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Abstract

We present a novel semi-supervised classifier model based on paths between
unlabeled and labeled data through a sequence of local pattern transforma-
tions. A reliable measure of path-length is proposed that combines a local
dissimilarity measure between consecutive patters along a path with a global,
connectivity-based metric. We apply this model to problems of object recog-
nition, for which we propose a practical classification algorithm based on
sequences of “Connected Image Transformations” (CIT). Experimental re-
sults on four popular image benchmarks demonstrate how the proposed CIT
classifier outperforms state-of-the-art semi-supervised techniques. The re-
sults are particularly significant when only a very small number of labeled
patterns is available: the proposed algorithm obtains a generalization error
of 4.57% on the MNIST data set trained on 2000 randomly chosen patterns
with only 10 labeled patterns per digit class.

Keywords: semi-supervised classification, object recognition, connectivity,
deformation models, low-density separation

1. Introduction

In many object recognition problems, obtaining labeled data is a time-
consuming and expensive task, whereas large unlabeled data sets are usually
available. This is particularly true in problems involving high-dimensional
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data, such as handwritten digit recognition, text categorization [1], protein
classification [2] or hyper-spectral data classification [3]. In such scenarios it
is desirable to develop semi-supervised learning techniques, as these allow to
exploit the available unlabeled data concurrently with the labeled training
data. We focus on recognition problems in which many instances of each
object are available for training, and each instance differs only slightly from
another instance of the same object. This is typically the case in handwritten
digit and face recognition systems, but it occurs more generally in a wide
variety of image recognition problems where series of spatially or temporally
related patterns are available. In this case, the available instances of an object
usually relate to each other by transformations such as rotations, scalings and
small nonlinear axis deformations.

A large number of semi-supervised learning techniques have been pro-
posed in the last years, for instance [4, 5, 6, 7, 8,9, 10, 11, 12]. The success
of these techniques relies mainly on two key assumptions: i) the data lie
on a manifold of much lower dimensionality than the data dimension itself
(manifold assumption) [12]; and ii) data points belonging to the same high-
density region are likely to belong to the same class (cluster assumption)
[11]. Both assumptions can be interpreted in terms of data similarity and
distances. In this sense, the manifold assumption states that local variations
in the data should only involve variations of a small number of parameters.
This property is illustrated in Fig. 1, which shows a number of handwritten
instances of the number 3: although the data dimensionality is high, most
local variations can be described by few parameters, such as line thickness,
skew and rotation. Therefore, the manifold assumption leads naturally to
the concept of a local distance between patterns. Several algorithms exploit
the manifold assumption, e.g. [13], by estimating the marginal distribution
underlying the data and training a classifier on the manifold itself.

The cluster assumption states that two data points should belong to the
same class if they can be connected by a path that lies exclusively in a region
of high density. This assumption, which was exploited for instance in [11, 14],
allows to define a global distance measure between patterns that lie further
apart. Specifically, the global distance between two points is measured as the
length of the path between them, in which each connection is measured as a
local dissimilarity between two intermediate patterns. Therefore, while the
manifold assumption refers to a local dissimilarity, the cluster assumption
refers to a global distance.

The proposed semi-supervised method uses small pattern transformations
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Figure 1: Handwritten instances of the number 3, from the MNIST data set.

as the local dissimilarity measure. They are accumulated along a path using
a connectivity distance to obtain a robust and reliable global distance, and
a simple nearest-neighbor technique is finally used for classification. Despite
of its fairly simple formulation, the new algorithm outperforms state-of-the-
art semi-supervised classification algorithms when tested on standard bench-
mark image data sets. Some preliminary results of the proposed method
appeared in [15]. Here, we extend the experimental study of the algorithm,
and we formulate the out-of-sample classification procedure. The algorithm
has quadratic time and memory complexity in terms of the number of train-
ing points, which becomes impractical if large data sets are used. In order
to reduce the out-of-sample classification cost, we also propose a prototype-
based approximation procedure.

The paper is organized as follows: in Section 2, we provide some related
literature and previous work. In Section 3, we review the semi-supervised
classification setting and state the main assumptions on which the proposed
method is based. Section 4 introduces the local and global dissimilarity
measures, which form the basis of the proposed semi-supervised classifier,
and it describes the proposed technique. An out-of-sample extension is dis-
cussed in Section 5, including a strategy for dealing with large-scale data
sets. Section 6 illustrates the obtained performance in comparison to other
state-of-the-art techniques on four typical databases. Finally, we summarize
the main conclusions of this work in Section 7.

2. Previous work on semi-supervised classification

Much of the recent effort in semi-supervised learning has been centered
around the problem of finding a reliable method to infer a global distance
measure from local dissimilarities 7, 8, 9, 10, 12, 13], which is also the main
problem addressed in the present contribution. Most of these techniques start
by constructing an undirected weighted graph (or, equivalently, an affinity



matrix) on the labeled and unlabeled data points, where the edge weights
measure the pairwise dissimilarities. Then, they apply different approaches
to design a global classifying function with desirable properties (e.g., smooth-
ness, robustness, etc.). For instance, [7] and [8] use a probabilistic approach
in which the graph weights (local dissimilarities) are viewed as transition
probabilities and the global dissimilarities are established through a random
walk or a diffusion process on the graph, respectively. The local dissimilar-
ity metric in [7],[8], however, is computed by the standard Gaussian kernel,
which makes the estimate of the shortest path length more sensitive to noise.
Instead of considering just the shortest path, these algorithms integrate the
volume of all paths between two data points, hence effectively de-noising the
global metric.

