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Abstract—In a recent paper, the second-order statistical anal-
ysis of quaternion random vectors has shown that there exist two
different kinds of quaternion widely linear processing, which are
associated with the two main types of quaternion properness. In
this paper, we consider the problem of determining, from a finite
number of independent vector observations, whether a quaternion
Gaussian vector is proper or not. Specifically, we derive three
generalized likelihood ratio tests (GLRTs) for testing the two
main kinds of quaternion properness and show that the GLRTs
reduce to the estimation of three previously proposed quaternion
improperness measures. Interestingly, the three GLRT statistics
(improperness measures) can be interpreted as an estimate of the
entropy loss due to the quaternion improperness. Additionally,
we analyze the case in which the orthogonal basis for the repre-
sentation of the quaternion vector is unknown, which results in
the problem of estimating the principal -properness direction,
i.e., the pure unit quaternion minimizing the -improperness
measure. Although this estimation problem is not convex, we
propose a technique based on successive convex approximations,
which can be solved in closed form. Finally, some simulation
examples illustrate the performance and practical application of
the proposed tests.

Index Terms—Generalized likelihood ratio test (GLRT),
principal -properness direction, properness, propriety,
quaternions, second-order circularity.

I. INTRODUCTION

A PART from its traditional use in aerospace [1], [2]
and computer graphics [3] problems, quaternion signal

processing has recently encountered interesting applica-
tions in image processing [4]–[8], wind modeling [9]–[12],
processing of polarized waves [13], [14], and design (and
processing) of space–time (and space–time-polarization [15])
block codes [16]–[20]. However, the statistical analysis of
quaternion random vectors has received limited attention [9],
[14], [21]–[24], and only recently the concept of widely linear
processing has been extended from complex to quaternion
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vectors [25]. A complex random vector is said to be proper if it
is uncorrelated with its complex conjugate, which results in the
optimality of the conventional linear processing. However, in
the more general case of (possibly) improper complex vectors,
the optimal linear processing is widely linear, i.e., we have
to simultaneously operate on the data vector and its complex
conjugate [26]–[34].

Unlike the complex case, we can define two different types
of quaternion widely linear processing [25], which are strongly
related to the two main kinds of quaternion properness. In par-
ticular, the most general quaternion linear processing (which we
refer to as full-widely linear processing) requires the operation
on the quaternion vector and its involutions over the three pure
unit quaternions in an orthogonal basis . However, for

-proper data, the optimal linear processing reduces to conven-
tional linear processing (we do not need to operate on the vector
involutions), whereas for -proper vectors, the optimal linear
processing (referred to as semi-widely linear) only requires the
operation on the quaternion vector and its involution over [25].
In other words, taking into account the isomorphism among
quaternion, complex, and real numbers, we can consider three
different scenarios. 1) If our quaternion vector is -proper,
we can apply conventional quaternion linear processing. 2) If it
is -proper, it has to be decomposed into two complex vectors,
which will be jointly processed. 3) If is improper (i.e., if it is
not - or -proper), we need to directly operate on the four real
vectors composing . Finally, we must note that in [25], the au-
thors introduced the definition of -properness, which allows
us to easily relate the two main kinds of quaternion properness.
Roughly speaking, we can say that the -properness is all what
a -proper quaternion vector needs to become -proper.

Analogously to the complex case [35], algorithms adapted
for improper signals can fail or suffer from slow convergence
when they are used for proper signals. This is due to the fact
that the number of free parameters in a conventional linear
algorithm is multiplied by four (respectively, by two) in its
full-widely (respectively, semi-widely) linear counterpart.
Therefore, since the complexity of the associated parameter es-
timation problem depends on the selected model (conventional,
semi-widely, or full-widely), we should follow the principle
of parsimony and choose the simplest model exploiting the
statistical properties of the data. As a consequence, it becomes
crucial to determine whether a quaternion random vector is

-proper, -proper, or improper. As a practical example,
which is illustrated in Section VI, we consider an optical com-
munication system based on dual polarization [36]–[38]. Thus,
depending on several system parameters, the signals in the fiber
can be represented by -proper, -proper, or improper random
quaternions.
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In this paper, we consider the three binary hypotheses testing
problems associated with the evaluation of two out of the three
possible scenarios. In particular, assuming zero-mean quater-
nion Gaussian data, we derive three generalized likelihood ratio
tests (GLRTs), which are also the key ingredient for solving the
more general multiple-hypotheses testing problem. Although
suboptimal in the Neyman–Pearson sense, this kind of detector
is easy to obtain, performs well in practice, and in our case re-
sults in simple detection rules, which admit straightforward in-
terpretations. Specifically, we show that the proposed GLRTs
reduce to the estimation of three improperness measures, which
can be interpreted as the entropy loss due to the different kinds
of quaternion improperness.

