Homotopy Continuation for Vector Space Interference Alignment in MIMO X Networks

Óscar González, Jacobo Fanjul, and Ignacio Santamaría

University of Cantabria, Spain

ICASSP 2014 - Florence, Italy May 9, 2014

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	00

Contents

Problem statement

X Network

Background & Techniques

Interference Channel Alternating Minimization

Proposed solution

Homotopy Continuation Start system Path-following

Numerical results

DoF/sum-rate performance

Conclusion

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
•0	00000000	000000	00	00

X Network: a very general network topology

 Arbitrary number of transmitters and receivers

Here, both are equal to K

Arbitrary message demands

Here, we will assume each transmitter sends d independent data streams to each receiver

- Messages intended for a single receiver (unicast traffic)
- ► Generalizes IC, IBC, IMAC, XC,...

X Network: problem formulation

Assumption: Generic and unstructured MIMO channels (random and w/o channel extensions)

We will use linear precoding/decoding to cancel out the interference:

$$\mathbf{U}_{k}^{H}\mathbf{H}_{kl}\mathbf{V}_{\overline{k}l} = \mathbf{0}, \quad \forall k, l \qquad \qquad \begin{array}{c} \mathcal{K}^{3}\left(\mathcal{K}-1\right)d^{2} \\ \text{bilinear eqs.} \end{array}$$

rank $\left(\mathbf{U}_{k}^{H}\left[\mathbf{H}_{k1}\mathbf{V}_{k1},\ldots,\mathbf{H}_{k\mathcal{K}}\mathbf{V}_{k\mathcal{K}}\right]\right) = \mathcal{K}d, \quad \forall k \quad \mathcal{K} \text{ rank constraints}$

where $\mathbf{V}_{\overline{k}l}$ is defined as the horizontal concatenation of all \mathbf{V}_{jl} such that $j \neq k$, i.e.,

$$\mathbf{V}_{\overline{k}l} \stackrel{\text{def}}{=} \underset{j \neq k}{\operatorname{cat}} (\mathbf{V}_{jl}).$$

X Network: problem formulation

Assumption: Generic and unstructured MIMO channels (random and w/o channel extensions)

We will use linear precoding/decoding to cancel out the interference:

$$\mathbf{U}_{k}^{H}\mathbf{H}_{kl}\mathbf{V}_{\overline{k}l} = \mathbf{0}, \quad \forall k, l \qquad \qquad \begin{array}{c} K^{3}\left(K-1\right)d^{2} \\ \text{bilinear eqs.} \end{array}$$

where $\mathbf{V}_{\overline{k}j}$ is defined as the horizontal concatenation of all \mathbf{V}_{jl} such that $j \neq k$, i.e.,

$$\mathbf{V}_{\overline{k}l} \stackrel{\text{def}}{=} \underset{j \neq k}{\operatorname{cat}} (\mathbf{V}_{jl}).$$

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	00

Interference Channel: a *nice* particularization

- ► Equal number of transmitters and receivers (here, K)
- One-to-one message demands
 - ► Here, each transmitter sends *d* independent data streams to its corresponding receiver

$$\begin{aligned} \mathbf{U}_{k}^{H}\mathbf{H}_{kl}\mathbf{V}_{ll} &= \mathbf{0}, \quad \forall k, \; \forall l \neq k \qquad \mathcal{K}(\mathcal{K}-1)d^{2} \text{ bilinear eqs.} \\ \text{rank}\left(\mathbf{U}_{k}^{H}\mathbf{H}_{kk}\mathbf{V}_{kk}\right) &= d, \quad \forall k \qquad \mathcal{K} \text{ rank conditions} \end{aligned}$$

Why is the interference channel that nice?

- ► Rank conditions are satisfied automatically if U_k and V_l are full column rank, e.g. U^H_kU_k = I and V^H_lV_l = I
- This property is exploited by the alternating minimization algorithm [Gomadam et al. 2011]

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	●●●●●●●●	000000	00	00

Cost function: $IL = \sum_{k \neq l} ||\mathbf{U}_k^H \mathbf{H}_{kl} \mathbf{V}_{ll}||^2$

Precoders, $\{V\}$

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	0000000	000000	00	00

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	00

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	00

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	00

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	000000000	000000	00	00

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	000000000	000000	00	00

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	00

Alternating Minimization: properties and characteristics

- Simple interpretation and implementation
- Slow convergence (bounces and circles around minima)
- Convergence to a global minimum is not guaranteed

For an interference channel...

- ► There is a strong numerical evidence that it always converges to the global optimum, i.e. IL = 0
- Provides useful insights in the study of feasibility

For an X network...

 It does not guarantee the rank condition (strong coupling: every link acts as both desired and interfering)

What to do instead?

Homotopy Continuation

Basic idea: define a parametrized transformation or **homotopy** that gradually deforms a trivially solvable system, or **start system**, into the **target system** that we want to solve

A simple homotopy: a path of MIMO channels obtained as a convex combination of a *start* channel, $\overline{\mathbf{H}}_{kl}$, and the target channel, \mathbf{H}_{kl}

$$\mathbf{G}_{kl}(\mathbf{U}_{k}^{H},\mathbf{V}_{\overline{k}l},t) := \mathbf{U}_{k}^{H}\underbrace{\left((1-t)\overline{\mathbf{H}}_{kl}+t\mathbf{H}_{kl}\right)}_{\mathbf{H}_{kl}(t)}\mathbf{V}_{\overline{k}l}, \quad \forall k,l \text{ and } t \in [0,1]$$

The combination is controlled by the continuation parameter, t

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	00000	00	00

Homotopy Continuation

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	00000	00	00

Start system: the *inverse* IA problem

How do we find an appropriate easy-to-solve system?