Closely related approaches that eliminate the dependency of [7] and [§]
with respect to the diffusion time are the harmonic Gaussian field classifier
described in [9] and the consistency method in [10]. These methods estimate
a global metric on the weighted graph (i.e., the semi-supervised classifier) by
repeatedly applying the Laplacian matrix (or some of its normalized versions)
over a matrix of labels which is consistent with the training data. Over itera-
tions, label information is propagated through the graph and, after reaching
a stable state, the unlabeled patterns are assigned to the classes from which
they have received more information. Again, these methods use the con-
ventional Gaussian kernel as the local similarity function for computing the
affinity matrix. The smoothness constraint imposed by the Laplacian is in
this case responsible for de-noising the global metric.

In [12] Belkin et al. proposed a framework that exploits the geometry of
the underlying marginal distribution, which can be estimated from unlabeled
data, to regularize the data manifold. This principle was used to design a
semi-supervised classifier, denoted as the Laplacian Support Vector Machine
(LapSVM). The resulting classifier has the interesting property of providing
a natural out-of-sample extension. In order to lower the cubic training com-
plexity of LapSVM, a training algorithm in the primal was recently proposed
in [16].

While many other graph-based approaches for semi-supervised classifica-
tion have been proposed over the past years, all of them use for the local
dissimilarities a function of the Euclidean distance with exponential decay,
typically the Gaussian kernel, regardless of the particular application con-
sidered. Their emphasis is on how a suitable global metric or function for
semi-supervised learning should be estimated from a graph, and to this end
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they proposed quite sophisticated methods. Departing from that trend, in
this work we demonstrate that better results can be obtained by translating
most of the complexity to the computation of the local dissimilarity mea-
sure. This metric should be problem-dependent to better characterize the
data manifold structure at a local scale. In doing so, we can simplify the
global metric as a shortest path which can be implemented using Dijkstra’s
algorithm, as we will show below. This conceptually simple procedure pro-
vides very good results in different scenarios.

3. Problem formulation and assumptions

We consider a multi-class classification problem with N classes {Cy,...,Cy}.
In a semi-supervised classification setting, we are given a training data set
consisting of n = [ + u patterns, X = {xy,..., X, Xj11...,X,} = X UX,,
represented as Fuclidean vectors of dimension dim. The first [ patterns in
this set correspond to labeled data, with class labels {yi,..., 4}, while the
remaining v patterns constitute the available unlabeled data. We assume
that all input patterns x; have been drawn independently and identically
distributed (i.i.d.) from some unknown marginal data distribution P(x).
This is the conventional setting assumed in most semi-supervised classifica-
tion techniques described in the literature [5, 17]. Furthermore, in this paper
we are interested in semi-supervised classification problems where [ is a very
small fraction of the total number of available patterns, n.

We now make the following assumptions:

Assumption 1. For each pattern x; in the data set there exist close patterns
x; of the same class (y; = y;) that can be obtained by small transformations
of the given pattern. The norm of these transformations is measured by some
intrinsic dissimilarity measure.

Assumption 2. For any two patterns x; and x; that belong to the same
class (y; = y;), there exists a sequence of k transformations

Xj=T,0T10---0Ty0T(x;) (1)

which is both short (i.e. the total number of transformations k is small), and
well connected (i.e. the norm of the transformation between two consecutive
patterns along the path is also small). These sequences are referred to as
consistent. Accordingly, if two patterns x; and x; belong to different classes

b}



Figure 2: By applying a sequence of small transformations it is possible to
transform any pattern into another pattern of the same class. All patterns
of the sequence belong to the same low-dimensional manifold.

(yi # y;), all possible sequences of transformations between x; and x; are
either very long (i.e. k> 1), or are not well connected (i.e. the connecting
path contains at least one weak link formed by two distant patterns).

The first assumption is built upon the standard manifold assumption. In
particular, it supposes that most local intra-class variations can be covered
by a small number of parameters. The second assumption is equivalent to the
standard cluster assumption, and its formulation is similar to the concepts
of local and global consistency discussed in [10].

The applied transformations T; of a consistent sequence should have lim-
ited flexibility, since otherwise any two patterns could be transformed one
into another by a single transformation, thus losing the idea of a connected
path. As we will see, the idea of connected transformations brings a new per-
spective on how the standard assumptions should be exploited in an efficient
way, especially when only a few labeled data are available.

4. Classification through connected image transformations

According to the model of connected transformations given by Eq. (1),
a global path-based distance measure should be computed by taking into ac-
count the whole sequence of [ocal deformations or dissimilarities starting from
an unlabeled pattern and reaching a labeled one. Therefore, the proposed
classifier requires defining three stages or blocks: i) a local pairwise dissim-
ilarity metric, ii) a global distance that measures the length of the path
through all connected image transformations, and iii) a final classification
step based on the proposed global distance.

In this paper we mainly focus on the first two stages that provide us with a
robust density-based metric for semi-supervised classification. In particular,



once a suitable distance has been computed, any of the nearest-neighbor
based techniques can be used for classification. For simplicity we choose
the 1-NN classifier that selects the class of the closest (in the sense of the
proposed path-based metric) labeled example.

In the following we review the used local dissimilarity measure and the
global path-based distance.