Two previous works related to our detection problems are
[23] and [39]. Specifically, [39] studied the problem of testing
whether “a covariance matrix with complex structure has quater-
nion structure,” which can be shown to be equivalent to one of
the three GLRTs derived in this paper. However, although the
formulation in [39] can be useful for obtaining the moments of
the test statistic, our derivation based on the quaternion com-
plementary covariance matrices makes the derivation and inter-
pretation of the GLRTs easier, as well as their generalization to
arbitrary orthogonal bases. Finally, in [23] the authors consid-
ered the detection of -proper quaternion random variables in
white -proper noise.

Additionally, we consider the case in which the principal
-properness direction is unknown, and therefore it has

to be estimated as well. In this case, the estimation problem
reduces to the minimization of the -improperness measure
or, equivalently, the maximization of the -improperness. Al-
though the maximum-likelihood (ML) estimation of results
in a nonconvex optimization problem in the general vector
case, we propose an algorithm based on successive convex
approximations [40]–[42] of the nonconvex cost function,
which guarantees the convergence to a solution satisfying the
Karush–Kuhn–Tucker (KKT) conditions [43]. Finally, after a
brief discussion on the general classification problem and the
distribution of the test statistics, several simulation examples
illustrate the accuracy and fast convergence of the proposed
algorithm, as well as the performance and practical application
of the three derived GLRTs.

A. Notation

In this paper, we use boldfaced uppercase letters to denote
matrices, boldfaced lowercase letters for column vectors, and
lightfaced lowercase letters for scalar quantities. Superscripts

and denote quaternion (or complex) conjugate,
transpose, and Hermitian (i.e., transpose and quaternion conju-
gate), respectively. The notation denotes that is
an matrix with entries in , where can be , the field
of real numbers, , the field of complex numbers, or , the
skew-field of quaternion numbers. , and de-
note the real part, trace, and determinant of matrix . (re-
spectively, ) is the Hermitian square root of the Hermitian
matrix (resp. ). The diagonal matrix with vector along
its diagonal is denoted by , and is the column-
wise vectorized version of matrix . is the identity matrix
of dimension , and is the zero matrix. Finally,

the Kronecker product is denoted by is the expectation
operator, and in general is the cross-correlation matrix for
vectors and , i.e., .

II. PRELIMINARIES

A. Quaternion Algebra

Quaternions are four-dimensional hypercomplex numbers in-
vented by Hamilton [44]. A quaternion is defined as

(1)

where are four real numbers, and the imaginary
units ( ) satisfy

(2)

which also implies

(3)

Quaternions form a skew field [45], which means that they
satisfy the axioms of a field except for the commutative law of
the product, i.e., for in general, although we
must note that . The conjugate of a quaternion
is defined as , and the conjugate of the
product satisfies . The inner product between two
quaternions is defined1 as , and two quaternions are
orthogonal if and only if (iff) their scalar product (the real part
of the inner product) is zero. The absolute value of a quaternion

is defined as , and it is

easy to check that . The inverse of a quaternion
is , and we say that is a pure unit

quaternion iff (i.e., iff and its real part is zero).
A particularly important operation is the quaternion involution.

Definition 1 (Quaternion Involution): The involution of a
quaternion over a pure unit quaternion is

(4)

and it represents a rotation of angle in the imaginary plane
orthogonal to [45].

Some basic properties of the quaternion involution, which can
be easily checked, are [14], [24]

(5)

(6)

(7)

(8)

Here, we must point out that the real representation in (1) can
be easily generalized to other orthogonal bases. Specifically, we
will consider an orthogonal system given by

(9)

1Other definitions of the quaternion inner product are possible; see for in-
stance [45].
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where is a rotation matrix, (i.e., and
), which implies

(10)

Thus, any quaternion can be represented as

(11)

where .
Finally, a quaternion can also be represented by means of

the Cayley–Dickson construction

(12)

where

can be seen as complex numbers in the planes spanned by
, or .

