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Abstract— Chaotic sequences may be advantageous for secure
communications. Although many chaotic communications sys-
tems have been proposed, most of them show a poor performance
under realistic channel conditions (i.e. noise and multipath fad-
ing). In this paper, we propose a novel chaotic modulation scheme
based on the symbolic sequence associated to the chaotic map and
backward iteration. These chaotically modulated signals are then
sent in each sub-carrier of a conventional OFDM system instead
of the usual BPSK or QAM ones. In the receiver, equalization is
performed in the frequency domain, and the Viterbi algorithm is
used to estimate the transmitted sequence. Computer simulations
confirm the good performance of the proposed approach.

I. INTRODUCTION

Chaotic systems generate signals which are purely determin-
istic, although they show features typical of random signals
due to the numerical instability of the system (i.e. sensitivity
to initial conditions). In a signal processing context, chaotic
signals and systems have been proposed for a wide range
of applications: communications, watermarking, cryptography,
time series modeling, etc. (see for example [1]).

Many different chaotic communications systems have been
proposed: chaotic modulation, chaotic masking, chaos shift
keying (CSK) and its variants, spread spectrum techniques,
etc. (see [2], [3] for a review). In this paper, we focus on
chaotic modulation techniques (i.e. using chaotic signals as
basis functions instead of sinusoids), and propose a novel
chaotic modulation scheme based on the symbolic sequence
associated to the chaotic map and backward iteration.

This modulation technique shows good performance under
noisy conditions, but can suffer severe degradation in channels
with multipath distortion and selective fading. In order to avoid
this problem, we consider an OFDM communications system
which sends the chaotically modulated signals in each sub-
carrier, instead of the usual PSK or QAM signals. Although
a conventional modulation achieves a better performance in
terms of bit error rate (BER), the proposed chaos-based
scheme is advantageous in terms of secure communications:
the BER of an eavesdropper without a perfect knowledge of
the parameters of the chaotic system is highly deteriorated.
Moreover, we explore a class of chaotic maps with a control
parameter which allows us to trade performance (i.e. BER)
and security (i.e. chaotic behaviour) in a natural way.

The key element of the system is the implementation of the
receiver. Maximum Likelihood (ML) and Bayesian (Maximum
A Posteriori (MAP) and Minimum Mean Square Error (MMSE
or MS)) estimators have been developed for chaotic sequences
in [4] and [5] respectively. However, their computational cost
grows exponentially with the length of the sequence, rendering
them impractical even for signals of moderate length.

Although many suboptimal algorithms have been proposed
(see for example [6]–[9]), their performance is far from that
of ML and Bayesian estimators, specially when the signal to
noise ratio (SNR) is low. In this paper, we use the Viterbi
decoding algorithm to detect the transmitted sequence. In
spite of being a suboptimal method in this case, the Viterbi
algorithm shows a performance which is close to the exact
ML estimator with a fraction of its computational cost.

Note that the use of the Viterbi algorithm for estimating
chaotic sequences has already been proposed by Ciftci and
Williams in [10] and [11]. However, their approach relies on
a linear filter representation of the chaotic system which is not
always possible, requires delay and truncation (thus generating
pseudochaotic signals, which may lose some of the interesting
characteristics of chaotic signals) and a trellis with a large
number of states. On the other hand, our approach is able to
generate truly chaotic signals, since it is based on backward
iteration of the system, is valid for any chaotic map, and uses
a trellis with a reduced number of states.

The remainder of the paper is organised as follows. The
class of chaotic maps used is presented in Section II, altogether
with an introduction to symbolic dynamics. Then, in Section
III, the structure of the chaotic modulator and demodulator is
described, followed by the block diagram and details of the
proposed novel OFDM system, shown in Section IV. Finally,
simulation results are given in Section V, and concluding
remarks close the paper in Section VI.