4.1. Dissimilarity based on local deformations

While the Euclidean distance between patterns is often used as a dissim-
ilarity measure in graph-based semi-supervised classification problems (see
for instance [7, 8, 9, 10, 12, 13, 17]), it is not necessarily the most suit-
able local dissimilarity. Especially when using nearest-neighbor classifiers
in high-dimensional data sets, it is well-known that all pairwise Euclidean
distances seem to be similar. This observation is sometimes referred to as
the “concentration phenomenon” in the pattern recognition literature [18],
or the “sphere-hardening effect” in other fields [19].

Furthermore, in image classification problems it is necessary to use dis-
tances that are invariant to certain transformations of the input. In this
sense, the limitations of the Euclidean distance can be illustrated with a
simple example. Suppose we are given two images that are identical except
for the fact that one image is shifted one or more pixels to the right. Although
these images are visually very similar, the Euclidean distance between vector
representations of these images will report a high dissimilarity. More gener-
ally, we are interested in a dissimilarity measure that allows to compensate
for small geometric intra-class variations while retaining the larger inter-class
differences.

The literature on image deformation models is vast, ranging from elastic
matching techniques [20] to shape contour models [21]. In addition to be-
ing flexible enough (but not too flexible), the chosen transformation model
should be computationally efficient. As a good tradeoff between all these re-
quirements, we use the image distortion model (IDM) proposed by Keysers
et al. in [22]. This model has a very simple implementation and has been
applied successfully in supervised handwritten character recognition, show-
ing a generalization error of 0.54% on the complete MNIST benchmark data
set.

To formally describe the IDM measure we adhere to the notational con-
vention from [22]. Specifically, let us denote two images taken from the
complete data set X as a = {a,,} and b = {b,,}. The pixel positions are
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input: images a and b, parameter w .
Obtain all superpixels a,, and b, of a and b.
initialize

d=0
forp=1,2,...,P do

forq=1,2,...,Q do

d=d+min.cp . pyN{p-w,..ptw} [apg — b7,5||2
86{17'“762} m{q_wv---qu’_w}

8: end for
9: end for
10: output: d;g,(a,b) =d.

Algorithm 1: Calculation of the image distortion model (IDM) dissimi-
larity measure from [22]. P and @) denote the image width and height in
pixels, respectively.

indexed by (p,q),p=1,...,P;q=1,...,Q, where P and @) are the image
width and height in pixels. In case the images differ in size, a scaling is taken
into account and pixel correspondence is based on the closest position (see
22] for details). In general, a,,, b,, € R" are vectors (or superpizels) that
can represent grey values (h = 1), color values (h = 3), the horizontal and
vertical local image gradients (h = 2), or a larger pixel context. In our ex-
periments we have always used superpixels of length h = 18, obtained from
the horizontal and vertical image gradients on a 3 x 3 patch as computed by
the horizontal and vertical Sobel filters, respectively (see [22]).

Algorithm 1 outlines the calculation of the IDM measure. Specifically, for
each superpixel a,, of image a, it aims to find the optimally corresponding
superpixel b,s of image b within a local neighborhood limited by a warp
range w. The IDM dissimilarity is then calculated as the conventional Eu-
clidean distance between the superpixels of image a and the corresponding
superpixels of image b. Since the optimal warping of one superpixel in IDM
does not affect the optimal warping of its neighboring superpixels, IDM is
referred to as a zero-order model. Models of first and second order take into
account one or two levels of neighboring pixels, which guarantees a smoother
warping and, in consequence, reduces its matching flexibility. However, they
typically introduce a much higher computational burden.

An important observation on IDM is that it is not a symmetric dissim-
ilarity measure. Furthermore, as preliminary experiments on the MNIST




data set pointed out, the differences between d;g,(a,b) and dg,(b,a) can
be substantial for certain pairs of examples, which indicates that IDM is not
an equally reliable measure for all patterns in a data set. In order to avoid
differences between d;4,,(a, b) and d;4, (b, a) that are caused by an excess of
flexibility in IDM, we choose to use a symmetrized “worst case” IDM as a
local dissimilarity, which returns the higher dissimilarity in case of doubt,

di(xk, x;) = max (digm (Xk, X1), digm (X1, Xx)) - (2)

This measure will be referred to as “symmetric” IDM in the following, and
it is the local dissimilarity measure used throughout this paper.

4.2. The p-connectivity global distance measure

The proposed global distance is calculated as the shortest-path length
between two patterns x; and x;, in which the length of each segment of the
path is measured by the local dissimilarity (2).

Formally, we define p; ; to be a path of length |p; ;| that connects patterns
x; and x; through an arbitrary sequence of intermediate patterns: p;; =
{xi,...,Xp,...,x;}. All patterns composing a given path are in X without
distinguishing between labeled and unlabeled patterns. We use the notation
pi, to indicate the k-th pattern in the current path [p|, therefore x,, = x; and
Xpip = X5

The length of each segment {x,,,x,,,,} of the path is measured as a
weighted version of the local deformation between the two patterns that
delimit the segment,

dlp(ka, ka+1) — 6Pdl(xpk 7ka+1). (3)

The parameter p controls how these small deformations are weighted along
the path. We then define the global distance as the length of the shortest
weighted path between x; and x;,

Ip|-1

dg(xia Xj) = min df(xpm ka+1)' (4)

This measure can be calculated efficiently by using Dijkstra’s algorithm on
the transformed local dissimilarity (3).



