, therefore, a convenient trivial system. Once
the start system has been solved, standard prediction and correction
techniques are applied to track the solution all the way to the target
system. Our results show that the proposed algorithm is able to con-
sistently find solutions achieving the maximum number of degrees of
freedom (DoF) whereas alternating minimization techniques, which
typically work well for the interference channel (IC), repeatedly fail
for the XN. Further, the algorithm provides insights into the feasibil-
ity of alignment in MIMO X networks for which theoretical results
are scarce.

Index Terms— Degrees of freedom, homotopy continuation, in-
terference alignment, MIMO, X network.

1. INTRODUCTION

The concept of interference alignment (IA) originated out of the
study of the degrees of freedom (DoF) of the 2-user X channel [1, 2]
and shortly afterwards it was extended to the K-user interference
channel (IC) [3] that caught the greatest deal of attention owing
to its simpler formulation when compared to an X network. An
M × N multiple-input multiple-output (MIMO) X network repre-
sents the most general single-hop network with M transmitters and
N receivers, each of them equipped with multiple antennas. Under-
standing X networks (XNs) is of paramount importance since this
general scenario subsumes many other well-known network topolo-
gies such as the multiple-access, broadcast, interference, X, and in-
terference broadcast channel.

In spite of its generality, existing results for X networks are
scarce, most of them focusing on the 2-user X channel. In partic-
ular, the total number of degrees of freedom (DoF) when both users
are equipped with the same number of antennas, along with an outer
bound for the asymmetric 2-user X channel, were obtained in [1].
Recently, the authors in [4] proposed a scheme achieving the afore-
mentioned bound. A DoF bound for the M × N -user XN where
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all users are equipped with A antennas and have symmetric message
demands was proposed and shown to be achievable in [5] and [6],
respectively. In the particular case of asymmetric message demands,
the results in [7] apply. Finally, [6] extended the properness con-
dition in [8] to provide an upper bound on the linear DoF without
channel extensions, although the tightness of the proposed bound
was not evaluated.

The list of algorithms to compute IA solutions for X networks is
also very scarce. First, Jafar and Shamai [1] proposed the so-called
JS-scheme for the 2-user MIMOX channel which is able to achieve
the outer bound for some particular scenarios. Later, Agustı́n and
Vidal [4, 9] presented an algorithm based on the generalized singu-
lar value decomposition that attains the outer bound on the degrees
of freedom (DoF) region for any antenna configuration and number
of channel extensions. This algorithm is again limited to the 2-user
MIMO X channel. Some other algorithms, which were originally
developed for the MIMO IC, can be straightforwardly ported to the
XN. That is the case of the well-known alternating minimization al-
gorithm in [10] which always finds a solution in the IC when the
system is feasible, but repeatedly fails in the XN. The reason for this
is that in the XN every link acts as both a desired and an interfering
link and, due to this coupling, the alternating minimization algorithm
is not able to guarantee the rank of the signal in the desired links at
the same time it minimizes the interference leakage.

In this paper we propose an algorithm to compute interference
alignment solutions for the asymmetric X network with no chan-
nel extensions. It is based on homotopy continuation, a numeri-
cal method which is widely used to solve multivariate systems of
nonlinear equations. The proposed algorithm extends the work for
single-beam ICs in [11] to multi-beam XNs. The main novelty is
how the starting point for the homotopy continuation procedure is
computed which happens to be as simple as solving a system of lin-
ear equations. Our algorithm focuses on finding the maximum DoF
solution with the highest success rate and no effort of maximizing
the sum-rate or optimizing any other figure of merit is made. We
show, that the algorithm is able to find the maximal DoF solution
with high probability and clearly outperforms the algorithm in [10]
in terms of achieved DoF.
Notation: Uppercase (lowercase) boldface letters will be used for
matrices (column vectors); (·)H for conjugate transpose (Hermitian)
and (·)+ for the matrix Moore-Penrose pseudoinverse. ⊗ denotes
the Kronecker product and Im,n and 0m,n the m × n identity and
all-zero matrices, respectively. The Jacobian matrix of a matrix func-
tion G(A) with respect to a matrix A will be denoted as DG(A)
following the definition in [12] and we will write an increment in
variable A as ∆A. Further, we define the operator

cat
s∈S

(As)
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as the horizontal concatenation of the indexed matrices As where
the members s of the set S are taken in reverse lexicographic order.