II. CHAOTIC MAPS AND SYMBOLIC DYNAMICS

In this work we consider sequences generated by unidi-
mensional chaotic maps. The n-th sample of the sequence is
obtained iterating a known initial condition, x[0], according to

x[n] = f(x[n − 1]) = f2(x[n − 2]) = . . . = fn(x[0]), (1)
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where f(x) is any suitable nonlinear and noninvertible func-
tion, fk(x) denotes the k-th functional composition of f(x),
and 1 ≤ n ≤ N . Although the modulation technique proposed
in the sequel can be put into practice with any nonlinear
function, in this paper we use the following chaotic map:

f(x) =




2x+(1+p)
1−p , −1 ≤ x ≤ −p;

x
p , −p < x < p;
2x−(1+p)

1−p , p ≤ x ≤ 1.

(2)

Being p a control parameter of the map, 0 ≤ p < 1. Fig.
1 shows the chaotic map for p = 0.1. The parameter p
controls the width of the middle region of the map, which
in turn determines the slope in each interval, and ultimately
the chaotic behaviour of the sequences generated.

The reason for using the chaotic map given by (2) is that
it offers an adjustable guard region, which allows us to trade
performance for security. This guard band appears because the
proposed communications system shown in Section III uses
only the two external intervals of the map (i.e. p ≤ |x| ≤ 1).
Hence, as p increases the allowed signal range decreases, and
the distance between the permitted intervals grows. Thus it
becomes easier to distinguish samples that belong to E1 from
samples that belong to E3, even in noisy conditions. Overall
this leads to a better performance of the system shown in the
next section, but also to a lower level of security.

It is not easy to guarantee that a chaotic sequence does not
belong to the inner interval when it is generated using (2)
according to (1). We need to know beforehand the length of
the sequence, N , to ensure that none of the iterations of x[0]
falls within (−p, p). This restriction is better achieved using
backward iteration, i.e. generating the chaotic signal starting
from a final condition, x[N ], instead of an initial condition,
x[0]. Unidimensional chaotic maps are never invertible, but
they always have a finite number of preimages, which allows
us to define an inverse map.

A necessary tool for defining the inverse function is sym-
bolic dynamics. For any function we can define a partition of
its phase space into a set of nonoverlapping intervals where
it is continuous and monotonous in such a way that they
cover its whole phase space. This partition is never unique,

.
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Fig. 1. Nonlinear map used to generate the chaotic sequences (p = 0.1).

but we can always find the simplest possible partition, which
is called the natural or generating partition of the map. For
(2) it is obvious that M = 3, E1 = [−1, −p], E2 = (−p, p),
and E3 = [p, 1]. Now, it is possible to define the symbolic
sequence or itinerary of the map as the sequence of regions
of the generating partition that the chaotic signal visits during
its time evolution:

s[n] = i ⇔ x[n] ∈ Ei, n = 0, . . . , N. (3)

For piecewise linear (PWL) maps, such as (2), it can be
easily shown that each point in their phase space has a
unique symbolic sequence of length N associated, and that
an itinerary of infinite length defines a single initial condition
[12]. Therefore, the symbolic sequence provides the means of
generating the chaotic signal iterating backwards:

x[n] = f−1
s[n](x[n + 1]) = . . . = f

−(N−n)
s[n], ..., s[N−1](x[N ]). (4)

Where f−1
s[n] denotes the inverse map, and f

−(N−n)
s[n], ..., s[N−1]

denotes the functional composition of f−1 with itself N − n
times. For the map given in (2) the inverse map is

f−1
s (x) =




(1−p)x−(1+p)
2 , s = 1;

px, s = 2;
(1−p)x+(1+p)

2 , s = 3.

(5)

Generating the samples of the chaotic sequence iterating
backwards from a known x[N ] according to (4) using (5)
allows us to easily restrict them not to belong to E2 (simply
not using s[n] = 2), avoids some of the problems associated
to the numerical instability characteristic of chaotic sequences
(error amplification and precision truncation of direct forward
iteration), and suggests the structure of the chaotic modulator
described in the next section.