B. Second-Order Statistics of Quaternion Random Vectors

The statistical analysis of a quaternion random vector
can be based on its real representation

, which will allow us to obtain the mo-
ments of the GLRT statistics [39]. However, working with the
augmented quaternion vector
will make easier the definition of quaternion properness, the
derivation of the tests, and the generalization of the results to an
arbitrary orthogonal basis . Thus, the second-order
statistical information of the quaternion vector is given by the
augmented covariance matrix

(13)

which contains the covariance matrix and three

complementary covariance matrices

, and .
Finally, we must point out that, given two different orthogonal

bases and related by means of a rotation
matrix as

(14)

we can easily relate the augmented quaternion vectors and co-
variance matrices as stated in the following lemmas.

Lemma 1: Given a quaternion random vector and
two different orthogonal bases and , the
corresponding augmented quaternion vectors are related as

(15)

where is a unitary quaternion operator given by

(16)

, and .
Proof: Let us consider the pure unit quaternion

, where is the first row of . Thus,
the involution of over is

(17)

Repeating this procedure for and , we obtain the mapping
between the augmented quaternion vectors in the two different
bases.

Lemma 2: The augmented covariance matrices in two dif-
ferent orthogonal bases are related as

(18)

where the expressions in parentheses make the bases explicit.
Proof: This is a direct consequence of Lemma 1 and the

definition of the augmented covariance matrix.

C. Properness of Quaternion Vectors

In the complex case, a vector is proper iff the
complementary covariance matrix is zero [26],
[29], [30], [46]. The quaternion case is a bit more complicated,
and we can define different kinds of properness [21], [22], [25],
which also have different implications on the optimal linear pro-
cessing of a quaternion random vector [25]. In this paper, we
focus on the two main kinds of quaternion properness.

Definition 2 ( -Properness): A quaternion random vector
is -proper iff the three complementary covariance matrices

, and vanish.
Definition 3 ( -Properness): A quaternion random

vector is -proper iff the complementary covariance ma-
trices and vanish.

These properness definitions satisfy some interesting proper-
ties, which include the invariance to linear quaternion transfor-
mations and the invariance of the second-order statistics (SOS)
to different types of right-Clifford translations [25], [47]—i.e.,
right products , with a unit quaternion. Here, we sum-
marize the two main properties of the - and -properness
definitions [25].

Property 1 ( -Proper Vectors): A quaternion random
vector is -proper iff it is -proper for all pure unit
quaternions .

Property 2 ( -Proper Vectors): A quaternion random
vector is -proper iff the vectors in its
Cayley–Dickson representation are jointly
complex-proper, i.e., iff the composite vector is
proper.

From a practical point of view, the two previous definitions
have a strong impact on the structure of the optimal linear
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processing. In general, the optimal linear processing of a
quaternion random vector takes the form

(19)

with and . That is, we
have to simultaneously operate on the quaternion vector and its
involutions, which is referred to as full-widely linear processing.
However, in the case of - and -proper vectors, the optimal
linear processing simplifies as follows [25].

Property 3 (Linear Processing of -Proper Vectors): The op-
timal linear processing of a -proper vector takes the form

(20)

and it is referred to as conventional linear processing.
Property 4 (Linear Processing of -Proper Vectors): The

optimal linear processing of a -proper vector takes the form

(21)

and it is referred to as semi-widely linear processing.
Finally, in [25] the authors have introduced a third kind of

quaternion properness based on the cancellation of only one
complementary covariance matrix.

Definition 4 ( -Properness): A quaternion random vector
is -proper iff the complementary covariance matrix
vanishes.

Unfortunately, this third kind of quaternion properness does
not result in a simplification of the optimal linear processing.
However, the -properness definition clearly relates the two
previous kinds of quaternion properness. That is, we can say that
the - and -properness are complementary and, together,
result in -properness. This relationship will become useful in
the derivation of the GLRTs in Section III.

III. GENERALIZED LIKELIHOOD RATIO TESTS

As we have seen, the - and -properness have a strong
impact on the structure of the optimal linear processing of
quaternion random vectors. Therefore, it is crucial to deter-
mine whether our quaternion data are -proper,

-proper, or improper. Clearly, in its general formulation, this
is a multiple-hypotheses testing problem. However, here we
focus on the three binary hypotheses testing problems obtained
by considering two out of the three different hypotheses, which
is justified by the two following facts.