2. SYSTEM MODEL

Let us focus on the symmetric K-user MIMO X network1 where all
transmitters and receivers are equipped with A and B antennas, re-
spectively, and each transmitter ` wishes to send d independent data
streams to each receiver k. Let now Vj` ∈ CA×d be the precoding
matrix that transmitter ` will use to send its information to receiver
j where j, ` ∈ {1, . . . ,K}. At the other end of each link, receiver
k ∈ {1, . . . ,K} applies a decoding matrix Uk ∈ CB×Kd. Then,
the signal after decoding at the k-th receiver can be modeled as

rk = UH
k

∑
`

Hk`Vk`sk` +
∑
`

∑
j 6=k

Hk`Vj`sj` + nk

 (1)

where sk` ∈ Cd contains the information symbols that transmitter `
wishes to send to receiver k, Hk` ∈ CB×A is the flat-fading MIMO
channel from transmitter ` to receiver k and nk ∈ CB is the additive
and spatially white Gaussian noise at receiver k.

In order to avoid undesired interference, transmitters must
design their precoders to confine the interference to a reduced-
dimensionality subspace in such a way it can be zero-forced by
receivers with their corresponding decoding matrices. This trans-
mission strategy is known as interference alignment (IA) and the
existence of such a precoder design requires the simultaneous satis-
fiability of the following conditions:

UH
k Hk`Vk`

= 0, ∀k, ` (2)

rank
(
UH

k [Hk1Vk1, . . . ,HkKVkK ]
)

= Kd, ∀k (3)

where V
k`

is defined as the horizontal concatenation of all Vj` such
that j 6= k, i.e.,

V
k`

def
= cat

j 6=k

(
Vj`

)
.

Equation (2) guarantees that all interferences are properly zero-
forced and (3) preserves the desired signal dimensionality at all
receivers. We note that these conditions are analogous to those that
were put forward in [8, 10] in the context of the interference channel.
However, there exists an important difference which makes this a
much harder to solve problem. More specifically, in an IC, transmit-
ters only share a message with their corresponding receivers. Then,
(2) and (3) simplify into

UH
k Hk`V`` = 0, ∀k, ∀` 6= k (4)

rank
(
UH

k HkkVkk

)
= d, ∀k (5)

where (5) is, in addition, automatically satisfied as long as both pre-
coders and decoders are guaranteed to be full column rank. This is
clear by taking into consideration that the channels appearing in (5)
are independent of those appearing in (2). The alternating minimiza-
tion algorithm in [10] exploits this fact and solves (4) by restricting
the precoders and decoders to lie in the Stiefel manifold, that is,
VH

``V`` = I and UH
k Uk = I. Unfortunately, this is not the case

1For the sake of conciseness we restrict our explanation to an X network
with the same number of transmitters and receivers, i.e. M = N = K,
involving only unicast traffic, i.e. each transmitted message is only demanded
by a single receiver. However, the presented results apply in full generality.

for the MIMO X network since the same channel matrices appear in
both (2) and (3).

In order to provide some insight into the necessary conditions
for (2) to be solvable we follow the common arguments in the liter-
ature [6, 8] analyzing precoder and decoder invariances. It is clear
that given the sets of precoders and decoders, {Vj`} and {Uk},
satisfying (2), we can right-multiply them by arbitrary invertible
matrices and (2) still holds. Therefore, a total of d2 (K2d2) ele-
ments can be arbitrarily fixed in each precoder (decoder) leaving
a total of Nv = K2d[A + B − (K + 1)d] free variables. The
total number of scalar equations in (2) relating those variables are
Ne = K3(K− 1)d2. Therefore, a necessary condition [6] for (2) to
be solvable is Ne ≤ Nv or, equivalently,

d ≤ A + B

K2 + 1
. (6)

A system satisfying (6) is said to be proper [8] which does not nec-
essarily imply it is feasible although, usually, it is a good indicator of
feasibility. On the contrary, an improper system is always infeasible
[6, 8, 13, 14].