The global distance (4) is inspired by the p-connectivity distance proposed
n [14], which is defined as

du(xi, %;) = %ma T dy(x5%7) — o)) (5)

in which |p| is the optimal-path length. This measure has the interesting
property that for p — 0 it reduces to the shortest path along all deformations
without any weighting,

Ip|—1

de(xi,%;)| o = min E di(Xpy, Xpy 1 )
pepzy

while for p — oo only the worst link produced along the path is considered,

dg(xi, ;)]

= min max d;(X,,,Xp,,,),

PO e b 1<k<|p|

which was originally proposed in [11] as a means to improve clustering algo-
rithms. A proper selection of p yields a trade-off between these two extremes.
In particular, a value of p < co allows to de-noise the metric at a global scale
and increases its robustness against outliers and bridge points. Since the
global distance (4) and the p-connectivity distance (5) differ only by a mono-
tonically increasing transformation, they yield the same result when used in
nearest-neighbor searches. Hence, while we will use Eq. (4) in the following,
the interpretation of the parameter p is the same as for the p-connectivity
distance (5).

Finally, while IDM is not a metric, the global measure (4) obtained by
combining the symmetric IDM local dissimilarity with the path-based global
distance is a pseudo-metric. This is discussed in more detail in Appendix A.

4.8. Classification of unlabeled training data

Given the p-connectivity distance measure between image pairs, we apply
the nearest-neighbor classifier that selects the class of the closest labeled
example: an unlabeled pattern x; is assigned to the class to which its closest
labeled neighbor x} belongs, which is found as

X = arg min dy(x;, X;), (6)
XleXl
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1: input: data set X and labels {y1,...,y}

2: for each x; € X, x; € &, do

3:  Calculate IDM dissimilarity d,(x;,x;) with (2).

4: end for

5: for each x; € X, do

6:  Retrieve the shortest path from x; to a labeled pattern using (4). Store
the corresponding label y7 and distance dy(x},x;).

7: end for

8: output: Estimated labels {y/,,,...,y:} and corresponding distances.

Algorithm 2: Training of the Connected Image Transformations (CIT)
classifier.

Table 1: Variables used for calculating the computational cost.

[ Total number of labeled patterns.
u Total number of unlabeled patterns.
dim Image dimension (number of pixels).

w IDM warp range.

The corresponding label is estimated as g; = y; and the distance to this
labeled pattern is dy(x},x;).

An overview of the proposed CIT training algorithm is given in Algo-
rithm 2. A Matlab implementation can be obtained from http://gtas.
unican.es/people/steven.

4.4. Complexity analysis

The computational costs corresponding to the different operations of the
CIT algorithm are represented in Table 2. Taking into mind the adopted no-
tations, summarized in Table 1, the computational complexity can be broken
down as follows:

1. The pattern matching procedure of IDM (the for-loop containing line
3 of Alg. 2) requires to calculate the IDM measure between all pairs
of training data. Taking into account that the local dissimilarity is
never computed between pairs of labeled data, the total amount of
data pairs in this step is u? 4 2ul. Each of these calculations requires
to search a grid of (2w + 1) neighbors for each of the dim superpixels
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Table 2: Computational cost of the different operations (with references to
the line numbers of Alg. 2).

IDM pixel matching (line 3)  O((u® + 2ul) - dim - w?)
Compute shortest paths (line 6) O(u? + 1)

of the reference image. Since we are interested in semi-supervised sce-
narios in which u > [, the computational complexity of this step can
be approximated as O(u? - dim - w?). Simply put, the computational
complexity is quadratic in terms of the number of available unlabeled
training images, u, and linear in the image dimension, dim.

2. The calculation of the shortest paths with the p-connectivity distance
(the for-loop containing line 6) assumes an implementation based on
Dijkstra’s algorithm [23], yielding a complexity of O(u?+1) for a graph
of u fully connected unlabeled patterns that are all connected to all
[ labeled patterns. Remember that the CIT classifier only requires
computing the shortest path from any unlabeled pattern to all training
patterns. In case the graph is not fully connected, the calculation of
the p-connectivity distance measure can be sped up by implementing
it as a binary or Fibonacci heap [14].

5. Out-of-sample extension

Given a pattern x; that was not included in the training data set, we
denote the closest labeled pattern as xj. It can be retrieved efficiently as
X;, = Xj, where x7 is the labeled pattern closest to the the training pattern
J identified by

Jj= a_urt[glmir}l (dg(x3,%5) + df (x5, %)) - (7)

JEML,..n

For j corresponding to labeled patterns, the distance dy(x},x;) is zero, while
for unlabeled data the distances d,(x},x;) in Eq. (7) have been obtained and
stored by the training algorithm. Nevertheless, the local dissimilarities to
all u unlabeled training data, dj(x;, x), still require to be calculated. This
calculation can represent an important computational burden in case many
testing data are provided. Specifically, in order to classify one out-of-sample
datum, 2u calculations of IDM are required (see Eq. (7)). In the following we
study an approximation that allows to speed up the out-of-sample extension.
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5.1. Prototype-based approrimation

The bottleneck operation of the proposed method is the computation of
the IDM measure between data points. The number of IDM calculations
required amounts to u? + 2ul for training the CIT classifier and 2u for clas-
sifying one out-of-sample pattern. Our optimized C subroutine of IDM re-
quires 0.4ms to calculate one IDM dissimilarity between 28 x 28 images of the
MNIST database on a dual core 3GHz Pentium IV PC running Matlab under
Windows 7. For n = 2000 training patterns, with [ = 100 and u = 1900,
training the entire algorithm takes 1464s, out of which 1448s correspond to
calculating IDM and 9.4s are required by the Dijkstra algorithm. Testing
one out-of-sample datum takes 1.6s.