• The binary hypotheses testing problems can arise in prac-
tical situations when the problem structure yields some
a priori information about the properness of the data.
For instance, if we consider the problem of detecting the
presence of a zero-mean improper Gaussian signal (with
unknown augmented covariance matrix) in zero-mean

-proper Gaussian noise (with unknown covariance
matrix), the optimal detector amounts to determining
whether the observations are -proper or not. That is, in
this situation, the problem structure allows us to discard
the hypothesis of -proper observations (which is still
implicit in the improper hypothesis).

• The binary hypotheses testing problems result in simple
detection rules, which provide a clear insight about the
structure of the overall testing problem. Moreover, we will
show that the three binary tests can be seen as the core of
a practical multiple-hypotheses test based on the approxi-
mation of the a posteriori probabilities of each hypothesis.

In this section, we propose three GLRTs for solving the as-
sociated binary hypotheses tests. Although suboptimal in the
Neyman–Pearson sense, the GLRT provides satisfactory results
in practical situations [32], [33], [48]. Furthermore, the deriva-
tion of the GLRT is usually simpler than other alternative detec-
tors and, in our particular problem, it permits a straightforward
and intuitive interpretation of the detection rules.

A. ML Estimates of the Augmented Covariance Matrix

Let us start by writing the probability density function (pdf)
of a quaternion Gaussian vector with zero mean and nonsingular
augmented covariance matrix as [25]

(22)

Thus, given independent realizations
of a quaternion Gaussian vector , we can take the logarithm
of the pdf to obtain the log-likelihood function, which (up to a
scaling factor and constant terms) is given by

(23)

where

(24)

can be seen as the sample covariance matrix estimator
of . Here, we must note that in the transition from
(22) to (23) we have used the relation

. Alternatively, we could

write .
Finally, assuming for notational simplicity that is non-

singular2 (which obviously requires ), we are ready to
obtain the ML estimates of the augmented covariance matrix

under the three different hypotheses.
1) -Proper Vectors (Hypothesis ): In the case of
-proper vectors, the ML estimation problem can be written as

(25)

2We must note that, replacing matrix inverses by Moore–Penrose pseudoin-
verses, the derived GLRTs can be directly applied in the case of rank-deficient
sample covariance matrices �� . See [35] and [49] for the complex counter-
part.
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where denotes the convex set of -proper augmented co-
variance matrices, i.e.,

(26)
Lemma 3: Under the hypothesis , the ML estimate of the

augmented covariance matrix is given by

(27)

which results in a log-likelihood function

(28)

Proof: Let us start by noting that, under can
be rewritten as

(29)

where is the Kullback–Leibler diver-
gence [25], [50] between two zero-mean quaternion Gaussian
distributions with augmented covariance matrices and

. Therefore, the ML estimation problem reduces to the
minimization of the positive term , which van-
ishes for .

2) -Proper Vectors (Hypothesis ): In this case, the
ML estimation problem is

(30)

with the convex set

(31)

Lemma 4: Under the hypothesis , the ML estimate of the
augmented covariance matrix is

(32)

which yields the log-likelihood

(33)

Proof: The proof is identical to that of Lemma 3.
3) Possibly Improper Vectors (Hypothesis ): Finally, in

the case of (possibly) improper vectors, we do not need to im-
pose any particular structure on the augmented covariance ma-
trix, and the ML estimation problem is

(34)

Therefore, the ML estimate of the augmented covariance ma-
trix is directly given by the sample covariance matrix estimator,
which results in a log-likelihood function

(35)

B. -Properness GLRT

After obtaining the ML estimates of the augmented covari-
ance matrix under the three different hypotheses, the derivation
of the GLRTs is straightforward. Let us start by considering the
following binary hypothesis test:

Null Hypothesis

Alternative Hypothesis

That is, we want to decide whether is -proper or not. Thus,
taking the logarithm of the generalized likelihood ratio, we ob-
tain the GLRT statistic

(36)

where is defined as the -coher-
ence matrix, which is closely related to the multiset extensions
of canonical correlation analysis (CCA) [51]–[53]. Specifically,

appears in the CCA of the quaternion random vectors
, and .

Interestingly, the test statistic can be seen as an estimate
of the -improperness measure proposed in [25], which is
based on the Kullback–Leibler divergence [50] between two
zero-mean quaternion Gaussian distributions and provides
the entropy loss due to the -improperness of the quaternion
random vector —that is, due to the additional correlation
(not contained in ) among the real components of the
quaternion vector. Moreover, we must note that satisfies
the following important properties.