3. HOMOTOPY CONTINUATION FOR VECTOR SPACE IA

Homotopy continuation is a numerical method for solving systems
of nonlinear equations which is based on the idea of defining a
parametrized transformation or homotopy that gradually deforms a
trivially solvable system or start system into the target system we
want to solve [15, 16]. One simple and widely used transformation
is a convex combination of both systems, the so-called convex ho-
motopy. In the particular case of IA, it leads to consider a system as
the one in (2) where the MIMO channels are obtained as a convex
combination of a start channel, Hk`, and the target channel, Hk`.
The combination is controlled by the continuation parameter, t,
which leads to a homotopy function Gk`(U

H
k ,V

k`
, t) defined as

UH
k

(
(1− t)Hk` + tHk`

)︸ ︷︷ ︸
Hk`(t)

V
k`
, ∀k, ` and t ∈ [0, 1].

(7)

Our goal is to move along the path Gk`(U
H
k ,V

k`
, t) = 0 ∀k, `,

from t = 0 to t = 1 in small steps, ∆t. Numerically tracing
this path is usually accomplished by a predictor/corrector method
[17]. This method consists of two basic steps which are exe-
cuted iteratively, namely, the prediction and correction steps. In
particular, a first order approximation of the homotopy function

Gk`(U
H
k + ∆UH

k ,V
k`

+ ∆V
k`
, t + ∆t) = UH

k Hk`(t)Vk`
+

∆UH
k Hk`(t)Vk`

+ UH
k Hk`(t)∆V

k`
+

UH
k (Hk` −Hk`)Vk`

∆t ∀k, `,
(8)

gives rise to the basic Euler prediction and Newton correction.
Assuming we have a point ({Uk}, {Vj`}, t) near the path (i.e.
UH

k Hk`(t)Vk`
≈ 0 ∀k, `), we may predict to an approximate solu-

tion at t+∆t by setting Gk`(U
H
k +∆UH

k ,V
k`

+∆V
k`
, t+∆t) =

0:

∆UH
k Hk`(t)Vk`

+ UH
k Hk`(t)∆V

k`
=

−UH
k (Hk` −Hk`)Vk`

∆t ∀k, `.
(9)

Increments ∆V
k`

and ∆UH
k ∀k, ` are obtained by solving the sys-

tem of linear equations in (9). Specific details on this are relegated
to Section 3.1.
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On the other hand, if the current point ({Uk}, {Vj`}, t) is
not as close to the path as we would like, i.e. the entries of
Gk`(U

H
k ,V

k`
, t) are larger than a predefined tolerance, we can

hold t constant by setting ∆t = 0 and obtain the Newton correction
step:

∆UH
k Hk`(t)Vk`

+ UH
k Hk`(t)∆V

k`
= −UH

k Hk`(t)Vk`
, ∀k, `

(10)
Analogously to the prediction step, precoder and decoder updates,
∆V

k`
and ∆UH

k ∀k, `, are obtained by solving the system of linear
equations in (10) (cf. Section 3.1) which leads to a new set of pre-
coders and decoders, {Vj` + ∆Vj`} and {Uk + ∆Uk}, which are
closer to the tracked path.

3.1. Some implementation details

In this section we provide supplementary material that may be help-
ful for the practical implementation of (9) and (10). First, it is conve-
nient to define a vector w =

[
cat
(j,`)

((vecVj`)
T ), cat

k
((vecUH

k )T )
]T

by simply stacking up all precoder and decoder elements. Both (9)
and (10) describe systems of coupled linear equations which can be
conveniently solved if regarded as large sparse linear systems. We
follow up with the analysis of (9). Our goal is to write the set of lin-
ear equations in (9) as a single linear equation, DG(w)∆w =
−DG(t). In order to do so, we first vectorize (9) leading to(

cat
j 6=k

(VH
j`H

H
k`)⊗ IKd

)
︸ ︷︷ ︸

DGk`(U
H
k

)

∆vecUH
k +

∑
j 6=k

(
Pj ⊗ (UH

k Hk`)
)

︸ ︷︷ ︸
DGk`(Vj`)

∆vecVj`

= − vec
(
UH

k (Hk` −Hk`)Vk`

)
︸ ︷︷ ︸

DGk`(t)

∆t, ∀k, `,

(11)
where Pj is the j-th block of d columns in IKd.2 Once the equations
have been vectorized, we can stack them together to show that the
Euler prediction step amounts to solve the following sparse linear
system in a least-squares sense:

DG(w)∆w = −DG(t)∆t ⇒ ∆w = −DG(w)+DG(t)∆t,
(12)

where DG(w) is the Jacobian matrix of the system of matrix equa-
tions (2), which comprises all the derivatives with respect to the vari-
ables in {Vj`} and {UH

k } in the order specified in (15). It is a block
partitioned matrix with as many row partitions as channel matrices
and as many column partitions as precoding and decoding matrices.
Sparsity comes from the fact that each equation involves a subset of
the variables and, therefore, many blocks in (15) are zero. Specifi-
cally, DGk`(Vjp) = 0 when j = k or p 6= `, and DGk`(U

H
k ) = 0

when p 6= k. The solution vector ∆w contains the update values for
all the variables in both precoders and decoders and the derivate with
respect to the continuation parameter is built from all partial deriva-
tives as DG(t) = cat

(k,`)
(DGk`(t)

T )T .

Similarly, the Newton correction step can be written as the solu-
tion to a single linear equation, DG(w)∆w = −g, which can be
obtained by vectorizing and stacking up all the equations in (10):

DGk`(U
H
k )∆vecUH

k + DGk`(Vj`)∆vecVj`

= − vec
(
UH

k Hk`Vk`

)
︸ ︷︷ ︸

gk`

∆t, ∀k, `, (13)

2We omit the details due to space constraints but basic linear algebra and
the identity vec(ABC) = (CT ⊗A) vec(B) suffice to get (11) and (13).

Algorithm 1: Interference alignment via homotopy continua-
tion in MIMO X networks.

Input: {Hk`}, ∆t, NwtTol, MaxNwtIter,
MinStepSize, NumHitsToDoubleStep

Output: Sets {Vj`} and {Uk} satisfying (2) and a
convergence indicator, PathFailed

/* Inverse IA */

Obtain {Hk`} as shown in (16)
t = 0, NumHits = 0, PathFailed = false

w =
[
cat
(j,`)

((vecVj`)
T ), cat

k
((vecUH

k )T )
]T

t∗ = t, w∗ = w // backup variables
while t < 1 do

t = min(t + ∆t, 1)
/* Euler prediction */

w = w −DG(w)+DG(t)∆t as indicated in (12)
/* Newton correction */
NewtonFailed = true
for iter = 1 to MaxNwtIter do

w = w −DG(w)+g as shown in (14)
if ||g||2 < NwtTol then

NumHits = NumHits + 1
NewtonFailed = false
break

/* Step size adaptation routine */
if NumHits == NumHitsToDoubleStep then

∆t = 2∆t
t∗ = t, w∗ = w, NumHits = 0

else if NewtonFailed then
∆t = ∆t/2
t = t∗, w = w∗, NumHits = 0
if ∆t < MinStepSize then

PathFailed = true
return

return

and, therefore, stacking up all the equations

DG(w)∆w = −g ⇒ ∆w = −DG(w)+g, (14)

where g = cat
(k,`)

(gk`).

Given that Newton method converges quadratically to a point
in the path, a common strategy is to run the correction step several
times establishing a limit on the number of executions to a maximum
of MaxNwtIter or until all the entries of g are below the prede-
fined tolerance NwtTol, whatever happens first. As a final remark,
in order to guarantee the success of the path tracking procedure it
is important to implement a step size adaptation rule. A simple rule
will help to detect convergence of the Newton method to local min-
ima and accelerate the execution of the path tracking routine. This is
now explained in more detail.

It may happen that after a prediction step with a step size ∆t we
end up in the basin of attraction of a local minimum. In that case, the
Newton method will exhaust the maximum number of allowed iter-
ations, MaxNwtIter, without converging to the desired tolerance
NwtTol. When this happens we consider that the Euler prediction
has failed and repeat it with a smaller step size. A common crite-
rion is to cut the step size in half. If in spite of implementing this
step reduction procedure, a number of repeated failed predictions is
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DG(w) =


DG11(V11) DG11(V21) · · · DG11(VKK) DG11(UH

1 ) · · · DG11(UH
K)

DG21(V11)
... DGk`(Vjp)

...
... DGk`(U

H
k )

...

