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Interference management in wireless networks

• Weak interference: treat as noise

• Strong interference: decode

• Interference strength comparable to signal strength:
I Traditional approach: orthogonalize (TDMA, FDMA,. . . )

Each user gets 1
K

of channel resources ( 1
K
DoF )

I Interference alignment [Cadambe & Jafar, 2008]:

Every user gets 1
2

of channel resources ( 1
2
DoF )

I Users cooperate so that interfering signals overlap at each
receiver, leaving more room for desired signals

I Achieves many more DoF than previously believed

I Ideally, all interfering users are jointly perceived as a single one

Everyone gets half the cake!

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 1/35
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Feasibility of linear spatial domain IA: problem statement

Arbitrary K -user interf. channel: (M1 × N1, d1) · · · (MK × NK , dK )

...
M1

...
V1

...
Mk

...

...

...

Vk

...
MK

...
VK

...
N1

...
U1

...
Nk

...

...

...

Uk

...
NK

...
UK

d1

dk

dK

Interference alignment conditions:

UT
k HklVl = 0, k 6= l ,

rank(UT
k HkkVk) = dk , ∀ k .

Assumptions:

I No channel extensions allowed

I Generic choice of channel matrices

Feasibility problem: determine if there exists (at least) a set of
precoders, {Vl}, and decoders, {Uk}, which satisfies the above set
of bilinear equations
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Feasibility of linear spatial domain IA
Existing results

I Conclusive answer for certain symmetric scenarios, e.g.,
(M ×N, d)3, (M ×M, d)K or (M ×N, d)K where d |M and N

I Results for asymmetric scenarios have remained elusive

Theorem (Razaviyayn et al., 2012): Any DoF tuple (d1, d2, . . . , dK )
that is achievable through IA must satisfy the following

min(Mk ,Nk) ≥ dk , ∀k

max(Ml ,Nk) ≥ dl + dk , ∀(k , l) ∈ Φ
∑

l :(k,l)∈φ
(Ml − dl)dl +

∑

k:(k,l)∈φ
(Nk − dk)dk ≥

∑

(k,l)∈φ
dldk ∀φ ⊆ Φ

Remark: Costly evaluation for a necessary (but not sufficient)
condition. Only sufficient when d |M and N, e.g., single-beam
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Theorem (Razaviyayn et al., 2012): Any DoF tuple (d1, d2, . . . , dK )
that is achievable through IA must satisfy the following

P2P conditions for every user: O(K )

Signal+Interf. accommodated at TX or RX: O(K 2)

Properness [Yetis et al., 2010]: O(2K
2
)
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First contribution

Feasibility solved in polynomial time
(for scenarios where properness is also sufficient)

Sometimes, more efficiently, e.g. single-beam → linear time
I How? Identify the properness conditions with conditions for

existence of a feasible flow in a supply-demand network

T1

T2

TK

Supplies

al = (Ml − dl)dl

R1

R2

RK

Demands

bk = dk max(
∑

l dl −Nk, 0)

c21

cK1

c12

cK2

c1K

c2K

Capacities

ckl = dkdl

S D

b1a1

b2a2

bKaK
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Example: (4× 2, 1)(2× 2, 1)2(2× 4, 1) system

T1

T2

T3

T4

R1

R2

R3

R4

S D

2/3 2/2

1/1 1/2

1/1 2/2

1/1 0/0

1/1

1/1

1/1

1/1

1/1

1. Calculate the maximum flow with any polynomial time
algorithm: Ford-Fulkerson, Edmonds-Karp, Goldberg

2. Check demand fulfillment

Demand fulfillment = Feasibility

(for those scenarios where properness and feasibility are
equivalent)

We still need a general result!
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Second contribution: a general feasibility test

We need an appropriate
mathematical model
considering problem
invariances

(H,U,V )
V

π1 ↙ ↘ π2

H S
(H) (U,V )

H: Cartesian product of projective spaces for channels

S: Cartesian product of Grassmannians for precoders/decoders

V: Solution variety satisfying IA conditions

Study of π1 is fundamental for IA:

I IA transceiver design: π−1
1 (H)

I IA feasibility problem: π−1
1 (H)

?
= ∅

I Number of IA solutions: |π−1
1 (H)|

González, Beltrán & Santamaŕıa, ISIT 2012, TIT 2014
Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 6/35
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Algebraic approach [Razaviyayn et al., 2012; Bresler et al., 2014]

Case 1: #vars < #eqs or dim(V) < dim(H)

H

V

π1(V)

I π1(V) cannot cover most of H:
No solution for every choice of H out of a
zero-measure set

Case 2: #vars ≥ #eqs or dim(V) ≥ dim(H)
V

π1(V)
H

1. π1(V) covers the whole H:
Solution for every choice of H

2. π1(V) is a zero-measure set of H
No solution for every choice of H out of a
zero-measure set
The whole V projects onto H in a singular way

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 7/35
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How to distinguish Case 2.2 from Case 2.1?
In Case 2.2. . .

Tangent space of V does not project onto the whole tangent space of H

I Formally, every point of V is a critical point of π1

I By definition, the derivative of π1 at critical points is not
surjective, which is equivalent to θ, i.e.

(U̇1, . . . , U̇K , V̇1, . . . , V̇K ) 7→
{
U̇T
k HklVl + UT

k Hkl V̇l

}

being not surjective (rank deficient)
I Tools from differential topology (Ehresmann’s Theorem) prove

I θ is almost everywhere surjective (feasible)
I θ is nowhere surjective (infeasible)

It is enough to test for surjectivity at some affine representative,
(U̇1, . . . , U̇K , V̇1, . . . , V̇K ), of a vector in the tangent space of V

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 8/35
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Main result

Theorem: An IA scenario is feasible iff for almost every choice
of Hkl , and for any choice of Uk , Vl satisfying the IA conditions,
the linear mapping defined by

(U̇1, . . . , U̇K , V̇1, . . . , V̇K ) 7→
{

U̇T
k HklVl + UT

k Hkl V̇l

}

is surjective.

Affine representatives (matrices) ⇒ Linear Algebra

It is easy to devise a simple numerical feasibility test:

I Step 1: Find an arbitrary IA solution

I Step 2: Rank checking

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 9/35
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Step 1: Find an arbitrary IA solution

I We need to find an arbitrary set (Hkl ,Uk ,Vl) such that the
IA conditions are satisfied

I The following canonical representatives trivially satisfy the
alignment conditions:

I Precoders/decoders:

Vl =

[
Idl

0(Ml−dl ),dl

]
, Uk =

[
Idk

0(Nk−dk ),dk

]

I Channels:

Hkl =

[
0dk ,dl Akl

Bkl Ckl

]

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 10/35
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Step 2: Rank checking
To check if the matrix Ψ defining the mapping

θ : ({U̇k}k∈ΦR
, {V̇l}l∈ΦT

) 7→
{

U̇T
k Bkl + Akl V̇l

}
(k,l)∈Φ

is full row rank.
Example: 3-user channel

Link TX1 TX2 TX3 RX1 RX2 RX3

(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)




Ψ
(A)
12 0 0 0 Ψ

(B)
12 0

Ψ
(A)
13 0 0 0 0 Ψ

(B)
13

0 Ψ
(A)
21 0 Ψ

(B)
21 0 0

0 Ψ
(A)
23 0 0 0 Ψ

(B)
23

0 0 Ψ
(A)
31 Ψ

(B)
31 0 0

0 0 Ψ
(A)
32 0 Ψ

(B)
32 0




where Ψ
(A)
kl = (Akl ⊗ Idk )K(Nk−dk ),dk and Ψ

(B)
kl = Idl ⊗ BT

kl

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 11/35
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Numerical results

What can this test be used for?
I Check the feasibility of an arbitrary interference channel

I Floating point test is numerically robust for 100+
antennas/node, e.g., (86× 139, 25)8

I Exact arithmetic test gives a conclusive answer

Feasibility problem belongs to the BPP complexity class

I Extensive evaluation of feasibility in families of systems
I Disprove conjectures by finding counterexamples:

System (11× 29, d)4 (19× 71, d)5 (29× 139, d)6

Conj.1 DoF MN
M+N 7.975 14.989 23.994

Actual DoF 8 15 24

I Powerful tool to obtain research insights, intuitions,
establish new conjectures, etc.

