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Recent work on multiantenna spectrum sensing in cognitive radio (CR) networks has been
based on generalized likelihood ratio test (GLRT) detectors, which lack the ability to learn
from past decisions and to adapt to the continuously changing environment. To overcome
this limitation, in this paper we propose a Bayesian detector capable of learning in an
efficient way the posterior distributions under both hypotheses. Our Bayesian model
places priors directly on the spatial covariance matrices under both hypotheses, as well as
on the probability of channel occupancy. Specifically, we use inverse-gamma and complex
inverse-Wishart distributions as conjugate priors for the null and alternative hypotheses,
respectively; and a binomial distribution as the prior for channel occupancy. At each
sensing period, Bayesian inference is applied and the posterior for the channel occupancy
is thresholded for detection. After a suitable approximation, the posteriors are employed
as priors for the next sensing frame, which forms the basis of the proposed Bayesian
learning procedure. The performance of the Bayesian detector is evaluated by simulations
and by means of a CR testbed composed of universal radio peripheral (USRP) nodes. Both
the simulations and experimental measurements show that the Bayesian detector
outperforms the GLRT in a variety of scenarios.
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1. Introduction

Cognitive radio (CR) networks [1-3] rely on spectrum
sensing as a key operation that secondary users (SUs) must
perform in order to identify whether a wireless commu-
nication channel is in use by a licensed primary user (PU)
or not [4]. A reliable spectrum sensing stage is crucial to
detect spectrum holes that can be subsequently filled with
transmissions from SU [5]. To this end, detectors employ-
ing multiple antennas have received increased attention
recently because they do not require prior knowledge
about the PU signaling scheme and are able to work with
asynchronously sampled signals [6-12]. These multian-
tenna detectors exploit the fact that under the null
hypothesis (only noise) the signals received at the different
antennas are spatially uncorrelated, whereas the presence
of a PU induces some correlation and/or additional struc-
ture in the spatial covariance matrix.

Since the binary hypothesis testing problem involves
some unknown parameters (e.g., noise variance and chan-
nel), the generalized likelihood ratio test (GLRT) approach
has been typically followed to find one-shot detectors in
several scenarios [6,7,9,12]. In [12], frequency and time-
domain GLRTs have been derived that only exploit the
spatial correlation induced by the presence of a PU,
whereas the problem of detecting a rank-P primary user
signal is addressed in [9,7]. However, these detectors do
not take into account the smooth changes in the char-
acteristics of the channel or the noise that can be expected
between consecutive sensing frames. More precisely, it is
reasonable to assume that the time scale of variation of the
statistical parameters involved in the detection problem
(for instance, noise variance or space-time PU activity
pattern) are much longer than the sensing period. For
instance, channel access patterns for primary users have
been characterized as slowly time-varying in [13] and
more recently in [14]. It is clear that detectors able to
learn from past decisions would provide improved perfor-
mance in these slowly time-varying scenarios. With this
goal in mind, in this paper we propose an adaptive
Bayesian framework for multiantenna sensing and evalu-
ate its performance both by simulations and by means of a
CR testbed.

Adaptive Bayesian detectors for radar applications have
been proposed in [15-17], where a training set of data is
available for the estimation of noise statistics. For cognitive

radio applications, however, noise-only data is not always
available; therefore, these adaptive Bayesian techniques
cannot be applied to the scenarios considered in this
paper. Bayesian detectors specific for cognitive radios have
been previously proposed in [18-22]. Typically, these
works assume a prior distribution for the unknown para-
meters and apply Bayesian inference to come up with
improved parameter estimates and, consequently, more
reliable detectors. In comparison to these Bayesian
approaches, our work presents two main novelties: first,
our Bayesian detector places priors directly on the spatial
covariance matrices under both hypotheses; and second, it
includes learning and forgetting steps that allow to track
the variations of the channel and noise characteristics
from frame to frame. Our Bayesian approach is able to
learn from past sensing frames when the coherence time
of the propagation channel [23] is longer than the time
elapsed between consecutive sensing periods. We refer to
this situation as “smooth channel variations”. Let us also
remark that the proposed Bayesian detector is specifically
tailored for multiantenna cognitive receivers and, conse-
quently, this approach is not directly applicable to single-
antenna SUs.

Specifically, our multiantenna Bayesian model uses
inverse-gamma and complex inverse-Wishart distribu-
tions as conjugate priors for the null and alternative
hypotheses, respectively; and a binomial distribution as
the prior for channel occupancy. The reason for choosing
these priors being that under Gaussian noise they are the
conjugate priors for this problem and, therefore, the
posteriors can be calculated in closed form. More precisely,
the posterior conditioned on the channel state occupancy
(idle or busy) adopts the same form as the prior. However,
the unconditional posterior (marginalized over the chan-
nel state) becomes a convex combination of the priors.
Since the marginalized or unconditional posteriors sum-
marize the information gathered so far about the actual CR
scenario, they are used as priors for the next sensing
period: this represents the learning stage. To keep the
learning process simple and scalable, the unconditional
posterior (which is a linear combination of complex
inverse-Wishart distributions when the PU is present)
must be approximated within the family of the prior.
Furthermore, the procedure is equipped with a forgetting
mechanism based on [24] that allows to work on non-
stationary environments.
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In this paper, we extend some initial results about this
Bayesian approach which were presented in [25,26]. In
particular, we consider the optimal approximation of the
unconditional posterior according to the Kullback-Leibler
(KL) distance, and compare its performance and computa-
tional cost with the simple approximation based on
thresholding, which was discussed in [25]. Also, we pre-
sent a more in depth study of the proposed CR detector
performance for different number of receiver antennas,
observations and channel conditions. Finally, we also
evaluate experimentally the performance of the proposed
detector, in comparison to conventional GLRT-based detec-
tors, using to this end a cognitive radio hardware platform
based on Universal Software Radio Peripheral (USRP)
devices [27].