III. CHAOTIC COMMUNICATIONS SYSTEM

The structure of the whole chaotic communications sys-
tem considered is shown in Fig. 2. The input bits are fed
into a chaotic modulator with pre-assigned parameters p
and x[N ], which generates the baseband transmitted signal,
x̃[n]. This chaotic sequence then passes through the channel,
composed of a linear time-invariant (LTI) filter and additive
white Gaussian noise (AWGN), resulting in a received signal
ỹ[n]. Finally, the chaotic demodulator tries to obtain the best
estimate (i.e. the one with the minimum probability of error)
of the transmitted bits. In this section we show an efficient
implementation of the modulator and the demodulator.

A. Chaotic Modulator

Suppose that we have a sequence of input bits, b =
[b[1], . . . , b[N ]]T , that we want to transmit using a chaotic
signal. The main idea of the proposed chaotic modulator is to
iterate backwards from a known final condition, x[N ], using
the input bits to construct the symbolic sequence as

s̃[n] = s[N − n] = 1 + 2b[n], 1 ≤ n ≤ N. (6)
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Fig. 2. Baseband chaotic communications system: modulator, channel, and
demodulator.

Consequently, the signals generated can only belong to the
external regions, E1 and E3, and the inner region, E2, is used
as a guard interval to ensure a minimun distance between the
waveforms associated to a zero and a one. This itinerary is
used to construct the chaotic signal according to (4), using
(5), resulting in a transmitted baseband sequence

x̃[n] = x[N − n] = f−1
s̃[n](x̃[n − 1]), (7)

for n = 1, . . . , N . This baseband chaotic signal can then
be moved to any desired frequency band for passband trans-
mission. Fig. 3 shows the structure of the baseband chaotic
modulator, and Fig. 4 shows a typical output sequence alto-
gether with the input bits and the auxiliar symbolic sequence.

B. Chaotic Demodulator: Problem Statement

The received signal is

ỹ[n] = x̃[n] ∗ h[n] + w̃[n], 1 ≤ n ≤ N ; (8)

where w̃[n] is stationary, zero-mean, additive white Gaussian
noise (AWGN) with variance σ2, and ’*’ denotes the aperiodic
discrete-time convolution operator.

Hence, the first step in the receiver consists of equalizing
the channel (i.e. undoing the effects of the channel’s impulse
response to obtain a sequence free of the multipath distortion).
Let us assume that the output of the equalizer is

z̃[n] = x̃[n] + ṽ[n], (9)

where ṽ[n] is the filtered Gaussian noise, and 1 ≤ n ≤ N .
Now, the demodulator seeks the sequence of input bits (i.e. the
symbolic sequence) which minimizes the probability of error.
In the Gaussian case, and for equiprobable input bits, this is
achieved by the maximum likelihood (ML) estimator:

b̂ML = arg min
b

J(z;x[N ],b), (10)

�
b[n]

2b[n] + 1 �
s̃[n]

f−1
s[n](x̃[n − 1]) �

x̃[n]
�

x̃[n − 1]
z−1 �

�

Fig. 3. Block diagram for the proposed chaotic modulator for a generic map.
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Fig. 4. Example of typical input bits sequence, b[n], constructed symbolic
sequence, s̃[n], and baseband chaotic communications signal, x̃[n].

where z = [z̃[1], . . . , z̃[N ]]T is the equalized observations
vector, J(z;x[N ],b) is a quadratic cost function,

J(z;x[N ],b) = (z − x)T C−1
z (z − x), (11)

x = [x̃[1], . . . , x̃[N ]]T = [f−1
s̃[1](x̃[0]), . . . , f−1

s̃[N ](x̃[N −
1])]T = [f−1

s̃[1](x̃[0]), . . . , f−1
s̃[1],...,s̃[N ](x̃[0])]T is the transmit-

ted vector, and Cz is the autocorrelation matrix of z, which
does not depend on the itinerary, and whose (m,n) element
is given by

