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Abstract—Alternating minimization and steepest descent are
commonly used strategies to obtain interference alignment (IA)
solutions in the K -user multiple-input multiple-output (MIMO)
interference channel (IC). Although these algorithms are shown to
converge monotonically, they experience a poor convergence rate,
requiring an enormous amount of iterations which substantially
increases with the size of the scenario. To alleviate this drawback,
in this letter we resort to the Gauss-Newton (GN) method, which
is well-known to experience quadratic convergence when the
iterates are sufficiently close to the optimum. We discuss the con-
vergence properties of the proposed GN algorithm and provide
several numerical examples showing that it always converges
to the optimum with quadratic rate, reducing dramatically the
required computation time in comparison to other algorithms,
hence paving a new way for the design of IA algorithms.

Index Terms—Alternating minimization, Gauss-Newton, inter-
ference alignment, interference channel, steepest descent.

I. INTRODUCTION

NTERFERENCE ALIGNMENT (TA) is a promising tech-

nique to manage interference in wireless networks [1]. The
key idea is to confine the interferences at each receiver into a
reduced-dimensional subspace, thus leaving some receiver di-
mensions free of interference. This approach allows to achieve
the maximum degrees-of-freedom (DoF), i.e., the number of
data streams that can be transmitted free of interference, which
asymptotically characterize the sum-rate capacity.

In this letter we consider the K -user multiple-input multiple-
output interference channel (MIMO IC), which is comprised
of K transmitter-receiver pairs that interfere with one another.
More specifically, we restrict our analysis to the case where no
time or frequency symbol extensions are applied and perfect in-
terference alignment is sought (i.e. zero interference leakage).
Since closed-form IA solutions are not available for the majority
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of scenarios, iterative algorithms are usually applied in order
to obtain linear precoding and decoding matrices that achieve
IA. Over the course of the last years numerous methods have
been developed for this task. The first method, which became
specially well-known because of its simplicity and reliability,
is the alternating minimization algorithm in [2], [3] which we
will abbreviate as AltMin in this letter. This algorithm regards
the IA problem as an interference leakage minimization, which
can be effectively solved by an alternating optimization proce-
dure. It is shown to converge monotonically but does not nec-
essarily achieve a global optimum. Although, to the best of our
knowledge, a rigorous proof has not been provided yet, it has
been experimentally observed that the AltMin algorithm finds
the global solution, attaining zero interference leakage, in all
feasible scenarios. The convergence analysis of the AltMin al-
gorithm (as well as all its variants) is typically limited to prove
its monotonicity, leaving aside its rate of convergence, which
is a key issue for the convergence speed and, consequently, its
applicability. As a result, its main drawback is its slow conver-
gence rate, which exacerbates as the problem size (number of
users, antennas or streams) increases. Further, AltMin has given
rise to many other variants such as [4]-[9] which provide perfor-
mance improvements at the expense of a higher computational
complexity or number of iterations.

Another research line has been that of one-sided algorithms
for which the optimization is conducted at either the transmitter
or the receiver side of the links. This is the case of the algo-
rithms in [10]-[12] which also resort to an alternating optimiza-
tion procedure, but pose some issues when dealing with multiple
streams and a large number of users. Another promising ex-
ample are the steepest descent (SD) algorithms [13]-[15] which
are guaranteed to converge to a stationary point of the cost func-
tion. Many other algorithms with different cost functions (e.g.
MMSE, sum-rate) and optimization techniques have been de-
veloped [16]-[18], but no clear winner has been found so far,
according to recent comparisons [19].

In this letter we propose a method to find TA solutions which
does not rely on alternating minimization or steepest descent.
We will show that the main limitation of the AltMin and SD al-
gorithms stems from their distributed nature and a completely
different approach is needed in pursuit of an improved conver-
gence rate. Our method, instead, is based on the Gauss-Newton
(GN) method, which usually shows a quadratic convergence
rate. In the case of cost functions on R, the theory behind GN
is relatively well-known and understood. Unfortunately, the IA
problem poses the substantial difficulty of requiring precoders
and decoders to stay full rank along Newton iterations in order
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to preserve the rank of the desired channels. For the sake of com-
putational savings, we consider in this work a simple but widely
used approach, consisting on orthonormalizing the updates at
each iteration of the (unconstrained) GN. Given that the updates
are small, the orthonormalization step does not jeopardize the
convergence properties of the GN. In this letter, we discuss the
convergence properties of the proposed GN and show through
several numerical examples that it always converges quadrati-
cally to a zero interference leakage point in feasible scenarios.
Compared to the well-known AltMin or SD algorithms, our pro-
posed method provides remarkable computation time savings.