The rest of the paper is organized as follows. The
detection problem for the CR network is formulated in
Section 2. The Bayesian inference procedure for a single
sensing frame is presented in Section 3, where two
different approximations of the posterior are derived.
The learning and forgetting procedure for dealing with
multiple sensing frames will be discussed in Section 4. In
Section 5, we analyze the simulation results for different
settings including both stationary and non-stationary
environments, whereas the results obtained with the CR
testbed are presented in Section 6. Finally, our main
conclusions are summarized in Section 7.

2. Preliminaries
2.1. Notation

In this paper, we use bold-face lower case and bold-face
upper case letters for column vectors and matrices,
respectively; and light-face lower case letters for scalar
quantities. The superscripts (°) and (%) refer to the para-
meters of the posterior and prior distributions, respectively;
and (%) is used for estimated matrices and scalars. The
determinant of a matrix A is denoted as |A|, its trace as
tr(A), the operator diag(A) refers to a diagonal matrix
formed with the elements along the main diagonal of A,
[A]; denotes the ij element of the matrix, and the superscript
()" denotes Hermitian transpose. Finally, X ~CN (u,R)

CR (secondary user)

P single-antenna PUs with L antennas

Fig. 1. CR detection model: a cognitive user with L antennas tries to
detect the presence of P> 1 single-antenna PUs or, equivalently, a single
P-antenna PU.

indicates that x is a complex circular Gaussian random
vector of mean pand covariance matrix R.

2.2. Problem statement and GLRT detectors

We consider a cognitive receiver equipped with L
antennas that wants to detect whether the channel is
occupied by a primary user or not. During the t-th sensing
frame, the cognitive receiver acquires n=0,...,N—1 snap-
shots denoted by x,[n] e Ct. The signal received during the
t-th sensing period is stacked in a matrix: X;=[x;[0],
..., X¢(]N—1]]. The spectrum sensing problem can be for-
mulated as a binary hypothesis test as follows:

Hi @ Xe[n] = Hese[n] +ve[n],
Ho : X[n] = v¢[n], M

where x.[n] is the acquired snapshot at time n, s;[n] e C" is
the primary signal vector, which might represent the
signal emitted by a single PU with P antennas or the
signals emitted concurrently by P single-antenna PUs (see
Fig. 1), H; e C**P describes the multiple-input multiple-
output (MIMO) channel between the PU and the cognitive
receiver, and v;[n] is modeled as zero-mean additive white
Gaussian circular noise. In our model, both the channel H;
and the transmitted signal s;[n] are assumed to be random
quantities. More specifically, taking into account that any
spatial correlation and scaling of the primary signal can be
absorbed in the channel matrix, we model s; as a zero-mean
circular complex Gaussian, spatially white and power-
normalized. Under these assumptions, the distributions of
the vector-valued observations under each hypotheses #;
and H, can be modeled as CN(0,R;) and CN(0, D;), respec-
tively. Therefore, without any additional prior knowledge
about the modulation format or signaling scheme used by
the PU, the spectrum sensing problem amounts to testing
between two different structures for the covariance matrix
of x¢[n]:

Hq : X¢[n]~CN(O,R;)), n=0,..,N—1,
Ho : X¢[n]~CN(0,D;), n=0,...,N-1. 2)

Under H;, the L x L covariance matrix R; can be written as
HH" 4D, i.e. a rank-P matrix plus a scaled diagonal matrix.
In this paper, we assume that the rank P, the channel H, and
the noise variance are all unknown parameters; therefore,
under the alternative hypothesis R; has no further structure
beyond being a positive semidefinite matrix. On the other
hand, under Hy, D; is an arbitrary diagonal covariance
matrix. In this way, our proposed Bayesian scheme is able
to work in the most general setting.

Notice also that the likelihood under each hypothesis
depends on unknown parameters and therefore the
hypotheses are composite. The most typical approach to
solve this kind of testing problems is the generalized
likelihood ratio test (GLRT) [28]. When the noise is inde-
pendent and identically distributed (iid) at each antenna
(D;=02l) and P>L—-1, the GLRT is the well-known
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sphericity test [29],! which is given by

ISt
T (/DS

where S; =thf /N is the sample covariance matrix.