While designing a speedup for the training procedure of CIT is not a
straightforward task, a speedup in the out-of-sample classification can be
obtained by implementing a very small adjustment to the original CIT train-
ing algorithm. In particular, a sparsification procedure can be obtained as
follows. We assume that the data distribution has a simple underlying struc-
ture. We wish to identify a representative subgraph characterized by a re-
duced number of training patterns, or prototypes, that allow to represent the
structure of this subgraph sufficiently well, according to a suitable criterion.
Since the proposed method is based on connectivity, it is reasonable to use
connectivity as the criterion to construct the representative subgraph as well.
A straightforward way to measure the degree of connectivity of each train-
ing pattern is the number of times it is used in a path during training of
the original graph, which can be obtained by slightly extending the Dijkstra
algorithm underlying the path retrieval. In other words, patterns that are
part of many paths are considered well-connected, and we denote them as
prototypes. Patterns that are only part of only one or few paths are con-
sidered badly-connected and they can be pruned. It is unlikely that they
will be needed in out-of-sample classification, and they only raise the com-
putation time. In summary, the entire graph is calculated and the subgraph
is obtained from it by stripping off the patterns that are part of the fewest
paths. Depending on the specific requirements of the classification problem,
we can either aim to obtain a fixed-complexity classifier, in which case only
a fixed number of the best-connected patterns is retrieved, or we can aim
for a certain classification precision, in which case we choose a threshold for
the number of connections and we select only prototypes that exceed this
threshold. Once a set of suitable prototypes is obtained, the out-of-sample
classification (7) only requires to calculate IDM between the test points and
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the selected prototypes.

To illustrate that the number of prototypes, n,, can be significantly lower
than the number of training data for sufficiently rich data sets, consider the
following example. We take 2000 patterns from the MNIST database and
randomly choose 10 labeled instances per class. We train the CIT algorithm
on these data to obtain the connectivity graph and the number of paths that
go through each pattern. The algorithm’s parameter is chosen as p = 20,
which is a standard value used throughout the experiments (see Section 6).
The second column of Table 3 shows the number of paths that pass through
each training pattern. Interestingly, more than half of the data only con-
tribute to one connection in the calculated paths. More specifically, the only
path they form part of is the path that connects them with the closest labeled
patterns. In the third column we display the results for a second experiment
with n = 5000, where similar conclusions can be drawn. Therefore, if a
speedup in the out-of-sample classification test phase of the algorithm is re-
quired, these patterns can be removed from the graph. While a small error
might be introduced in the performance by doing so, it allows to reduce the
testing computation of the algorithm to less than half.

6. Experimental results

6.1. Data sets

In order to understand the scope of the algorithm’s applicability, we con-
ducted experiments on four popular image data sets (see Table 4). All pat-
terns used in the experiments are grayscale images.

The modified National Institute of Standards and Technology (MNIST)
database is the standard benchmark for handwritten character recognition®
[24]. This database contains a very large number of training and test data
from 10 digit classes, 60000 and 10000 patterns, respectively. Each pattern is
a 28 x 28 gray-valued image that has been preprocessed by normalization and
centering. State-of-the-art supervised classification techniques obtain classi-
fication errors well below 1% when trained on all available MNIST training
data. In particular, the k-NN classifier using IDM dissimilarities [22] ob-
tains 0.54% error rate; the large-convolutional-net based classifier from [25]
and the multi-layer perceptron classifier from [26] obtain 0.39% and 0.35%,

IMNIST: http://yann.lecun.com/exdb/mnist
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Table 3: The number of patterns that are part of a specified number of paths
in MNIST, with 10 labeled patterns per class.

# of paths n =2000 n = 5000

1 1138 2919

2 324 47

3 129 380

4 90 216

5 61 125

6:10 125 284
11:25 88 198
26:50 34 64
51:100 9 35
101:200 2 25
201:400 0 7

respectively, both of which use elastic distortions. On the other hand, semi-
supervised techniques are designed to exploit the information in the unlabeled
data that might be available. As a result, they require far less training data
to reach acceptable error rates. For the present experiments only very small
subsets of labeled data are used.

The Columbia University Image Library (COIL-20) data set is a collection
of pictures of 20 different objects? [27]. Each object has been placed on a
turntable and an image was obtained at every 5 degrees of rotation. Each
picture was cropped to remove black borders and rescaled to 32x32 pixels.
Some images of the first class of COIL-20 can be seen in Fig. 3. The UMIST
data set is a collection of pictures of 20 individuals ®. Each individual is
shown in a range of poses from profile to frontal views, with variations with
respect to facial expressions, gender, appearance and lighting. Finally, the

2COIL-20: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
SUMIST: http://www.sheffield.ac.uk/eee/research/iel/research/face
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Table 4: Benchmark data sets used in the experiments.

Data set Classes Size Dimensions
MNIST 10 60000 + 10000 28 x 28
COIL-20 20 1440 32 x 32
UMIST 20 564 27 x 32
ORL face database 40 400 28 x 34

Figure 3: Images of the first class of COIL-20.