1Wang, Sun, Jafar, ISIT, 2012
Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 12/35
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A conjecture on the DoF of (M × N , d)K systems

γ = M
N

d/N
1
2

γ = 10
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A conjecture on the DoF of (M × N , d)K systems

γ = M
N

d/N
1
2

γ = 1

γ+1
K+1 (d = M+N

K+1 )
Properness bound

0
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d/N
1
2
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γ
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A conjecture on the DoF of (M × N , d)K systems

γ = M
N

d/N
1
2

γ = 1

γ
γ+1 (d = MN

M+N )

γ+1
K+1 (d = M+N

K+1 )

λ = f(K)

Properness-limited DoFlinear DoF
Piecewise

Properness bound

Decomposition bound

0
[Liu &Yang, 2013]
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Motivation

Why should we care about the number of solutions?

I Further reveals the mathematical richness of the problem
I Link the IA problem to other, well-studied,

combinatorial/graph theory counting problems

I Generalizes the feasibility problem

Infeasible ⇔ Number of solutions = 0

I Prediction of large system performance [Schmidt et al., 2010]

I Measure of the algebraic complexity required to compute a
solution [Bresler et al., 2014]

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 14/35
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Third contribution: number of solutions, a general formula
The dimension of the solution set is s = dim(V)− dim(H)

I Negative: 0 solutions
I Positive: 0 or ∞ solutions

I Zero: Finite number of
solutions

Theorem: If s = 0, for every choice of {Hkl} out of a zero measure
set, the IA problem has exactly S alignment solutions given by

S = C−
∫

H∈‖Hkl‖F =1
det(ΨΨH)dH = C · E [det(ΨΨH)]

How does this generalize our feasibility results?

I Checking feasibility: Pick a canonical IA solution at random
and check whether det(ΨΨH) 6= 0

I Counting solutions: Average det(ΨΨH) over all canonical
solutions with unit Frobenius norm

González, Santamaŕıa & Beltrán, TIT, 2nd review round
Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 15/35



Introduction Feasibility Number of solutions Transceiver design Conclusion

Example: the (2× 2, 1)3 system, 2 solutions2

I We take uniformly distributed canonical solutions:

Hkl =

[
0 akl
bkl ckl

]
−→ H̄kl =

Hkl

‖Hkl‖F
,

where akl , bkl , ckl ∼ CN(0, 2), i.i.d.

I The 6× 6 matrix Ψ defining the mapping is

Ψ =




b12
‖H12‖F 0 0 0 a12

‖H12‖F 0
b13
‖H13‖F 0 0 0 0 a13

‖H13‖F
0 b21

‖H21‖F 0 a21
‖H21‖F 0 0

0 b23
‖H23‖F 0 0 0 a23

‖H23‖F
0 0 b31

‖H31‖F
a31
‖H31‖F 0 0

0 0 b32
‖H32‖F 0 a32

‖H32‖F 0




2Cadambe & Jafar, 2008
Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 16/35
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Example: the (2× 2, 1)3 system (cont’d)
I The number of solutions is

S = C−
∫

H∈‖Hkl‖F
det(ΨΨH)dH = C · E [| det(Ψ)|2]

where C = 36 = 729 for this scenario
I Expanding the determinant of Ψ (squared) along its first

column we get

S = 36 · 2 · E
[∣∣∣∣

b12

‖H12‖2
F

∣∣∣∣
2
]6

where
∣∣∣ b12

‖H12‖2
F

∣∣∣
2
∼ Beta(1, 2) with mean 1/3

I Consequently,

S = 36 · 2 ·
(

1

3

)6

= 2 solutions

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 17/35



Introduction Feasibility Number of solutions Transceiver design Conclusion

Single-beam scenarios: Closed-form solution

Theorem: The number of IA solutions for an arbitrary single-beam
scenario with s = 0 is given by

S =
per(T)∏

k(Nk − 1)!
∏

l(Ml − 1)!

where T is the matrix built by replacing the non-zero elements of
Ψ by ones and per(T) denotes its permanent.