A more general testing problem that can accommodate
calibration uncertainties in the different antenna front-
ends takes into account a generic diagonal noise covar-
iance matrix under Ho. The GLRT in this case is the
Hadamard ratio [30] and is given by

ISe|
TTE_ 1 [Seli

Ls 3

Ly= 4)

3. Bayesian inference on a single sensing frame

The Bayesian approach proposed in this paper assigns
prior distributions to the covariance matrices under both
hypotheses, as well as to the probability of channel
occupancy. After discussing which priors should be used
for this problem, in this section we perform exact Bayesian
inference over a single sensing frame to derive the poster-
iors for the unknown parameters. Specifically, the poster-
ior for the channel occupancy is the statistic used to decide
whether the SU should transmit or not.

3.1. Prior distributions

Let us first introduce z; as a binary hidden random
variable that indicates whether a transmitter is present
(ze=1) or not (z; =0). Let us also remind that all our
information about R; and D; is that they are some
unknown covariance matrices, respectively full Hermitian
and diagonal. Following a proper Bayesian treatment, prior
distributions on all the unknown parameters of the model
(z», Ry and D;) must be placed. We will use the following:

p(z:) = Bernoulli(z;|7,) = #%(1 A (5a)

pR)=CcW! (Rt\ﬁt, Rt)

IR| /2R |~ +L+D/2 exp( — Ltr(R; 'R
) (u(rR)

2 (e
2 FL<2 )

. L -
pD) =G (Dufit, D) = 1 6" (IDulie/2 1Dlu/2)

|]jt‘fﬁ[/2|Dt|—(ﬁ1:+L+l)/2 exp(— %U‘(Dt_]ﬁt))
= = (50

1iel/2 L (1T
2 r(2>

where we have included the definitions of the Bernoulli
distribution, the complex inverse-Wishart (CW~!) and the
product of L independent inverse-gamma (G;!). Note the
difference between r';(-) (used to denote the multivariate
gamma function) and 7''(-) (the standard gamma function
raised to the L-th power). We denote the parameters of the

! For rank-deficient signal covariance matrices the GLRT is, in
general, more complicated, as it was shown in [9].

prior distributions as #,7;,R;, m; and D,. When the SU
starts sensing the environment (i.e., at t=0), the priors
should reflect our lack of knowledge about the sensed
environment and, in this sense, they should be as unin-
formative as possible. In the Bayesian literature, typically
Jeffreys uninformative priors [31] are used because they
are invariant under reparametrizations (unlike a uniform
prior). For our problem, and adopting a more practical
point of view, starting with uninformative priors at t=0
amounts to choosing small initial parameters for the prior
distributions (and 0.5 for the probability of channel
occupancy). For instance, it can be proved that if m and
D tend to zero the product of L independent inverse-
gamma becomes Jeffreys' prior. Therefore, we simply chose
small values for the prior parameters when the learning
procedure starts. After that, the prior parameters are
adapted and learnt over time as new sensing frames are
acquired according to the mechanism that will be
described in Section 4. For a more detailed discussion on
the priors to be used for the multivariate Gaussian model
the reader is referred to [32].

The main argument for the choice of these priors is
analytical tractability: the complex inverse-Wishart dis-
tribution placed on R; and the product of univariate
inverse-gamma distributions placed on D; are the con-
jugate priors for the distribution of full-rank covariance
matrices and diagonal covariance matrices, respectively,
when the observations follow a complex multivariate
Gaussian distribution. As we will see in the next subsec-
tion, these conjugate priors allow us to exactly perform a
Bayesian inference which is very convenient to avoid
resorting to numerical integration methods. Nevertheless,
let us also mention that several wireless standards use
orthogonal frequency division multiplexing (OFDM) sig-
nals, which are typically modeled as zero-mean circular
complex Gaussian signals, as well as MIMO technologies.
For these practical scenarios, the signal model given in Eq.
(1) and a flat prior for the covariance matrix reflecting our
initial lack of knowledge about the main statistical para-
meters seem to be suitable.

3.2. Exact posterior distribution of z,, Ry and D;
Since the noise is assumed to be Gaussian, the like-
lihoods of p(X¢|z; = 0,D¢) and p(X¢|z¢ = 1,R;) can be written

das

N
p(Xtlze =0,Dy) = [] CN(X[n]|zt =0,Dy), (6a)

n=1

N
pX¢lze =1,R)) = [] CNX[n]|z: =1,Ry). (6b)
n=1
Given the hidden variable, z;, priors are conjugate and
therefore the posterior distributions (conditioned on the

channel state) have the same form as the prior, but with
different parameters. For instance, we have

PR:|Xe, ze = 1) = W ' (Relfie, Ry) (7a)

pD¢[X;, ze = 0) = G (Delthe, D). (7b)
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sensing period t: X, sensing period tJrI:X’+1

x,[0]; - ix,[N-1] X, [0F - ix, [N-I]
prior at t prior at t+1 time
r(D,), p(R,) p(D,),p(R,,)

3 2

posterior at t+1

(D, [X), p(R, [X,) P 1X,0) PR, [ X, )

decision at t decision at t+1

hd 3

Pz, =11X)=7,>h Pz =1 X)) =7, > th

posterior at t

Fig. 2. A Bayesian framework for spectrum sensing: the posteriors
obtained after processing a sensing frame are employed as priors for
the next sensing frame.