ORL face database contains 10 different images of each of 40 individuals® [28].
The images were taken at different times and show considerable variations in
lighting, facial expressions and facial details (see Fig. 4). While for MNIST
separate training and test data sets are available, for the COIL-20, UMIST
and ORL face data sets the training and test data were selected from a single
pool per database.

6.2. Analysis of CIT

We first describe parameter selection and results of the CIT algorithm on
the MNIST data set.

6.2.1. Parameter selection

As discussed earlier, the principal parameter of the CIT classifier is the
connectivity-related value p. The other two parameters are the superpixel
dimension h and the warp-range w, which are only used to calculate the

40RL Face Database: http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html
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Figure 4: Sample images of the ORL face database.

IDM dissimilarity measure. We fix these last two parameters in advance, in
particular h = 18 and w = 2, which are standard values used in [22].

The optimal value of p depends on the particular data set. Since we
are dealing with scenarios in which only very few labeled training points are
available, cross-validation is not a recommended technique to determine p
as it would lower the number of usable labeled data even more in order to
create a validation set. Fortunately, we have observed experimentally that
optimal performance is typically achieved for a wide range of values. Fig.
5 shows the classification test error rate versus p for the MNIST database,
calculated on all 10000 test patterns after training the algorithm with 2000
randomly selected training patterns, consisting of 10 labeled patterns per
class and 1900 total unlabeled data. A similar behavior has been observed
for other numbers of labeled and unlabeled patterns, and for other databases.
In general, higher values of p assign more confidence to the weakest link in
a path, while lower values can be used to average out several less reliable
connections. Since the error rates are similar for any p between 10 and 200,
we chose to use a generic value of p = 20 for the MNIST database.

The illustrations of Figures 6 and 7 allow to analyze the decisions taken by
the proposed CIT classifier more closely. They show the connected transfor-
mation paths that are followed to classify some example digits. Specifically,
the first image in each path is the unlabeled image to be classified, and the
last image corresponds to the labeled pattern that is calculated to be the
closest, according to the proposed metric. Fig. 6 shows the paths followed
for a number of correctly classified digits, while several erroneous paths are
illustrated in Fig. 7. As a visual inspection confirms, all neighboring images
in these sequences are very similar. Interestingly, however, the erroneous
connections show the highest dissimilarity in the sequence, which indicates
that CIT at least identifies the erroneous connection as the weakest link in
these cases.
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Figure 5: CIT test error probability versus connectivity parameter p on the
MNIST database with n = 2000.

6.2.2. Out-of-sample classification for large data sets

Next, we analyze the prototype-based approximation for out-of-sample
classification described in Section 5.1. The previous experiment was repeated,
with p = 20. Out of n = 2000 training patterns, we retained different num-
bers of prototype patterns, n,, by selecting only the best-connected patterns.
Only these prototypes were used to classify the selected test patterns. As
Fig. 8 shows, the test error does not increase if the 1000 least-relevant train-
ing patterns are discarded (i.e. if n, = 1000), while this more than halves
the computation time of the out-of-sample classification. Very similar results
are still obtained after discarding 1500 patterns and retaining only n, = 500
prototypes.

In order to analyze these findings we plotted the number of connections
that pass through each training point in Table 3, for one experiment with n =
2000 and another one with n = 5000. Interestingly, more than half of the data
only contribute to one connection in the calculated paths. More specifically,
the only path they form part of is the path that connects them with the closest
labeled point. Since it is unlikely that these data will contribute anything
to the algorithm, we will simply discard patterns with only one connection
in the following experiments with the MNIST data set. By doing so, the
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Figure 6: Examples of paths followed for correctly classified digits. Unlabeled
and labeled digits are drawn respectively with black and white backgrounds.
Under each connection the IDM local dissimilarity between both images is
mentioned. Each path starts at the unlabeled image to be classified, and
after following several connections (other unlabeled images) it reaches the
closest labeled image.
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Figure 7: Examples of paths followed for incorrectly classified digits.

testing of the algorithm requires less than half of the computation, and the
data manifold modeled by the algorithm becomes somewhat de-noised.

6.3. Performance comparison

We proceed to conduct experiments with the rest of the data sets de-
scribed in Table 4, comparing the proposed algorithm to three state-of-the-
art algorithms from literature.

6.53.1. Algorithm descriptions and parameter selection
The applied algorithms are the following:

1. LDS: The Low Density Separation (LDS) algorithm from [14] intro-
duces the p-connectivity distance measure to detect clusters that are
separated by regions of low density, using the Euclidean distance as a
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Figure 9: The 12 best-connected prototypes corresponding to the experiment
using n = 5000 in Table 3.

local dissimilarity measure. On the resulting distance matrix it per-
forms multi-dimensional scaling, and finally classifies unlabeled data
using a transductive SVM classifier.

2. LapSVMP: The Laplacian SVM trained in the Primal. This algorithm
exploits the geometry of the underlying marginal distribution to reg-
ularize the data manifold [16]. We used the implementation in which
Newton’s method was employed for solving the convex optimization
problem, which has cubic complexity, instead of the faster precondi-
tioned conjugate gradient, which is faster but obtains slightly weaker
results (see [16]). Since LapSVMP is a binary classifier and all ex-
periments are multi-class classification problems, the one-against-all
approach has been performed for this algorithm.
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Figure 10: Error probabilities on the unlabeled training data, for different
numbers of total training data n.