• Permanent much harder to compute than determinant

• Permanents of 0/1 matrices appear in many counting
problems

I Perfect matchings in bipartite graphs, regular digraphs,. . .
I Closed-form formulas, e.g.,

(2× (K − 1), 1)K systems, S = round
(
K !
e

)
I Bounds on the growth rate of the number of solutions

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 18/35
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Multi-beam scenarios: Monte Carlo approximation

Input: Relative error, ε; number of antennas, {Mk} and {Nk},
and streams, {dk}, ∀k ∈ K

Output: Approximate number of IA solutions, En

begin
n← 1
repeat

Generate a set of random matrices {Akl}, {Bkl} and {Ckl}
with i.i.d. CN (0, 2) entries
Build canonical channel matrices {Hkl}
Normalize every channel matrix Hkl such that ‖Hkl‖F = 1
Build the matrix Ψ

Dn ← C det(ΨΨH)
Calculate mean, En, and variance, σn
n← n + 1

until σn√
nEn

< ε

Interference Alignment in MIMO Networks: Feasibility and Transceiver Design 19/35
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Some examples

(2× (K − 1), 1)K (3× (K − 2), 1)K (5× (2K − 3), 2)K

K Exact / Approx. Exact / Approx. Approx.

3 2 / 2 ± 1.0 % 1 / 1 ± 0.5 % 1
4 9 / 9 ± 1.6 % 9 / 9 ± 1.6 % 3 700 ± 0.1 %
5 44 / 44 ± 2.6 % 216 / 216 ± 1.5 % 72 581 239 ± 17.8 %
6 265 / 266 ± 3.3 % 7 570 / 7 291 ± 5.5 % –

I Number of solutions grows rapidly

0.1

1

10

100

lo
g
1
0
(S

)

Exact number of solutions for M = 2
Bounded region, L ≤ S ≤ U

0.1

1

10

100

lo
g
1
0
(S

)

Exact number of solutions for M = 3
Bounded region, L ≤ S ≤ U

5 10 15 20 25 30 35 40 45
0.1

1

10

100

Numbers of users, K

lo
g
1
0
(S

)

Exact number of solutions for M = 4

Least squares fit: aK log(K) + bK + c
Bounded region, L ≤ S ≤ U
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Example: (3× 5, 1)6 system, 7 570 solutions
Distinct solutions ⇒ Extremely different performance
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Best of 2.0 % (151 solutions)

Best of 0.5 % (38 solutions)
Average sum-rate

I Observation: Most of the sum-rate gain is obtained by picking
the best out of a small subset of solutions

I Is there a systematic way to compute distinct IA solutions?
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Alternating minimization
Research on IA has given rise to a plethora of algorithms, most of
them based on alternating minimization
Originally proposed to minimize the interference leakage3

IL =
∑

k 6=l

‖UH
k HklVl‖2

F

I Typically slow (linear
convergence rate)

I Bounces and circles
around minima

I Monotone convergence

I No guaranteed convergence

I No systematic way of
getting L different solutions Precoders, {V }

D
ec
o
d
er
s,
{U
}

Cost function: IL =
∑

k 6=l ||UH
k HklVll||2

3Gomadam et al., 2011
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Homotopy continuation

Basic idea: define a parametrized transformation or homotopy
that gradually deforms a trivially solvable system, or start system,
into the target system that we want to solve

A simple homotopy: a series of MIMO channels obtained as a
convex combination of a start channel, Hkl , and the target
channel, Hkl

Gkl(UH
k ,Vl , t) := UH

k ((1− t)Hkl + tHkl)︸ ︷︷ ︸
Hkl (t)

Vl , ∀k , l ∈ Φ and t ∈ [0, 1]

The combination is controlled by the continuation parameter, t

González & Santamaŕıa, ICASSP 2011; González, Fanjul & Santamaŕıa,
ICASSP 2014
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Homotopy Continuation
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(t)
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{
(
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+
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Start system: the inverse IA problem

How do we find an appropriate easy-to-solve system?