where the posterior parameters, which clearly depend on
the observed data X, are given by

fAe=n:+N (8a)
R =R +S; (8b)
My =m+N (80
D; = D, +diag(Sy). (8d)

When z, is marginalized (by a direct application of the
total probability theorem), each unconditional posterior
becomes a convex combination of the posteriors for each
hypothesis, yielding

PReIXe) = #CWV ' Relfie, R+ (1= 2)CW ' (Relfie, Ry (9a)
P(D¢|Xe) = #¢Gp ' (Deltite, Do)+ (1 — #)G; ' (Dele, D), (9b)

p(z¢|1X¢) = Bernoulli(z|7;) 90)
where 7, is given by

pXelze =Dpze =1)
PX¢lze = D)p(ze = 1) +pXelze = 0)p(ze = 0)

Recall that in (9a) and (9b) we use a breve (") to denote the
parameters of the prior distribution, whereas we use a hat
(") to denote the parameters of the posterior distribution.
Finally, the marginal likelihood p(X;|z;) can be obtained
analytically as

(10

=

pXelz=1)= / p(X;lzi = 1.R)pR) dR

IR ["2r, (%)
= (11a)

”NL/Z‘ﬁtlﬁt/Z['L (%)

p(Xelz = 0) = / P(Xe[z: = 0,Dy)p(D;) dD

N
D21 (%)
= . (11b)
PN
”NL/zujt‘rﬁr/Zp(%>

After the posterior has been computed, the probability of a
transmitter being present given observations X; is simply

p(z¢ = 1|X;) = ;. Thus, we can occupy the channel when the
collision probability 7 is below some desired threshold.

4. Bayesian inference over multiple frames
4.1. Learning from past sensing frames

The (unconditional) posteriors after processing the t-th
frame summarize all statistical information observed so
far. Therefore, a natural learning mechanism is to use them
as priors for the next sensing frame, as depicted in Fig. 2.
More specifically, the proposed learning procedure is as
follows: at each sensing frame the cognitive receiver
updates the posterior distributions for R; and D¢ from
priors existing at t and the likelihood obtained from X¢;
then, these posteriors become the priors to be used at the
sensing period t+1. The procedure is started with unin-
formative priors at t=0.

A problem with a direct application of this idea is that,
after applying Bayesian inference, the posterior distribu-
tions for R; and D; are convex combinations of the poster-
iors under each hypotheses, see Eqs. (9a) and (9b); and
therefore the posterior does not belong to the same family
distribution of the prior. For instance, the prior for R; is a
complex inverse-Wishart and the posterior is a linear
combination of two complex inverse-Wisharts. To keep
the process simple and scalable, it would be convenient to
find an approximation of the posteriors within the family
of each respective prior. In the next subsections we
describe two possible approximations that can be applied
to this end.

4.1.1. Thresholding-based approximation

A simple approximation to the posterior that falls
within the same family as the prior can be obtained by
truncating 7. to either O or 1, whichever it is closer. When
this is done, Egs. (9a) and (9b) directly yield a posterior in
the same family as the prior. In that case, when #; is more
probable, the posterior is obtained by performing only
updates (8a) and (8b), whereas in the opposite case, only
updates (8c) and (8d) are needed.

4.1.2. Kullback-Leibler approximation

A more rigorous approach is to find the approximation
of the posteriors within the family of the priors that
minimize the Kullback-Leibler distance. More precisely,
the exact posteriors (reproduced here for convenience) are
given by
PR¢|X¢) = # OV Relfie, Re) + (1= 2)CW ' (Relfie, Re),
p(D¢Xo) = 7:G; ' (Delie, Do)+ (1 - 20)G; ' (Delrine, Do), (12)
Our problem consists in finding the approximations of
these posteriors

qReIXp) =W Re|fie, Ry), (13a)

q(D¢1X;) = G, (DI, Dy), (13b)

that minimize the Kullback-Leibler (KL) divergence.
Therefore, we have to solve the following optimization
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problems:

{11, D¢} = argmin KL(p(Dy|Xo)|1g(De X)) (14a)
me,De

{fie, R} = argmin KL(P(ReXo) 1G(R¢ |X¢). (14b)
ﬁ[»Rt

Fortunately, each of these minimization problems can
be solved analytically except for a line search. The details
of the derivation are relegated to Appendix A, in the
following we summarize the solution. In order to find
(m,, D} and {fi,R,}, we first compute the following
auxiliary quantities:

Kp = D, ' +(1—zymD, " (15a)
Kp =7 AR, +(1-70RR, " (15b)
kp = —In|Kp|+ 7, (Lx// (%) —InDD+(1—7) <Ll,/ <%>
—ln|]3[|) (15¢)
kg = flnu(mwt(w (%) —InR;)+(1—2) <WL (%)
—ln|R[|) (15d)

where y(-) is the digamma function, and y;()=Y}_,
yw(-+(1-1)/2) defines the multivariate digamma function.