3. IDM: In [22] the Image Distortion Model (IDM) dissimilarity measure
was applied to construct a 1-NN classifier. Although it was proposed
as a supervised classifier, we include its results to demonstrate that it
is able to outperform some semi-supervised classifiers when only very
few labeled patterns are available.

4. CIT: The proposed Connected Image Transformations (CIT) classifier
as described in Alg. 2.

The parameters for LDS and LapSVMP were obtained by a grid search
over the intervals reported in [14] and [16], respectively, and we used the
parameters that minimized their error rates. For reproducibility the selected
parameter values are reported in Appendix B.

6.3.2. Influence of the training data size

Fig. 10 illustrates the error probability on the unlabeled training data
for all four algorithms on the MNIST data set, for different numbers of
training data. 10 labeled data per class were used. The advantage of CIT
over the other algorithms is significant. Furthermore, along the entire sweep
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Table 5: The number of data points in each split of the selected data set.
[ and u indicate the labeled and unlabeled training data sizes, respectively,
whereas t is the number of out-of-sample test data.

Data set [ u t
MNIST 100 1900 10000
COIL-20 40 1000 400
UMIST 40 424 100

ORL Face database 80 220 100

range, IDM performs better than the semi-supervised techniques LDS and
LapSVMP. This is a somewhat surprising result, since IDM is applied in a
supervised manner and hence ignores the information contained in the unla-
beled data. Notice that the results of IDM do not depend on n. Nevertheless,
this observation confirms one of the main theses of this paper, in particular
that not all the emphasis should be put only on designing a suitable global
metric.

6.3.3. Performance comparison

Next, we compare the performance of the four algorithms on all four
described data sets. Details of the used data splits are collected in Table 5.
The results for these splits are given in Table 6. CIT outperforms all other
methods on these data sets.

In order to analyze these results more closely, we extend them by varying
the number of labeled training data per class. The number of total training
patterns, n, is kept constant. The results are shown in Fig. 11. Clearly, the
advantage of using connectivity in addition to the IDM measure is seen in
all four experiments as the difference between the performance of the IDM
algorithm and the CIT algorithm. In Fig. 11a IDM obtains reasonable results
on the MNIST data. Since IDM does not take into account the unlabeled
data, this results suggests that the labeled data already sample the manifold
sufficiently. By adding connectivity, the CIT algorithm obtains much lower
error rates. LDS and LapSVMP obtain fairly bad results. In the case of
LapSVMP, this might be partly due to the one-vs-all multi-class strategy.
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Results on the COIL-20 data set are represented in Fig. 11b. Unlike the
previous experiment, IDM obtains very weak results on these data. This
could be explained by the particularities of the data itself: in this set, the
main difference between images of the same class is the angle under which
each picture was taken (see Fig. 3). Therefore, all data from one class lie
close to a one-dimensional manifold that is parameterized by this angle, fa-
voring path-based algorithms such as LDS. The performance gain of CIT over
the state-of-the-art semi-supervised classifiers LDS and LapSVMP is worth
noting in this experiment.

Fig. 11c presents results on the UMIST data, which consist of pictures
of individuals in which the main intra-class differences are due to different
camera angles, similar to the COIL-20 data. While the same trend is visible
in the results, CIT’s advantage is smaller, probably because the number of
training data points is about half that of the COIL-20 experiment. LapSVMP
and LDS also perform slightly worse here. IDM is not affected by the number
of unlabeled training data, and performs slightly better than in the previous
experiment.

Finally, Fig. 11d illustrates the results on the ORL face database. With
the exception of LDS, all algorithms obtain similar results on this set. This
can be explained by the following observations. First, very few images per
class are available in the training data, compared to the other data sets
(see Table 4). Second, since all individuals were facing the camera for this
data set, the inter-class differences in this set are much smaller. This last
observation implies that there is no clear low-density separation between
classes, which explains the weak results for LDS. As CIT combines parts of
LDS with IDM, its improvement over IDM is minimal here. Notice also that,
since n is chosen fixed, as the number of labeled patterns goes up there are
less unlabeled training patterns available. Hence, as the number of labeled
patterns goes towards 7 (for which [ = 280 and u = 20), this experiment
becomes predominantly a supervised experiment and the results for CIT and
IDM are identical.

7. Conclusions

We have proposed a semi-supervised image classification algorithm that
is capable of operating with only very few labeled data available. The al-
gorithm builds upon the assumption that any image can be obtained as a
slight transformation of another sufficiently close image of the same class. As
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a result, in a semi-supervised classification scenario with enough unlabeled
data available, class membership can be determined by considering the la-
beled point that can be reached by the shortest sequence of such Connected
Image Transformations (CIT).

The manner in which the distance is measured through a series of con-
nected image transformation turns out to be a fundamental aspect of the
proposed classifier. We have proposed a distance that combines a local dis-
similarity measure (the image distortion model proposed in [22]) with a global
connectivity-based distance measure (the p-connectivity proposed in [14]). In
semi-supervised image classification problems, especially when very few la-
beled data are available, the proposed metric squeezes the distances among
patterns belonging to the same class, while leaving them almost undistorted
in the low-density zones between classes. In this way, we have a de-noised
metric that is robust to outliers or sparsely populated regions of the class
manifolds and, in addition, improves the class-separability.

The features of the proposed classifier have been experimentally corrob-
orated on four popular image databases. On each of the tested benchmarks
the proposed algorithm obtains excellent results, often significantly outper-
forming state-of-the-art semi-supervised classifiers.