[Cz]m,n = E{z̃[m]z̃[n]}. (12)

Unfortunately, we cannot take the derivative of (11) with
respect to each b[n] to obtain their ML estimates, because
J(z;x[N ],b) is a discontinuous function of the itinerary, and
consequently of b. Nevertheless, since the number of possible
symbolic sequences (i.e. bit sequences) is finite, a “brute
force” approach is possible: test all the valid sequences and
select the best one. This is the same approach that was used
in [4], [5] to estimate the initial condition of the map, and in
fact it is the only known way to implement exactly the ML
estimator for most chaotic maps such as (2).

The ML estimator provides good results, achieving an
optimum performance asymptotically as SNR → ∞ [4], [5].
However, it requires testing 2N sequences, and thus becomes
impractical even for moderate-sized data records. Many subop-
timal algorithms have been proposed, but they typically present
a poor performance in medium/low SNR range. In the next
section we propose a demodulation technique based on the
Viterbi algorithm which achieves a quasi-optimal performance
with a reduced computational cost.

C. Demodulation using the Viterbi Decoding Algorithm

As an efficient solution for the demodulation problem, in
this paper we propose to use the Viterbi decoding algorithm
(VDA) to estimate the itinerary of the chaotic sequence. It
is clear that a symbolic sequence of finite length, N , has an
exact trellis representation. However, this trellis requires 2N



states, since x̃[N ] depends on the whole symbolic sequence,
and hence can take 2N different values.

Therefore, using the VDA to solve exactly the problem
requires a computational cost similar to the ML estimator
of the previous section. As a cost-effective alternative, we
propose to use a trellis with only two states and apply the
VDA. Obviously this is a suboptimal method, but it provides a
performance close to the optimal because previous bits become
less and less important in the estimation of future ones.

As an example, consider two different samples, x̃1[n] and
x̃2[n] (0 ≤ n < N ), which share the itinerary for k > n (i.e.
s̃1[k] = s̃2[k] = s̃[k] for n + 1 ≤ k ≤ N ). The next sample
generated for x̃1[n] and x̃2[n] is given by

x̃1[n + 1] =
(1 − p)x̃1[n] + (s̃[n + 1] − 2)(1 + p)

2
, (13)

x̃2[n + 1] =
(1 − p)x̃2[n] + (s̃[n + 1] − 2)(1 + p)

2
. (14)

Now, if we define the distance between the two original
samples as d[n] = |x̃2[n] − x̃1[n]|, then

d[n+1] = |x̃2[n+1]− x̃1[n+1]| =
1 − p

2
d[n] < d[n]. (15)

Hence, the distance between the original samples has de-
creased after one iteration, independently of their position. In
fact, it can be shown by induction that the distance between
both sequences decreases by a factor (1 − p)/2 after each
iteration of the map:

d[n+k] =
(

1 − p

2

)k

d[n] < d[n+k−1] < · · · < d[n]. (16)

This means that far away input bits have little importance in
determining the current state of the system (i.e. the chaotic
sequence gradually forgets its past), and that it makes sense
to use a trellis diagram with a reduced set of states.

The basic butterfly of the trellis diagram is shown in Fig.
5. Assuming equiprobable symbols, the branch metrics are

cij [n] = |z̃[n + 1] − f−1
j (x̂i[n])|, (17)

where cij [n] is the cost of taking the j-th branch starting from
the i-th node (1 ≤ i, j ≤ 2) at the n-th time instant (1 ≤ n ≤
N ), and x̂i[n] (i ∈ {1, 2}) is the sample obtained iterating
backwards N − n times from x[N ] using the best sequence
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�x̂1[n]
C1[n]