II. SYSTEM MODEL

We consider a K -user MIMO IC comprised of K transmitter-
receiver pairs equipped with M; and N; antennas,s = 1,..., K,
respectively. Also, each transmitter sends d; data streams fo its
corresponding receiver. Using the notation introduced in [20],
we expressed this system as Hf;l (M; x N;,d;). The signal at
each receiver can be modeled as

=UMH,;;Visi+> UPH;;Vis;j+n;,i=1,...
i

where U; € CV¥*4 and V; € CMix4 are the decoding
and precoding matrices, respectively; H;; € CY*i is the
flat-fading MIMO channel between transmitter j and receiver ,
s; € C% are the symbols transmitted by user i and n; € C%
is the additive white Gaussian noise at the ith receiver. In order
to avoid undesired interference, transmitters must design their
precoders to confine the interference to a reduced dimension-
ality subspace in such a way it can be zero-forced by receivers
with their corresponding decoding matrices. This transmission
strategy is known as IA and the existence of such a precoder
design requires the simultaneous satisfiability of the following
conditions:

I (1)

UMH;;V; =0, Yi#j, )
rank (UFH;V,) =d;, Vi (3)

In fact, condition (3) is almost surely satisfied if the channel
matrices H;; do not have any special structure and both U; and
V; are full column rank [2]. Without loss of generality, it can be
assumed that precoders and decoder lie in the Stiefel manifold,
ie. UHU, = 1, and Vf[Vj =1I4,Vi,j.

III. PROPOSED ALGORITHM

Let us define the vector containing all the optimization
variables, that is, the variables in V; and U; as x =
[vec(V1)T, ... vec(V )T, vec(UH)T .. vec(UH)TT,
where vec(A) denotes the vector obtained by stacking
the columns of matrix A below one another. Conse-
quently, x contains the totality of N, = > .(M; + N;)d;
variables in the system. Now, we denote as r(x) the
function evaluating the residuals of the equations in (2)
which consists of N, = Zl »y d;d; scalar equations, i.e.,
r(x) = [r31,..., vk qyx]", where ry; = vec(UJH; V).
More formally, r : CV» — CV- where N,, > N, is necessary
for the system to have a solution. The exact requirements for the
system to be feasible have been studied in [21] and references
therein, but here we will assume N,, > N, for simplicity. Under
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these considerations, the interference leakage cost function can
be expressed as f(x) = r(x)"r(x): CY — R.

A. Complex Gauss-Newton Method

At the nth iteration of Newton-like methods, the variables are
updated according to the rule x,, 1 = x,, + Ax,,, where the up-
date vector Ax,, is obtained through the second-order approx-
imation of the cost function, f(x). Since f(x) is a real-valued
function with complex domain, it is not analytic in x and hence a
Taylor expansion of f(x) ata point xq cannot be derived. On the
other hand, Wirtinger calculus provides a framework for com-
plex derivation that allows the existence of a complex Taylor
expansion of such real-valued functions, by being regarded as
a function of the augmented vector x = [x” x#]7. Then, two
complex derivatives are defined by taking the derivative with
respect to x while treating x* as a constant and the other way
around for x*. For further details, we refer the reader to [22].
Following these lines, the second-order approximation of the
interference leakage function, f(x), around a point xo can be
written as [22]:

1
F00 & (x0) + AXG VS (x0) + 5AX0 Hxo AXo,  (4)

where Axo = X —Xo, Vx.f(Xo) denotes the complex gradient
of the scalar function f(x) at xo and H,,, denotes the Hessian
matrix of f(x) at xo. Note that f(’x) is an alternative represen-
tation of f(x) that explicitly shows its dependence on both x
and x*, and thus f(x) = f(x). Let us also denote the Jacobian
matrix of the function r(x) at x = xo by

a Or(xo) _ [9r(%0) Ir(x0)
xo axT | 9xT oxH

J } =T Ix]- )

Given that r(x) is analytic in x, i.e., Jx- = 0, the gradient and
the Hessian matrix can be expressed as

Vol (x0) = [r0x0) T 2x0)" T3]

Hyo = (711"0 73’“) , (7)
Hyxo Mo
where

Moy = I +Zv x d”x(’) (8)

xXo — Yxp¥%0 k 0 Ix TOX*’

=0

9? ’k(XU)

Hy, = T2 J*+Zrkx0 T o )

\— st
=0
are the complex and complementary Hessian matrices, respec-
tively, and ;. denotes the kth element of r.