I Consider the inverse IA problem:

Given UH
k and Vl , find Hkl such that

UH
k HklVl = 0, ∀k , l ∈ Φ

I A linear equation per each Hkl (total of K (K − 1) equations
which are solved independently)

I Every solution can be parametrized as

Hkl = Xkl − AkAH
k XklBlB

H
l

where Ak and Bl are orthonormal bases of Uk and Vl ,
respectively, and Xkl is a non-zero arbitrary matrix.
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Path-following procedure

A first order approximation of the homotopy function

Gkl(UH
k + ∆UH

k ,Vl + ∆Vl , t + ∆t) =

UH
k Hkl(t)Vl+

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl+

UH
k (Hkl −Hkl)Vl∆t ∀k , l ∈ Φ

gives rise to a two-step path-following procedure:

1. Euler prediction

2. Newton correction
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Step 1: Euler prediction

t

St
ar
t s

ys
tem

Channel=
{Hkl
}

Contin
uatio

n paramete
r:
t =

0

Ta
rg
et

sy
ste

m

Channel=
{Hkl
}

Contin
uatio

n paramete
r:
t =

1

t t + ∆t

If the current point is in the path, we want the predicted solution
at t + ∆t to be as close to the path as possible:

Gkl(UH
k + ∆UH

k ,Vl + ∆Vl , t + ∆t) ≈ 0

I Precoder and decoder updates, ∆Vl and ∆UH
k , are obtained

by solving the system of linear equations:

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl =

−UH
k (Hkl −Hkl)Vl∆t ∀k , l ∈ Φ
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Step 2: Newton correction

t

St
ar
t s

ys
tem

Channel=
{Hkl
}

Contin
uatio

n paramete
r:
t =

0

Ta
rg
et

sy
ste

m

Channel=
{Hkl
}

Contin
uatio

n paramete
r:
t =

1

∆t = 0

If the current point ({Uk}, {Vl}, t) is not as close to the path as
we would like, i.e. the entries of Gkl(UH

k ,Vl , t) are larger than a
predefined tolerance, we can hold t constant by setting ∆t = 0
and obtain the Newton correction step.

I Again, precoder and decoder updates, ∆Vl and ∆UH
k are

obtained by solving a system of linear equations:

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl = −UH
k Hkl(t)Vl , ∀k , l ∈ Φ
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Features

I Quadratic convergence rate

I Faster than previously known algorithms in tight systems
I Systematic way to compute L distinct solutions:

I L trivial system solutions ⇒ L target system solutions
I Possibility to use “pre-computed solutions”

I Simple extension to other networks (X networks, structured
channels, etc.)

I Rank conditions explicitly enforced by adding UH
k HkkVk = I as

an additional equation (involves a change of basis at RX)
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Gauss-Newton algorithm
Observation: for ICs, a sequence Newton step converges globally
Explanation:

I Newton step for system solving can be regarded as a
Gauss-Newton method for IL minimization

I In GN the cost function is approximated by a convex function

Interference leakage convexifies as it approaches zero

I We can distinguish two operational regimes:

1. Approximation (IL ≥ µ): non-monotone convergence
2. Exact (IL < µ): quadratic convergence

Comparison GN vs HC:

I Faster convergence at the expense of the capacity to track
different solutions

González, Lameiro & Santamaŕıa, SPL, 2014
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Convergence speed: (5× 5, 2)4 system, 3700 solutions
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Sum-rate performance: (3× 3, 1)5 system, 216 solutions

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

SNR [dB]

S
u
m
-r
at
e
[b
it
/
s/
H
z]

Maximum sum-rate solution

Best of 5.0 % (11 solutions)
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Average sum-rate