Property 5: is invariant to invertible linear
transformations.

Proof: Consider the linearly transformed data
, with an invertible matrix.

Then, it is easy to see that the associated -properness GLRT
statistic is

(37)

where is defined as

(38)

That is, the GLRT statistics for the original and trans-
formed data are identical.

Property 6: is independent of the orthogonal basis
.
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Proof: Let us write the GLRT statistic as

Now, as a direct consequence of Lemma 2, is indepen-
dent of the orthogonal basis. Moreover, it is easy to see that

. Therefore, we can conclude that
does not depend on the particular choice of the orthogonal basis

.
Summarizing, the -properness GLRT reduces to the com-

parison of with some fixed threshold

(39)

C. -Properness GLRT

Here, we consider the problem of determining whether is
-proper or not, i.e., our hypotheses testing problem can be

written as

Null Hypothesis

Alternative Hypothesis

Following the lines in Section III-B, we easily obtain the
GLRT statistic

(40)

where now is the -coherence
matrix, which appears in the CCA of the random vectors

and .
Analogously to the previous case, can be seen as an esti-

mate of the -improperness measure proposed in [25], which
provides the entropy loss due to the -improperness of , and
satisfies the following invariance property.

Property 7: is invariant to invertible semi-widely linear
transformations.

Proof: Let us define the semi-widely linear transformation
, with providing an invert-

ible matrix

(41)

Then, the associated -properness GLRT statistic is

(42)

Moreover, can be rewritten in terms of the vectors in the
Cayley–Dickson representation as [25]

(43)

where is the coherence matrix for the complex random
vector . That is, defining the augmented
vector , the coherence matrix is obtained as

, where

(44)

is the sample covariance estimator of the complex augmented
covariance matrix, and

(45)

Interestingly, is also the GLRT
statistic for determining whether is (complex) proper or
not, or equivalently, for determining if and are jointly
complex-proper [32], [33], [48], [54], [55]. That is, as sug-
gested by Property 2, the -properness test reduces to the
evaluation, and comparison to a previously fixed threshold, of
the complex-improperness measure of

(46)

D. -Properness Versus -Properness GLRT

Finally, let us consider the case in which we already know
that the quaternion random vector is -proper (see the sim-
ulations for a practical example). Then, we should determine
whether it is also -proper, and our testing problem is

Null Hypothesis

Alternative Hypothesis

Following the lines in Sections III-A and III-B, we obtain the
GLRT statistic

(47)
where is defined as the -coher-
ence matrix. Analogously to the previous cases, can be seen
as an estimate of the -improperness degree in [25], which
is a measure of the entropy loss due to the -improperness of
the -proper vector , and satisfies the following invariance
property.

Property 8: is invariant to invertible linear
transformations.

Proof: This is a direct consequence of the decomposition
and the invariances of and .

Therefore, as we have pointed out before, the -proper-
ness naturally appears as the difference between the two main
kinds of quaternion properness, and the - versus -proper-
ness GLRT reduces to

(48)

where is a previously fixed threshold.
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IV. GLRTS FOR UNKNOWN BASES

In Section III, we have derived the GLRTs for testing the
properness of a quaternion random vector under the a priori
knowledge of the orthogonal basis . That is, we have
assumed that the pure unit quaternion , for the analysis of
the -properness, is fixed. However, in practice this parameter
could be unknown, and we should consider the -properness
tests for all the possible values of .

In this section, we generalize the previous results by including
the estimation of in the GLRTs. As we will see, the ML esti-
mation problem amounts to finding the principal -properness
direction , that is, the pure unit quaternion minimizing the

-improperness measure . Interestingly, this problem can
be seen as that of finding a decomposition of the quaternion
random vector into two jointly proper complex vectors. Fi-
nally, we should also note that after obtaining the ML estimate
of , we will be ready to apply the optimal semi-widely linear
processing .