DGKK(V11) · · · DGKK(VKK) DGKK(UH
1 ) · · · DGKK(UH

K)

 (15)

obtained, it means that the path tracking procedure stagnated in a
local minimum. This can be detected when the step size becomes
too small. In particular, if it becomes smaller than a predefined min-
imum step size, MinStepSize, the whole path tracking procedure
should be accounted as a failure. Conversely, if the correction step
is successful for NumHitsToDoubleStep consecutive iterations,
we can double the step size aiming to reduce the number of iterations
of the path tracking routine. Additional implementation details can
be found in Algorithm 1.

3.2. The inverse IA problem

We have described the routine which allows us to track the evolution
of the solution matrices until the target system is reached. In this
section we detail how to obtain the starting point of this procedure,
the so-called start system. The key observation here is to consider
what we call the inverse IA problem which is simply looking at (2)
as if we were given UH

k and V
k`

and we had to solve it for Hk`.
When regarded this way, the problem turns into a linear problem
[18, Theorem 6.11] where all solutions can be parametrized as

Hk` = Xk` − FkF
H
k Xk`Gk`

GH

k`
(16)

where Fk and G
k`

are orthonormal bases of Uk and V
k`

, respec-
tively, and Xk` is a non-zero arbitrary matrix. Therefore, in order to
find a valid start system we just need to take UH

k , V
k`

and Xk` at
random and then obtain Hk` according to (16).

4. RESULTS

In this section, we compare the sum-rate performance of the pro-
posed method (denoted as HC) against a generalization of the mini-
mum interference leakage (MinIL) alternating minimization algo-
rithm presented in [10], which has been conveniently adapted to
work in MIMO X networks. For this comparison we have chosen
four scenarios with the number of antennas A and B given in the
second row of Table 1. Scenario 1 is the tightest scenario since it
has the minimum number of antennas that are needed for the system
to be feasible according to (6). The loosest scenario that we have
considered is Scenario 4. The number of users for all scenarios is
K = 4 and we ask both algorithms to compute a solution achiev-
ing K2d = 16 DoF, that is, d = 1 streams per link. The results
of 1000 independent channel realizations with unitary gain complex
Gaussian entries were averaged.

As shown in Figure 1, MinIL shows a poor performance when
the system is relatively tight. Its performance improves as the num-
ber of antennas is increased, requiring at least 11 antennas at both
sides of the link to achieve the requested DoF. On the other hand, the
HC algorithm provides DoF values which clearly overcome those
achieved by MinIL. More specifically, the sum-rate in Scenario 1 is
similar to that achieved by MinIL in Scenario 3, with the advantage
of HC requiring fewer antennas. In fact, as shown in Table 1, HC is
not only achieving a higher DoF, but also its probability of finding
the maximum of 16 DoF is considerably higher.

Scenario 1 2 3 4

(A,B) = (8, 9) (9, 9) (10, 10) (11, 11)

HC 0.18 0.15 0.02 0.00
MinIL 1.00 1.00 0.56 0.01

Table 1. Prob[DoF < K2d = 16] or probability of not achieving
the requested number of degrees of freedom for K = 4 and d = 1.
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Fig. 1. Average sum-rate achieved by MinIL and HC in the four
considered scenarios.

Finally, we note that the probability of attaining the maximum
DoF in n executions of the algorithm grows as 1 − (Prob[DoF <
K2d])n. Therefore, given the low probability of failure of HC, the
algorithm may be useful as a numerical means to obtain evidence of
feasibility for a given scenario. On the other hand, the high failure
probability of MinIL in some scenarios, e.g. Scenarios 1 and 2,
would not allow us to make such a claim.

5. CONCLUSION

We have introduced an algorithm to compute interference alignment
solutions in X networks with no channel extensions. It is based on
homotopy continuation, a numerical method which is widely used to
solve multivariate polynomial systems of nonlinear equations. We
show that the proposed algorithm is able to consistently find solu-
tions achieving the maximum number of degrees of freedom. When
compared to another algorithm obtained as a direct adaptation of the
well-known minimum leakage alternating minimization algorithm
for the interference channel, the proposed algorithm is clearly supe-
rior in terms of achieved DoF. As a consequence, it appears to be
an interesting algorithm not only to find IA solutions but to provide
insights into the feasibility of alignment.
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