In the GN method, the Hessian matrix is approximated by
taking H, = 0, which is a reasonable approximation when the
entries of r are small (we are close to the minimum) or the func-
tion r is mildly non-linear (the second derivatives are small). As
r is a bilinear function, this happens to be a rather good approxi-
mation. Taking this approximation into account, and using —(9),
we can express (4) as a function of x as

f(X) ~ f(X[)) + 2R {I‘(X())HJXOAX()} + AX?J}Z]JXOAX[).
(10)
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Note that the approximated Hessian is positive semidefinite, and
thus (10) is actually a convex approximation of f(x) at x. Fi-
nally, the GN update is obtained when the derivative of (10) with
respect to Axg equals zero:

9f(x)
6Ax0

=238 r(x) + 2T I, Axo = 0. (11)
Given that Jy, is N, x N, and N, > N,., (11) simplifies to
Ji,Axo = —r(xp), whose infinite solutions can be parame-
trized as Axg = —JIOI‘(XO) +(I- JLJXU)W, where ()Jr de-
notes the Moore-Penrose (MP) pseudoinverse and w is a vector
of free parameters. Among all solutions, it is reasonable to pick
the one that is normal to the manifold {x : r(x) = r(xo)}
(the set of variables keeping residuals unchanged) or, equiva-
lently, is orthogonal to the nullspace of J,. More formally, this

is achieved by setting (I — JLJXO)W = 0 which leads to the

so-called normal flow update, i.e. Axy = —Jior(xo) [23]. In
practice, it is recommended not to compute the MP pseudoin-
verse but, instead, solve

argmina, {|[Ax,|| 1 Ix, Ax, = —1r(x,)}. (12)
Most of the existing linear algebra routines for solving this
problem cannot exploit the sparse structure of Jy, or, if they
do, compute a fast basic solution instead of the minimum-norm
solution. A convenient routine fulfilling both requirements is
SPQR_SOLVE which is part of the SuiteSparseQR linear algebra
bundle by Davis [24].

Finally, it is worth pointing out that due to the fact the GN
updates are small, the precoders and decoders obtained after
each iteration should guarantee condition (3). Therefore, both
precoders and decoders can be projected back to the Stiefel
manifold by computing an orthonormal basis of the subspace
spanned by each of them. Given that the interference leakage
function is invariant in the Grassmann manifold, the particular
choice of orthonormal representatives is irrelevant. Therefore,
among all orthonormalization operations, we consider the QR
decomposition as it requires the least computational demands,
and denote the Q factor as gf(-). The complete procedure is
summarized in Algorithm 1.

Algorithm 1 GN method for interference leakage
minimization.

Choose a tvolerance level, 8, and the initial point
{V;0,U; o}, lying on the Stiefel manifold.

Setn = 0.
repeat
1) Construct x,,, Jx, and r(x,,) and solve (12) for Ax,,.

2) Construct AV; ,, and AU, ,, from Ax,, and compute
Vi,n—f—l = qf(V'i,,n + Avi,n)a
Ui,n+1 - qf(Ui,n + AUl,n)

3) n=mn+1.
Until f(x,) < é.
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Remark: The GN method applied to minimize f(x) =
r(x)#r(x) is identical to the classical Newton’s method ap-
plied to the system of equations r{x) = 0 when the minimum
norm update is chosen [25]. To see this, consider a first order
model of r(x), ie. r(x) = r(xo) + Jx,AXp. In the clas-
sical Newton’s method, the update vector Axy must satisfy
r(xg) + Jx, Axy = 0 thus yielding the update in (12).

B. Some Remarks on the Convergence Properties

Convergence of GN methods is usually difficult to analyze,
hence we provide here some insights based on empirical ob-
servations rather than formal convergence proofs. Nevertheless,
we will observe in Section V through exhaustive simulations
that our intuitions behind the convergence of the method are in
agreement with the experimental results.

1) Stationary Points: From (11) it is clear that points satis-
fying J gr(xo) = 0 are accumulation points, i.e., stationary
points of the method. In a previous work [21] we have proved
that, for a feasible IA system, the matrix Jy is always full-rank,
and therefore the nullspace of JI is always empty. Thus, these
points correspond to r(x) = 0, i.e., zero interference leakage.
Also, points at which the updates do not change the subspace
of the precoders and decoders are also accumulation points (re-
call that the interference leakage is invariant in the Grassmann
manifold), but do not necessarily correspond to stationary points
of the interference leakage. Note, however, that such points are
also present in the AltMin and other IA algorithms.

2) Non-Monotone Convergence: It can be seen that the clas-
sical GN direction is a descent direction of the function f(x)
when J£ r(x) is nonzero [25]. In other words, the scalar product
of the direction Ax over the gradient is always negative, i.e.
r(x)2J,Ax < 0. Intuitively, it is clear that the interference
leakage can always be reduced by diminishing the transmitted
power, thus guaranteeing a monotone convergence. In general,
when a power constraint is added (e.g. by restricting precoders
and decoders to lie in the Stiefel manifold as in Step 2 of Algo-
rithm 1) monotone convergence does not hold anymore.