Incremental SNR algorithm by Schmidt et al., 2013 (best-performing
algorithm in single-beam networks)
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Conclusions and further work

Closed-form feasibility conditions for single-beam systems
Numerical feasibility test for general scenarios
Closed-form number of solutions for single-beam systems
Monte Carlo approx. of no. of sols. in general scenarios
Gauss-Newton and homotopy continuation algorithms

Closed-form results for multi-beam networks (derive DoF
bounds by network flow analysis, feasibility results from
structure of Ψ,. . . )
Combinatorial interpretation of the number of solutions in
multi-beam networks
Algorithms on Riemannian manifolds, e.g. Grassmann, Stiefel
Distributed versions of both HC and GN algorithms
Extensions to rank-deficient or structured channels,
asymmetric complex-signaling,. . .
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Other production and impact indicators

I Interference Alignment Toolbox (IAbox)

http://github.com/masdeseiscaracteres/IAbox

I Online feasibility test (1500 executions, 45 locations, 17 countries)

http://gtas.unican.es/IAtest

I Related publications:
I IA: experimental work,

transceiver design,. . .
I MIMO systems
I Physical layer security

I Total production:
I 6 journal papers (3 published,

2 under review, 1 in
preparation)

I 15 conference papers
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Appendices

Network capacity - the holy grail of information theory

T1

T2

TK

R1

R2

RK

I Capacity: set of all possible rates
supported by a network

I Studied for decades but still open (even
for the 2-user IC)

I Several approximations attempted:

Degrees of freedom (DoF)
I Pre-log factor of the capacity
I High-SNR slope of sum-rate
I Number of non-interfering signal

dimensions
Our main focus: Interference alignment (IA)

I Achievability of 1/2 DoF/(user and signaling dimension) in an
interference channel [Cadambe & Jafar, 2008]

I IA has been shown to be DoF-optimal in many other scenarios
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Can we do better? - A network flow approach

T1

T2

TK

Supplies

al = (Ml − dl)dl

R1

R2

RK

Demands

bk = dk max(
∑

l dl −Nk, 0)

c21

cK1

c12

cK2

c1K

c2K

Capacities

ckl = dkdl

S D

b1a1

b2a2

bKaK

Supply-Demand Theorem (Gale, 1957; Mirsky, 1968): A feasible
flow exists if and only if

∑

k∈B
bk −

∑

l∈Ā
al ≤

∑

k∈B
l∈A

ckl , ∀A,B ⊆ K
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Identifying the properness conditions with the S-D Theorem:

∑

l :(k,l)∈φ
(Ml − dl)dl +

∑

k:(k,l)∈φ
(Nk − dk)dk ≥

∑

(k,l)∈φ
dldk ∀φ ⊆ Φ

I Supplies: al = (Ml − dl)dl
I Demands: bk = dk max(

∑
l dl − Nk , 0)

I Capacity: ckl = dkdl ∀(k , l) ∈ Φ, ckl = 0 otherwise

Theorem: If the maximum flow, F , in the transport network does
not fulfill the aggregate demand, i.e.,

F <
∑

k

dk max(
∑

l

dl − Nk , 0)

Then, no other feasible flow exists and the system is not feasible.
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I Supplies: al = (Ml − dl)dl
I Demands: bk = dk max(

∑
l dl − Nk , 0)

I Capacity: ckl = dkdl ∀(k , l) ∈ Φ, ckl = 0 otherwise

Theorem: If the maximum flow, F , in the transport network does
not fulfill the aggregate demand, i.e.,

Goldberg’s maximum flow algorithm O(K 3)

Then, no other feasible flow exists and the system is not feasible.
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Example 1: Demand not fulfilled ⇒ Infeasible system

T1

T2

T3

T4

R1

R2

R3

R4

S D

2/3 2/2

1/1 1/2

1/1 2/2

1/1 0/0

1/1

1/1

1/1

1/1

1/1

Figure: Maximum flow for the (4× 2, 1)(2× 2, 1)2(2× 4, 1) system

Remark: The opposite does not hold, see next example
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Example 2: Demand fulfilled ; Feasible system
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Figure: Maximum flow for the (4× 4, 1)(2× 2, 1)3 system