We then have to solve the following non-linear equa-
tions using, for instance, a few iterations of the Newton-
Raphson method:

kp-+L In(g)— Ly (%) —0, (16a)
ke +L In(fie) — (%) —0. (16b)

Finally, the covariance matrices D; and R, for the best
approximation according to the KL distance are given by
mKp T and nKg 1 respectively. These values are taken as
the new parameters of the posterior distributions, that is

D;-D,, (17a)
R.>R,, (17b)
iy — Mg, (17¢)
iy — ;. (17d)

4.2. Forgetting in non-stationary environments

Since the channel may vary between consecutive
frames, it is interesting to introduce a mechanism within
the Bayesian framework to forget past data and hence be
able to operate in a non-stationary environment. We
assume here that no additional knowledge about the
dynamical evolution of the channel, PU spectrum usage
pattern or noise statistics is available. Therefore, we resort
to the idea of Bayesian i-forgetting [24] that allows us to
forget in a principled manner with minimal assumptions.
The basic idea of Bayesian forgetting is to use as prior

distributions for frame t+1 a “smoothed” version of the
posterior distributions obtained after processing frame
t and the original prior distributions for R; and D; given
by (5), i.e.,

P4 11Xe) oc p(De|Xe)'p(Do)! 4, (18a)

PR 11Xe) oc p(Re|Xe)' p(Ro)' . (18b)

Observe that according to this definition, when A = 0, all the
information obtained from the previous data is forgotten
and the process considers each frame independently (as the
GLRT does), which is reasonable if abrupt changes occur in
R; and D; between frames. When 1 = 1, no forgetting occurs
and the new posterior corresponds to the standard Bayesian
posterior when D; and R; are constant across frames Dy = D,
R; =R Vt, which is reasonable under stationary conditions.
Values of 1€[0,1] are therefore appropriate to model
different evolution speeds in the channel, without having
to define a concrete dynamical model. In another perspec-
tive, Eqgs. (18) represent a change of the posterior in the
direction of the prior: this has also been named as “back-to-
the-prior” forgetting in [33,34] and a method for the
selection of the forgetting value can be found in [35].

With this forgetting step, the parameters of the prior
distributions to be used for Bayesian inference at t+1 are
given by

figsq = Al +(1—A)ig (19a)
Rii1=/R:+(1-2)Rg (19b)
ey q = At +(1— )i (19¢)
D;. 1 =D;+(1—2)Dy. (19d)

4.3. The proposed algorithm

The whole process is summarized in Algorithm 1. Since
the algorithm only requires updating and storing R;, i, D,
1, from one frame to the next, it requires a fixed amount of
memory and computation per sensing frame, which is O(L?).

Algorithm 1. Online Bayesian multiantenna sensing.

Initialize Parameters: A, Ro, g, Do, 1Mo

2 for Frame t=1,2,... do

3: Sense the medium N times through L antennas to get X;

4 Exact posterior: Compute R, fi¢, D¢, 11, and #; using (8)
and (11)

5: Take a decision about the channel occupancy based on 7,
which is the probability of a PU being present at t.

6: Compute the approximated posterior parameters using KL
minimization or thresholding

7. Forget: Compute Ry, #i;, D¢, 1, using Egs. (19)

8: end for

—_

Let us notice that our Bayesian detector minimizes the
probability of error just by deciding that the channel is
busy when p(z; = 1|X;) is greater than p(z; = 0|X;), or, in
other words, when p(z; =1|X;) > 0.5. Notice also that,
when the SU decides to transmit, the posterior probability
for the channel occupancy can be translated into an
“instantaneous” estimate of the false alarm probability.
For instance, if p(z =1|X;)=0.2 and the SU decides to
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N=50, SNR= —8dB and Pg =0.1.

occupy the channel, the estimated probability of collision
with the PU (i.e., a false alarm) would also be 0.2.
Then, if we set the threshold 7 =0.2 we ensure that the
instantaneous? Pg; < 0.2. We consider this as an additional
advantage of the proposed Bayesian procedure, for which
we can easily identify the desired operation point (i.e, the
threshold for the posterior probability of channel occu-
pancy) just by assigning costs to the different decisions
and setting the threshold accordingly.

Finally, we would like to stress that, for each new
sensing frame, the proposed Bayesian scheme always
updates the parameters of the posterior following the steps
in Algorithm 1. Since we intend to operate in a probably
changing environment, the sensing procedure must be
continuously applied and we do not use any stopping rule.

5. Simulation results

In this section, we compare the performance of the
proposed Bayesian detector with that of a GLRT-based detec-
tor (given by (4)) in different environments by means of
Monte Carlo simulations. Unless otherwise stated, we assume
a probability of channel occupancy given by 7z, =0.5, a
primary transmitter with P=5 antennas and a secondary
cognitive receiver with L=5 antennas. The MIMO channel
matrix is assumed to be constant during the t-th sensing
frame with i.i.d. entries distributed as CN(0, 1). On the other
hand, the channel evolves from frame to frame as
Ht+1 =AaqHe+(1 _/Ich)PtJrl [36], with 0<2m <1, and Pt+1
a complex Gaussian noise matrix also with iid. entries
distributed as CN(0,1). For A;, =1 we have a stationary
channel, whereas for Ay, =0 it changes independently from
frame to frame as a block fading channel [37, Chapter 4,
Section 4.2].