A. Problem Statement

Following the derivation in Section III, we should start by ob-
taining the joint ML estimates of and under the three dif-
ferent hypotheses. However, under and , the maximum
of the log-likelihood function does not depend on , which can
be seen as a direct consequence of Lemma 2. Therefore, our
problem reduces to the joint ML estimation of and under
the hypothesis of -proper vectors,3 i.e.,

(49)

where denotes the set of pure unit quaternions. Now, it is clear
that the previous problem can be rewritten as

(50)

or, as a direct consequence of Lemma 4

(51)

Thus, noting that , and since
is independent of , our ML estimation problem can

be written as

(52)

or equivalently

(53)

That is, as we could expect, we are looking for the pure
unit quaternion minimizing (equivalently maximizing) the
estimated (equiv. ) improperness measure. Finally,
taking into account the ML estimates of and , the overall

-properness test is

(54)

3We say that a vector is -proper iff it is -proper for some �.

and equivalently, the problem of testing -properness versus
-properness results in

(55)

B. Formulation of the Optimization Problem

Let us start by rewriting the -coherence matrix as

(56)

where can be seen as
an estimate of the complementary covariance matrix of the
prewhitened vector . This reduces the -im-
properness measure to ,
which results in the following ML estimation problem:

(57)

Finally, defining the matrices for all pure unit
quaternions , the objective function in (57) can be rewritten as

, and applying Lemma 2 we have

(58)

where are the coordinates of the pure unit
quaternion in the arbitrary orthogonal basis , i.e.,

. Thus, (57) can be rewritten as

subject to

(59)

where , and the last constraint, which forces
(equivalently ), has been relaxed to an in-

equality because the cost function is monotonically decreasing
with .

C. Proposed Algorithm: Successive Convex Approximations

Unfortunately, the above optimization problem is not convex
due to the cost function in (59), which pre-
cludes its solution by means of standard convex optimization
tools [43]. Here, in order to find reliable approximated solu-
tions, we propose to apply the successive convex approxima-
tions method [40]–[42]. This technique relies on solving a se-
ries of convex problems, in which the nonconvex cost function

is replaced by a convex approxima-
tion . The following lemmas provide sufficient conditions
for the convergence of the successive convex approximations
method, as well as a particular approximation satisfying the con-
vergence conditions.
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Lemma 5: Consider the optimization problem

(60)

where is a convex set and is a nonconvex function. If the
convex approximations of the cost function satisfy:

• for all ;
• , where is the optimal solution of the

approximated problem in the previous iteration;
• , where is the gradient operator;

then the successive convex approximations method, based on
the solutions of the convex problems

(61)

guarantees the convergence of , and after the convergence
satisfies the KKT conditions of the original problem.

Proof: See [40] and [41] for the proof and some minor
technical details.

Lemma 6: Consider the cost function
and the matrix , where denotes the

value of in the previous iteration. Then, the approximation

(62)

satisfies the convergence conditions in Lemma 5.
Proof: Defining , the cost function is

, and is its first-order Taylor’s series approxi-
mation (with respect to ) around . Now, it is easy to check
that the approximation satisfies the second and third conver-
gence conditions in Lemma 5. Finally, since the cost function
is concave in , the approximation also satisfies the first
convergence condition.

Using the proposed approximation, the convex problem to be
solved in each iteration is

subject to

(63)

where

(64)

(65)

(66)

Thus, defining the matrix

(67)

the previous problem can be rewritten as

subject to (68)

Algorithm 1: Principal -Properness Direction

Input: Estimates in some basis .
Output: Principal -Properness Direction .
Initialize: at some arbitrary value.
repeat

Obtain .
Compute .
Obtain , and from (64)–(66).
Obtain .
Extract as the principal eigenvector of .

until Convergence.

with . Finally, the solution is given by the
principal eigenvector of the matrix , and the overall algorithm
for the estimation of the pure unit quaternion is summarized
in Algorithm 1.

V. FURTHER DISCUSSION

In this section, we provide some additional details about the
distribution of the test statistics, the particularization of the ob-
tained results to the scalar case, and the general multiple-hy-
potheses testing problem.

A. Distribution of the GLRT Statistics

As we have seen, the three proposed GLRTs reduce to the
comparison of the estimated improperness measure with a
threshold. Typically, the selection of the threshold is based
on some performance criterion, such as a constant false alarm
probability, which in this paper is defined as the probability
of accepting the alternative (improper) hypothesis when the
null (proper) hypothesis is true. Therefore, the selection of
the threshold requires the knowledge of the GLRT statistic
distribution under the null hypothesis.