IV. RATE OF CONVERGENCE

A sequence of vectors {x,,} is said to converge to x* with
order « if

*

g X1 =X (13)
w5 [y x|

with 0 < ¢ < oo. For example, the classical GN method
is known to converge g-quadratically (i.e. « = 2) for small
residual problems, r(x*) =~ 0, when the following assump-
tions are satisfied [25]: the residuals r(x) are Lipschitz contin-
uously differentiable (i.e., their second derivative is bounded)
and the Jacobian Jy is full rank for all x in a neighborhood
of the optimum x*. Since both requirements are met in the TA
problem (recall that the Jacobian matrix is always full-rank for
feasible scenarios), GN is expected to converge g-quadratically
in a neighborhood of the optimum. We note that g-quadratic
convergence holds for the classical GN method but may not
hold when additional operations such as the orthonormalization
in Step 2 of Algorithm 1 are applied. Fortunately, in a neigh-
borhood of the optimum, the orthonormalization step can be
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Fig. 1. Average convergence of GN, AltMin and SD for the (5 x 5,2)* and
(12 x 12,4)" scenarios.

regarded as a retraction which guarantees superlinear conver-
gence (o > 1) [26]. Our numerical results suggest the conver-
gence rate is indeed g-quadratic although a rigorous proofis not
available so far.

On the other hand, both alternating optimization and steepest
descent algorithms on manifolds are known to converge g-lin-
early (that is, @« = 1) with 0 < ¢ < 1 (see [27] and [26],
respectively). These algorithms, despite being simple, lack
good rate of convergence properties, making them prohibi-
tively slow. This limitation stems from their distributed nature,
constraining the optimization problem to a subset of variables at
each iteration. Conversely, the GN method takes advantage of
a joint, centralized optimization which enables a more focused
convergence.

V. NUMERICAL RESULTS

In this section we provide several numerical examples to
compare the convergence speed of the proposed GN method
to that of the AltMin [2] and SD [15] algorithms. Our results
are averaged over 100 independent Monte-Carlo simulations,
where the entries of the MIMO channels are independent and
identically distributed complex Gaussian variables with zero
mean and unit variance.

The evolution of the interference leakage with the average
computation time (in an Intel i7 3.2 GHz CPU) for the scenarios
(5 % 5,2)* and (12 x 12,4)° is depicted in Fig. 1. The differ-
ence in the convergence rate between AltMin and SD on the one
hand and the GN method on the other is readily observed. More
specifically, the use of AltMin against GN would be only justi-
fied when the desired interference level is still far above 102,
which is not a sufficiently low value for the signal-to-noise ratio
(SNR) regimes where 1A is meaningful. For the considered sce-
narios, the SD algorithm is always slower than AltMin and,
in fact, fails to converge (stagnating in local minima) in the
(12 x 12, 4)° scenario. On the other hand, both AltMin and GN
have always converged to a zero-leakage solution. The CDF of
the computation times and the median number of iterations to
reach an interference leakage of 10~° are depicted in Fig. 2 and
Table I, respectively.
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Fig. 2. CDF of computation times of the GN, AltMin and SD algorithms in
scenarios (5 x 3,2)* and (12 x 12,4)"°.

TABLE 1
MEDIAN NUMBER OF ITERATIONS TO REACH AN INTERFERENCE
LEAKAGE OF 10~° AND AVERAGE TIME PER ITERATION

Median number of iterations Iteration time (ms)

Scenario
GN  AltMin SD GN  AltMin  SD
(5 x 5,2)* 20 6204 1917 3.9 0.7 7.3
(12 x 12,4)5 42 32190 - 18.5 1.8 28.0

Lastly, we analyze the convergence order of the two algo-
rithms that have always converged in both scenarios: GN and
AltMin. We estimate the convergence order, ¢, by means of the
formula

~ log([[%n41 — X0 |l/1%n — X 1)
log([[xn — Xp-1l|/|xn-1 — Xn—2]))

The GN method gives &« = 2.10 and «v = 2.05 for the scenarios
(5 x 5,2)* and (12 x 12,4)", respectively, thus showing that
the convergence is q-quadratic and corroborating our arguments
in Sections III-B and IV. The estimates of « for the AltMin
algorithm are &« = .91 and « = 1.01, respectively, which
are also consistent with the g-linear convergence results in the
literature.

VI. CONCLUSION

In this letter we have proposed a new algorithm for the TA
problem in the /& -user MIMO IC. The proposed algorithm is
based upon the Gauss-Newton method, which is well-known
for its quadratic convergence rate. We have discussed the
convergence properties of the proposed approach, which have
been validated through exhaustive numerical simulations,
showing that the proposed algorithm does always converge to
the optimal solution and does it quadratically. Consequently,
the computation time is dramatically reduced in comparison to
steepest descent and the widely-used alternating minimization
algorithm. These findings pose a novel approach to obtain
IA solutions, endowed with a remarkable speed of conver-
gence, which computes (even for very complex scenarios)
IA solutions in a fraction of the time required by any other
state-of-the-art algorithm.
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