2 This can be seen as a worst-case value, since p(z; = 1/X;) = 0.2 does
not necessarily mean that 20% of the times the PU is active in this
scenario, it is just our estimate of the posterior probability.
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5.1. Pp vs. number of sensing frames

In this subsection, we study how the performance of
the Bayesian detector evolves over time in stationary,
slowly time-varying and fast time-varying environments.
We start at t=0 with an uninformative prior (we use small
values for the parameters of the prior distributions) and
then after each sensing frame we update the posterior
(learning step), approximate the posterior using either
truncation (denoted as Bayes-T in the plots) or KL mini-
mization (denoted as Bayes-KL) and finally forget moving
the approximated posterior towards the original uninfor-
mative prior with a forgetting factor 4. As a figure of merit
we plot the detection probability Pp = P(z; > n|H1) vs. the
number of sensing frames, where 7 is the threshold. We
consider a fixed false alarm probability of Pgy = 0.1, and in
each sensing frame the number of observations is N=50.>
For comparison we include the results obtained with the
GLRT. In all examples we use a signal-to-noise ratio
SNR = -8 dB.

5.1.1. Stationary channel

We first consider a static scenario for which the
channel remains constant over all sensing frames (i.e.,
Ach =1). The results in Fig. 3 show that in this scenario,
after just a few sensing frames, the Bayesian multiantenna
detector provides a much higher Pp than the GLRT for
different values of the forgetting parameter A. After

3 The parameters in our simulations were not chosen to target any
particular application or standard, since existing standards are mainly
focused on static scenarios. In static scenarios, the sensing frames are
typically much longer and the SNRs are also lower than those considered
in our paper. As an example, the spectrum sensing requirements of the
IEEE 802.22 wireless regional network (WRAN) standard establish that
the miss detection should not exceed 0.1 subject to a Pg; = 0.1 when the
SNR = —20.8 dB, these requirements yield sensing periods of thousands
of samples at a sampling rate of 21.52 MHz [38,39]. In our paper, we
aimed at non-stationary environments and consequently considered
much shorter (and frequent) sensing periods (N=50 samples) in which
the block-fading model is assumed to be valid.
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observing a sufficient number of frames the best results
are obtained when using 1= 1 (which means no forgetting
at all), as could be expected for this static environment.
Interestingly, however, to forget a little (1=0.9) can be
beneficial during the first sensing frames. This is explained
because during the first sensing frames detection errors
are more likely to occur and, consequently, the parameters
of the posterior are not updated correctly. In this situation,
it would be better not to trust so much on the observed
data and apply the forgetting step. Finally, we also com-
pare in the figure the performance of the two approxima-
tions of the posterior proposed in the paper. As expected,
the KL-based approximation provides a better perfor-
mance at the cost of a higher computational complexity.

5.1.2. Slowly time-varying channel

We now consider a non-stationary environment created
by a slowly time-varying channel with 1., = 0.9. The results
in Fig. 4 show again that the Bayesian detector outperforms
the GLRT after just a few sensing frames. The optimal value
of the forgetting factor, obtained by numerical results, for
this scenario seems to be close to 1=0.97,* and using a
value of 1=1 (no forgetting) strongly affects the perfor-
mance. It is also clear that the convergence now is slower,
since it takes more sensing frames to effectively learn and
track the covariance matrices under both hypotheses.
Finally, regarding the impact of the posterior approximation
on the performance of the detector, we observe that in non-
stationary environments it is better to use a thresholding-
based approximation. In non-stationary environments, the
importance of obtaining at each step an accurate approx-
imation diminishes since the performance is limited by the
variations observed from frame to frame.

5.1.3. Fast time-varying channel
In Fig. 5, we finally consider the case of a fast time-varying
environment with Ay, = 0.1. Remarkably, even in this highly

4 Let us point out that this value has no direct relationship with A,
since 1 is a design parameter and 4, is a characteristic of the channel.
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4=0.97 and 4¢, = 0.10.

non-stationary environment, the Bayesian detector outper-
forms the GLRT detector. This improvement can be attributed
to the fact that the covariance matrix under #y remains
almost constant from frame to frame (only the channel
changes) and, therefore, it can be learnt by the Bayesian
detector. This improved estimate of the noise-only covariance
matrix translates into a better Pp in comparison to the GLRT.
For the reasons explained before, the simple truncation of the
posterior performs better than the most accurate KL-based
approximation in this rapidly varying scenario.

In order to provide a more complete understanding of
the proposed method, we have repeated the experiments
for Pgy = 0.01. The new results for stationary, slowly time-
varying and fast time-varying channels are depicted in
Fig. 6, 7, and 8, respectively.

5.2. Receiver operating characteristic
In this subsection, we obtain the receiver operating

characteristic (ROC) curve of the detector after convergence,
i.e., after processing a sufficient number of frames to reach

the steady state. We study the ROC curve for different
number of observations per sensing frame (N = {50, 30,
15}). As we have seen previously, the approximation based
on the KL distance is computationally more costly and does
not provide any significant improvement in time-varying
environments. Therefore, we concentrate on the results
provided by the thresholding-based approximation ref-
erred to as Bayes-T, which seems to be better under non-
stationary environments.