• Consider the **inverse IA problem**:

Given \mathbf{U}_{k}^{H} and $\mathbf{V}_{\overline{k}l}$, find $\overline{\mathbf{H}}_{kl}$ such that

$$\mathbf{U}_{k}^{H}\overline{\mathbf{H}}_{kl}\mathbf{V}_{\overline{k}l}=\mathbf{0},\quad\forall k,l$$

- ► A linear equation per each $\overline{\mathbf{H}}_{kl}$ (total of K^2 equations which are solved independently)
- Every solution can be parametrized as

$$\overline{\mathbf{H}}_{kl} = \mathbf{X}_{kl} - \mathbf{F}_k \mathbf{F}_k^H \mathbf{X}_{kl} \mathbf{G}_{\overline{k}l} \mathbf{G}_{\overline{k}l}^H$$

where \mathbf{F}_k and $\mathbf{G}_{\overline{k}l}$ are orthonormal bases of \mathbf{U}_k and $\mathbf{V}_{\overline{k}l}$, respectively, and \mathbf{X}_{kl} is a non-zero arbitrary matrix.

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion 00

Path-following procedure

A first order approximation of the homotopy function

$$\begin{aligned} \mathbf{G}_{kl}(\mathbf{U}_{k}^{H}+\Delta\mathbf{U}_{k}^{H},\mathbf{V}_{\overline{k}l}+\Delta\mathbf{V}_{\overline{k}l},t+\Delta t) &= \\ \mathbf{U}_{k}^{H}\mathbf{H}_{kl}(t)\mathbf{V}_{\overline{k}l}+ \\ \Delta\mathbf{U}_{k}^{H}\mathbf{H}_{kl}(t)\mathbf{V}_{\overline{k}l}+\mathbf{U}_{k}^{H}\mathbf{H}_{kl}(t)\Delta\mathbf{V}_{\overline{k}l}+ \\ \mathbf{U}_{k}^{H}(\mathbf{H}_{kl}-\overline{\mathbf{H}}_{kl})\mathbf{V}_{\overline{k}l}\Delta t \quad \forall k,l, \end{aligned}$$

gives rise to a two-step path-following procedure:

- 1. Euler prediction
- 2. Newton correction

A predicted solution at $t + \Delta t$ has to be as close to the path as possible: $\mathbf{G}_{kl}(\mathbf{U}_k^H + \Delta \mathbf{U}_k^H, \mathbf{V}_{\overline{k}l} + \Delta \mathbf{V}_{\overline{k}l}, t + \Delta t) = \mathbf{0}$ Therefore,

$$\Delta \mathbf{U}_{k}^{H} \mathbf{H}_{kl}(t) \mathbf{V}_{\overline{k}l} + \mathbf{U}_{k}^{H} \mathbf{H}_{kl}(t) \Delta \mathbf{V}_{\overline{k}l} = -\mathbf{U}_{k}^{H} (\mathbf{H}_{kl} - \overline{\mathbf{H}}_{kl}) \mathbf{V}_{\overline{k}l} \Delta t \quad \forall k, l.$$

► ΔV_k and ΔU^H_k are obtained by solving a system of linear equations

If the current point $({\mathbf{U}_k}, {\mathbf{V}_{jl}}, t)$ is not as close to the path as we would like, i.e. the entries of $\mathbf{G}_{kl}(\mathbf{U}_k^H, \mathbf{V}_{\overline{k}l}, t)$ are larger than a predefined tolerance, we can hold t constant by setting $\Delta t = 0$ and obtain the Newton correction step:

$$\Delta \mathbf{U}_{k}^{H} \mathbf{H}_{kl}(t) \mathbf{V}_{\overline{k}l} + \mathbf{U}_{k}^{H} \mathbf{H}_{kl}(t) \Delta \mathbf{V}_{\overline{k}l} = -\mathbf{U}_{k}^{H} \mathbf{H}_{kl}(t) \mathbf{V}_{\overline{k}l}, \ \forall k, l$$

► Again, precoder and decoder updates, ΔV_k and ΔU^H are obtained by solving a system of linear equations

Problem statement 00	Background & Techniques 000000000	Proposed solution	Numerical results ●○	Conclusion 00

DoF performance

- K = 4 users (K^2 desired links)
- d = 1 stream/link ($K^2 d^2 = 16$ simultaneous streams)
- Four scenarios (1-4, from tightest to loosest according to the bound d ≤ n_T+n_R/K²+1 [Sun et al. 2012])

Scenario	1	2	3	4
$n_T \times n_R$	8 × 9	9 imes 9	10 imes 10	11 imes 11
MinIL	1.00	1.00	0.56	0.01
HC	0.18	0.15	0.02	0.00

 $\mathsf{Prob}[\mathsf{DoF} < \mathsf{K}^2 d = 16]$ or probability of not achieving the requested number of degrees of freedom

usion

Sum-rate performance

Problem statement 00	Background & Techniques	Proposed solution	Numerical results	Conclusion ●0

Conclusion

Summary

- ► New algorithm to compute interference alignment solutions
- Provides superior performance in terms of achieved DoF/sum-rate
- ► Useful as a numerical means to provide evidence of feasibility

Future work

- Explicitly include rank constraints
- Extension to structured channels (diagonal, block diagonal,...) which appear when channel extensions/ asymmetric complex signalling are used

Problem statement	Background & Techniques	Proposed solution	Numerical results	Conclusion
00	00000000	000000	00	0.

Thank you for your attention