7.1. Further lines and extensions

Although the proposed classifier is easy to implement, its training phase
requires the calculation of the IDM dissimilarity between all pairs of available
data points, which can be computationally costly. In order to speed up
this procedure an approximate nearest-neighbor technique could be designed,
inspired by [29, 30, 31, 32], as discussed in Section 5.1.

Other future work will be dedicated to improving the local dissimilarity
measure, first by considering smoother deformations, and, more importantly,
by learning the most adequate underlying local metric for a specific problem.
To this end, convex optimization techniques on the training data could be
employed, as in [33].

Finally, the proposed technique could be extended with an on-line formu-
lation, in order to update the classifier as new data arrive. We will consider
these extensions as future research lines.
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Appendix A. CIT is a pseudo-metric

In this appendix we prove that the distance measure consisting of the p-
connectivity distance calculated on the symmetrized IDM similarity measure
is a pseudo-metric on the set of all available data patterns, X = &;|J&,.
Formally, the function d : X x X — R is a pseudo-metric on the set X if it
fulfills the following conditions for all x,y,z € X' [34]:

1. Non-negativity: d(x,y) > 0.
2. Symmetry: d(x,y) = d(y, x).
3. Triangle inequality: d(x,z) < d(x,y) + d(y, z).

In order to be a metric, an additional identity condition is imposed:
4. Identity: d(x,y) =0 <= x =Y.

First of all, notice that the IDM measure as originally proposed in [14]
is not a metric, since it only fulfills the first condition. It is not symmetric,
and, as can be seen easily from Fig. A.12) it does not fulfill the triangle
inequality. IDM can be symmetrized as in Eq. (2), but the resulting measure
still does not fulfill the triangle inequality. However, the proposed measure
that combines the local dissimilarity of symmetrized IDM with a global p-
connectivity distance measure, as given in Eq. (4), does fulfill all conditions
to be a pseudo-metric.

PROOF. 1. Since symmetrized IDM is nonnegative, each term in the sum
(4) is nonnegative. Therefore, the result is also nonnegative.

2. Symmetrized IDM is symmetric by construction. Therefore, the sum
(4) is also symmetric.

3. The global distance measure (4) considers the shortest path between
any two patterns x and z. Given a third pattern y, the sum d,(x,y) +
dy(y,z) is equal to d,(x, z) only if y is part of the optimal path between
x and z. Otherwise it is larger by construction. Therefore we have
dy(x,2z) < dy(x,y)+dy(y, z).

This concludes the proof.

Appendix B. Parameters used in the experiments

Table B.13 collects all the parameters selected during the experiments.
The warp range w and the superpixel dimension h were chosen fixed in IDM
and CIT. The other parameters were optimized.
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Table 6: Algorithm performance on different data sets, using the split sizes of
Table 5. All values are expressed in percentages. Values between parentheses
indicate standard deviations. LDS does not allow out-of-sample testing as it
is a transductive method. The results for LapSVMP coincide with the results
reported in [16], on the COIL-20 set.

Data set Algorithm Training error Test error
LDS 15.62 (1.82) n/a
MNIST LapSVMP 17.89 (1.92) 1924 (1.22)
IDM 10.76 (1.14)  10.02 (0.93)
CIT 4.86 (0.98) 457 (0.96)
LDS 11.04 (1.89) n/a
L MP 10.31 (2.32 11. 2.
COLL-20 apSV 0.31 (2.32) 79 (2.87)
IDM 24.18 (1.93)  24.50 (2.40)
CIT 3.44 (2.20) 3.49 (2.45)
LDS 16.53  (4.03) n/a
L MP 20. .32 21. 4.2
UMIST apSV 0.56 (3.32) 00 (4.26)
IDM 38.21 (4.07) 3829 (5.81)
CIT 590 (2.45) 6.11 (3.31)
LDS 14.92  (3.47) n/a
L MP 13.61 (2. 13.82 )
ORL Face apSV 3.61 (2.73) 3.82 (3.99)
IDM 12.20 (2.66)  12.97 (4.15)
CIT 8.57 (2.76) 891 (3.08)
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Figure A.12: IDM does not fulfill the triangle inequality: The middle image
can be obtained from any of the two other images by shifting the white pixel
horizontally over 1 position. Therefore, IDM with warp range w = 1 yields
zero dissimilarity on these image pairs. However, the differences between the
left and right images fall outside of its warp range, yielding a non-zero IDM
dissimilarity, here generically represented as 1.
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Data set o nn o p  ya 00t
MNIST 9 10 2 1072 107t
COIL-20 06 2 1 1006 1
UMIST 9 5 2 1072 10°°¢

ORL face database 9 5 2 107¢ 107*
(a) Parameters used for LapSVMP

Data set c nn C p
MNIST oco 100 100 4
COIL-20 co 0 100 10
UMIST co 0 100 10

ORL face database oo 0 100 5
(b) Parameters used for LDS

Data set [h] ]
MNIST 18 2
COIL-20 18 2
UMIST 18 2
ORL face database 18 2

(c) Parameters used for IDM

Data set ] [w] p
MNIST 18 2 20
COIL-20 18 2 50
UMIST 18 2 50
ORL face database 18 2 20

(d) Parameters used for CIT

Figure B.13: Parameters used for each of the algorithms in the different
experiments. Parameters in square brackets were chosen fixed.
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