A feasible flow fulfilling the demands does not mean the system is
feasible

OK, but is it feasible or not?
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Single-beam systems

I Properness is a necessary and sufficient condition for the
feasibility of single-beam systems

1. Maximum flow algorithms provide a conclusive answer in
polynomial time

2. A closed-form solution is also possible

Theorem: Consider a fully connected IC where the users are sorted
such that Mk ≥ Mk+1 and Nk ≤ Nk+1 if Mk = Mk+1. Then,
interference alignment in this network is feasible if and only if

k∑

i=1

max(K − Ni , 0)∗∗ ≥
k∑

i=1

(Mi − 1) ∀k ∈ K

where ∗∗ denotes the I-restricted conjugate partition.
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Single-beam systems

I Properness is a necessary and sufficient condition for the
feasibility of single-beam systems

1. Maximum flow algorithms provide a conclusive answer in
polynomial time

2. A closed-form solution is also possible

Theorem: Consider a fully connected IC where the users are sorted
such that Mk ≥ Mk+1 and Nk ≤ Nk+1 if Mk = Mk+1. Then,
interference alignment in this network is feasible if and only if

Linear time-complexity: O(K )

where ∗∗ denotes the I-restricted conjugate partition.
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Example 1: Infeasible system (4× 2, 1)(2× 2, 1)2(2× 4, 1)
I TX/RX antennas, supplies and demands

M = (4, 2, 2, 2)

N = (2, 2, 2, 4)

a = (Mi − 1) = (3, 1, 1, 1)

b = (K − Ni ) = (2, 2, 2, 0)

I I-restricted conjugate partition of b:

b∗∗ = (2, 2, 2, 0)
2

2

2

0

2 2 2 0

b =

b∗∗ =

I Does b∗∗ majorize a?

(2, 4, 6, 6) � (3, 4, 5, 6) ⇒ Infeasible
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Example 2: Feasible system (4× 4, 1)(2× 2, 1)3

I TX/RX antennas, supplies and demands

M = (4, 2, 2, 2)

N = (4, 2, 2, 2)

a = (Mi − 1) = (3, 1, 1, 1)

b = (K − Ni ) = (0, 2, 2, 2)

I I-restricted conjugate partition of b:

b∗∗ = (3, 2, 1, 0)
0

2

2

2

3 2 1 0

b =

b∗∗ =

I Does b∗∗ majorize a?

(3, 5, 6, 6) ≥ (3, 4, 5, 6) ⇒ Feasible
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The DoF of (M × N , d)3 systems

γ (fix N)

d?/N
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λ = 1

Piecewise linear DoF
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A conjecture on the DoF of (M × N , d)K systems

γ = M
N

d/N
1
2

γ = 1

γ
γ+1 (d = MN

M+N )

γ+1
K+1 (d = M+N

K+1 )

λ = f(K)

Properness-limited DoFlinear DoF
Piecewise

Properness bound

Decomposition bound

0
[Liu &Yang, 2013]

[Wang, Sun & Jafar, 2012]

Counterexamples

ConjecturedProven

Proven
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A conjecture on the DoF of (M × N , d)K systems
Two regimes: below and above the threshold

λ = 1/2
(
K − 1−

√
(K − 1)2 − 4

)
:

1. Piecewise linear regime (proved by Liu and Yang, 2013):

d? =


γ(p) + 1

γ(p)(K + 1)
M, γ′(p) ≤ M

N
≤ γ(p)

γ(p) + 1

K + 1
N, γ(p) ≤ M

N
≤ γ′(p + 1)

p ∈ Z+.

γ(p) =

(p−1)∑
k=−(p−1)

λk

p∑
k=−p

λk

and γ′(p) = λ

p−2∑
k=0

λ2k

p−1∑
k=0

λ2k

.

2. Properness-limited regime (remains unproven):

d? =
M + N

K + 1
.
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