Fig. 9(a) shows the results for the stationary channel,
with 21=1 and SNR = —8 dB. As we see, in steady-state the
proposed Bayesian detector with only 15 snapshots
per sensing frame outperforms the GLRT with 50 snap-
shots, which means a reduction of more than three times
in the sensing time per frame. Fig. 9(b) and (c) shows the
results for slowly (using i, =0.90) and fast (using
Ach = 0.10) time-varying environments, respectively; from
which similar conclusions can be drawn.

Finally, we fix the detection threshold and evaluate the
probability of detection, Pp, and false alarm, Pg, for
different SNRs and in different scenarios. The number of
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samples per sensing frame is fixed to N=50 and the rest of
parameters is the same as in the previous section. The
results are shown in Fig. 10(a), (b) and (c) for stationary,
slowly and fast time-varying scenarios, respectively.

5.3. Detection performance for a rank-P PU

In Fig. 11, we compare the probability of missed
detection, Py, for the Bayesian and GLRT detectors when
the spatial rank of the PU signal varies. For the GLRT
detector we have used the results in [9]. We consider a
scenario with L=6, N=50, P;,=0.1, P={1,....,6} and
SNR = —8 dB. In general, the performance of both detec-
tors degrades for an increasing P, since as P increases the
covariance matrix under 7#; has less structure to be
exploited. Nevertheless, the Bayesian approach consis-
tently provides better results than the GLRT, which vali-
dates again its ability to learn from the environment even
when the actual model does not match exactly the pre-
sumed one.
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Fig. 12. N210 Ettus devices with the XCVR2450 daughterboard installed.
A two-antenna cognitive receiver is composed of two N210 boards
connected through a MIMO cable.
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Fig. 14. ROC curves for the Bayesian and GLRT detectors using the CR
platform in a realistic indoor channel at 5,6 GHz.

6. Experimental evaluation

In this section, we further validate the simulations
by means of experimental measurements on a low-cost
hardware cognitive platform. Specifically, our platform is
composed of several N210 Universal Software Radio Per-
ipheral (USRP) devices [27], each of them consists of a USRP
motherboard and a Radio Frequency (RF) daughterboard
(the XCVR2450 daughterboard based on a MAX2829 IC is
able to cover ISM bands of 2.4-2.5 GHz, and 4.9-5.8 GHz).

Basically, the motherboard consists of dual analog-to-digital
converters (ADC) and digital-to-analog converters (DAC)
connected to a Field Programmable Gain Array (FPGA). On
the other hand, the daughterboard is a modular front-end
used for analog operations such as up/down conversion.

In order to implement a multiantenna cognitive node,
the N210 USRP includes a specific expansion port that
allows coherent synchronization of two USRP2 units, as it
is depicted in Fig. 12. Since the same clock (oscillators) and
time reference are shared, both USRP nodes can start
transmitting/receiving at the same time, thus avoiding
any synchronization problem.

We have considered a simple scenario where a single-
antenna PU accesses the channel according to a predefined
pattern and a cognitive receiver with two antennas senses
periodically the medium and applies different detection
procedures. The platform is controlled from a central PC,
which allows us to define a pattern of spectrum occupancy
as well as the sensing periods (see Fig. 13). Therefore, at
each sensing period we know exactly the true hypothe-
sis and hence we can estimate Pp and Pg for a given
threshold.

The experiments were conducted in the laboratory of
the Signal Processing Group at the University of Cantabria,
with a clear line of sight (LOS) between the PU and the
cognitive receiver in a rather static environment. The PU
transmits an orthogonal frequency division multiplexing
(OFDM) 802.11a signal with a rate of 9 Mbps using BPSK
symbols at a carrier frequency of 5.6 GHz, although during
the detection stage the modulation format is assumed to
be unknown by the SU.

Previous works describing measurements carried out at
5 GHz band in the same scenario (see [40]) showed that
the measured indoor channel presents long coherence
times in comparison to time devoted to each experiment.
Therefore, the measured scenario closely represents
a stationary environment. For each experiment, the
2-antenna USRP node senses the spectrum over a period
of several seconds and then a large amount of data is
stored in an L x M matrix, where M is the total number of
samples and L is the number of antennas. On the other
hand, the activity of the PU, which is emulated by another
USRP node, is controlled and recorded by a central PC. The
activity pattern of the PU is recorded simultaneously while
the SU is sensing the spectrum.

Using this data, the ROC curve is computed after
processing 80 sensing frames so that our Bayesian detector
reaches its steady-state performance. Since we know the
channel status under which each sensing frame was
acquired, the Pgs and the Pp can be easily estimated for
different thresholds (to this end we used 5000 sensing
frames) and the results depicted in Fig. 14 were obtained.
The noise variance at each receiver antenna was measured
and found to be very similar for the 2 RF branches, thus
the Sphericity and Hadamard detectors [9] provided
almost indistinguishable results which were both labeled
in Fig. 14 as GLRT detector.