� x̂2[n + 1]
C2[n + 1]
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C1[n + 1]
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Fig. 5. Basic butterfly for the Viterbi algorithm using only two states per
iteration of the chaotic sequence.

which ends in the i-th node (state) at time n. The cost of the
i-th node at the (n + 1)-th instant can be obtained as usual
from that of all the nodes at time n as

Ci[n + 1] = min
j=1,2

{Cj [n] + cji[n]}.
IV. OFDM COMMUNICATIONS SYSTEM WITH CHAOTIC

MODULATION IN THE SUB-CARRIERS

The chaotic modulation system proposed in Section III has
a good performance for the AWGN channel, i.e. flat channel’s
frequency response. However, it suffers from severe degrada-
tion in a multipath environment, just as most conventional and
chaotic communications systems. To avoid this distortion, we
combine the chaotically modulated signals with a modulation
scheme which is robust against multipath interference: OFDM.

We propose to construct an OFDM system where the signals
sent in each sub-carrier are chaotically modulated instead of
using a conventional modulation such as PSK or QAM. The
structure of the transmitter is shown in Fig. 6. The input bits
are used to obtain the chaotic signal as in Fig. 3. Then, a
serial to parallel conversion is performed to generate the signal
corresponding to each sub-carrier, pilots and guard symbols
(zeros) are inserted, and an IFFT is performed. A cyclic
prefix is finally added to counter the effect of intersymbol
interference (ISI), and the signal is transmitted through the
channel. The receiver is simply the dual of the transmitter:
removing first the cyclic prefix, performing then an FFT,
equalizing the channel in the frequency domain, and estimating
the transmitted bits using the VDA.

V. SIMULATION RESULTS

The performance of the chaotic OFDM system has been
tested by Monte Carlo simulations in two different cases:
AWGN channel and multipath channel. In both cases the
system has been analyzed using the basic parameters of the
HIPERLAN 2 standard: 64 carriers composed of 48 data
carriers, 4 pilots and 12 guard symbols (zeros) [13], [14].

Fig. 7 shows the results for the AWGN channel and four
different values of p, with the OFDM+BPSK system used for
comparison. As p is increased towards one the performance of
the system approaches that of the conventional OFDM+BPSK
modulation scheme. When p is decreased the BER increases,
but we achieve an improvement in the level of security: since
the amplitude for each symbol becomes more irregular and
unpredictable, an unintended user who does not know exactly
the parameters of the system will see his detection capability
heavily impaired. Hence, p is a design parameter which allows
us to balance performance and security.

In order to evaluate the performance in a multipath envi-
ronment, we consider two channels: h1 = [1, −0.5]T , and
h2 = [0, −0.3, 0.7, 0.4, 0.1]T . The results are shown in
Fig. 8. For all the simulations we assume that the channel’s
frequency response has been perfectly estimated, and simply
divide each subcarrier by H(ω) to equalize the received signal.
For both channels the performance deteriorates slightly and
similarly for both the conventional modulation scheme and
the chaotic one.
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Fig. 8. BER for the OFDM system and multipath channels.

VI. CONCLUSIONS

In this paper we have proposed a novel OFDM commu-
nications system with chaotically modulated signals sent in
each sub-carrier. This system is robust against multipath inter-
ference thanks to the use of OFDM, and provides protection
against interception thanks to the use of chaotic signals. More-
over, the map considered has a parameter which allows us to
trade security for performance. In the receiver, equalization in
the frequency domain is performed, and the Viterbi decoding
algorithm is used as an efficient and quasi-optimal method
for detecting the transmitted bits. Monte Carlo simulations
show that the system is able to operate under realistic channel

conditions (i.e. noise and multipath distortion) with similar
performance as a conventional communications system.

Future lines of research include considering more efficient
chaotic modulation schemes using PWL maps with M inter-
vals, obtaining closed formulas for the performance of the
system and developing bit loading strategies, and studying the
security offered by the proposed system.
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