For each experiment, the SNR is controlled by the
transmitter power and measured from the received signal
at baseband. For the example shown here the measured
SNR was —7.3 dB, the number of samples acquired by the
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SU during each sensing frame was N=50, the number of
SU antennas is L=2 and the number of PU antennas is
P=1. In Fig. 14, we compare the ROC obtained by the
proposed Bayesian detector working with a forgetting
factor of 1=0.99 and the GLRT detector for this setup.
This figure corroborates the validity of the simulations
carried out in Section 5. For a full detailed description of
the experimental evaluation, the reader is referred to
[26,41], where a procedure to emulate time-varying sce-
narios is also described.

7. Conclusion

We have derived a new Bayesian framework for the
problem of multiantenna spectrum sensing. We assume
that the observations follow a Gaussian distribution under
both hypotheses, which allow us to choose conjugate
priors and thereby to perform the exact Bayesian inference
with closed-form expressions. Moreover, our Bayesian
framework is able to exploit previous statistical informa-
tion obtained from past sensing frames. To that end, we
propose a forgetting mechanism where the posterior
densities on the covariance matrices summarize this past
information and the next Bayesian inference takes these
posteriors as suitable priors. We evaluate the derived
Bayesian framework in different scenarios, that is, station-
ary and non-stationary environments. The comparison
between the Bayesian framework and GLRT detector under
these scenarios as well as experimental evaluations shows
that the Bayesian detector outperforms the GLRT. The most
interesting findings are provided under a time-varying
environment, where we showed that the Bayesian detec-
tor is able to efficiently learn the posterior.

Appendix A. Derivation of KL approximation

In this appendix we find the pdf approximation that is
closest in terms of the KL distance to the exact posterior.
For notational simplicity, we omit the subindex t which
refers to the sensing frame. We will only consider the
approximation under H;, since the derivations under the
null hypothesis are exactly the same. More precisely,
under H; the exact posterior is given by

PRIX) =W 'RIA,R)+(1—7)CW ' R|A,R), (A1)
and we want to find the approximation
qRX)=CW 'R, R), (A2)

that minimizes the KL divergence. That is, we want to
solve

(1,R} = argrlglinl(L(p(R\Xﬂ Iq(RIX)) (A3)
where
KL(p(RIX) Il q(R|X)) = / p(RIX) In(p(R|X)) dR

~ [ pRIX) In@g(RiX) dR. (A4)

The first term in the right hand side of (A.4) is the
negative of the differential entropy of the exact posterior

and hence does not depend on {1, R}. Therefore, minimiz-
ing the KL is equivalent to solving the following maximi-
zation problem:

(A, R} _argmax/p(R|X) In(g(R|X)) dR. (A.5)

Now, by substituting (A.(1) and A.2) into (A.5), we have

/ p(RIX) In(q(R|X)) dR = / # Incw~1R|A, R)CW ' (R|A,R) dR.
+ / (1-#) InCcw~'RIA,R)CW ™ (R|A,R) dR. (A6)

Integrating the first term on the right-hand side of Eq.
(A.6) we get

/;z In(ow! (R(ﬁ,fz))cmﬂ (R

fl,ﬁ) drR

. .1 IR|/2 I
=z nj| —— =< cW— (R|n,R) dR
anL/er(i)

2
N n+L+1 _
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N 1R “1(pls B
+n_—§/tr (R"'R)ew (R|ii.R) dR]
R L f

:7[{5 In|R|— len(Z)—ln Iy (jﬂ
AL+l ([ A
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where in the last step, we have used the fact that’
E[In|R|] = In|R|—LIn(2)—y,;(71/2) and E[R™']=AR . By
the same procedure, the second term on the right-hand
side of Eq. (A.6) is given by

/(1 &) In(ow! (R|ﬁ,ﬁ)>CW‘1 (Rifi.R) dR
_(1—7z){ In|R| - Lln 2—ln<FL<g>>}
+(1—ir){— ﬁ+§+1 <ln|R|—Lln(2)—y/L<g)>}

+(1—ﬁ){—% tr(ﬁR’lﬁ)}

Combining the two terms yields [ p(R|X)In(q(R|X)) dR. In
order to obtain the parameters that maximize this func-
tion, we have to take derivatives with respect to 7i and R
and equate them to zero. We first derive [p(R|X)
In(q(R|X)) dR with respect to R, that is

s -1 hg -1 . ﬁw

where we have applled the identities o In|Zq| /02‘.11_ (ZT)*
and 9 tr(Z,X1)/0%; = 3. By deﬁnmg KR =aAR +(1-7)
iR ™, it readily follows that R = iK'

——R 1}:0

> Recall that y;(a) = (0/0a)In(I" (@) = X _ jy(a+(1-1)/2).
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Now we take the derivative of [ p(R|X) In(q(R|X)) dR
with respect to 71, which is given by

1 -~ L 1 n
77.'|:§ InR|— 5 In(2)— VL (i):|
.1 X L 1 l
—n{j In|R| -5 In(2)— S¥L (i)

1 ~ L 1
+(1-7) [i In|R|— 5 In(2)— im(

N SN S
~_
[—

1 o L 1
~(1- [y k1= 5 @~ jua

)

Finally using R=7Ky', and defining kg= —In/Kg|+
#p(7/2) —InR))+(1 — ) (7/2)—In|R]), the non-linear
equation kg+LInfi—y;(71i/2)=0 is obtained. The same
approach is followed to compute its counterpart under
the hypothesis H,.
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