Although the theoretical derivation of the distributions is in
general a very difficult problem, the properties of the test statis-
tics allow us to draw some interesting conclusions. First, the in-
variance of the statistics (resp. ) under linear (resp.
semi-widely linear) transformations can be easily exploited to
numerically determine the thresholds for a fixed false alarm
probability in the case of known . That is, following the lines
in [33] for the case of complex vectors, the distributions of the
statistics under the null hypothesis can be obtained by simula-
tion using . Thus, as illustrated in Section VI-B,
we only need to tabulate the simulation results for the different
values of (vector dimensionality) and (number of available
observations). Second, we must note that any complementary
covariance matrix satisfies , which
implies that the diagonal elements are orthogonal to . There-
fore, a complementary covariance matrix is
completely specified by real numbers ( in the di-
agonal and above the diagonal). Thus, as a direct con-
sequence of the Wilks’ theorem [33], [56], we have that under
the null hypothesis

(69)
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where indicates convergence (for ) in distribution,
denotes a chi-square random variable with degrees of freedom,
and

(70)

The case of estimated is more complicated. Obviously,
is independent of the orthogonal basis, and the previous results
apply. However, the -properness test statistic is not invariant
under semi-widely linear transformations, which means that its
distribution under the null hypothesis cannot be obtained from
simulations using . In this case, if is not -proper,
the direct application of the Wilks’ theorem provides an asymp-
totic distribution

Finally, the distribution of under the null hypothesis can
be obtained by means of simulations with , but the
Wilks’ theorem does not apply due to the inconsistency4 of the

estimates [56].
The derivation of the small sample distributions is much

more complicated. However, focusing on the case of known ,
and taking into account the equivalence between the -proper-
ness test and the GLRT for testing the improperness of complex
random vectors [32], [48], [54], [55], we can directly apply
the results for the complex case [33], [39]. Furthermore, it can
be proved that the -properness versus -properness GLRT
is equivalent to the problem of “testing the hypothesis that
a covariance matrix with complex structure has quaternion
structure,” which was studied by Anderson et al. in [39]. Thus,
using the results in [39] for the moments (of order ) of the test
statistics under the null hypothesis, we have

(71)
for , and

(72)

for , where is the gamma function. Now, following
the lines in [33] for the application of the Box’s approximation
method [57], we conclude that under the null hypothesis

(73)
where denotes approximated distribution. Moreover, taking
into account that and are independent under the null
hypothesis [39], it is clear that and are also inde-
pendent, and therefore the th moments of are given (for

) by the product of (71) and (72), which can be exploited
to approximate the null distribution of . Here, we must note
that, for , these approximations become equivalent to
the Wilks’ approach in (69).

4Note that under the null ( -proper) hypothesis, we cannot define a true value
of the principal -properness direction �.

Finally, the distributions of the test statistics under the alter-
native (improper) hypothesis are not easy to obtain. There are
some available results in the complex case [35], [49], but in
general we can only say that, for and true improper-
ness measures close to zero, the test statistics
are approximately distributed as [58]–[60]

(74)

(75)

(76)

where now denotes the noncentral chi-square distribu-
tion with degrees of freedom and noncentral parameter , and

depend on the actual distribution [58]–[60].

B. Particularization to the Scalar Case

The GLRT statistics provide additional insights in the scalar
case . Specifically, defining the
real vector and the unitary matrix

(77)

we can write , and

(78)

which is the GLRT statistic for the well-known sphericity test of
the real vector [61]. Furthermore, using the Cayley–Dickson
representation , and defining the vector

, we obtain [25]

(79)

That is, as previously pointed out, the -properness GLRT re-
duces to testing the complex properness of , and the -proper-
ness GLRT is the sphericity test for the complex vector .

Finally, we must note that in the scalar case, the cost func-
tion in (59) reduces to a quadratic function, and the optimiza-
tion problem can be solved in closed form. Thus, the principal

-properness direction is obtained after the first iteration of the
proposed successive convex approximations algorithm.

C. Multiple-Hypotheses Testing Problem

As we have previously shown, the -properness is all what
a -proper vector needs to become -proper, which is con-
firmed by the relationship . Interestingly,
this fact can also be used to easily relate the three proposed
GLRTs. In particular, consider the classification problem with
hypotheses , and , assume as true the ML estimates
of the augmented covariance matrices, and assign some a priori
probabilities satisfying

(80)
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Fig. 1. Space of values for the two improperness measures (GLRT statistics)
�� and �� in the case � � � �� , which divides the space into three
regions corresponding to the different properness hypotheses. (a) Scenario with
a priori knowledge of the -properness direction �. (b) Scenario with unknown
�. The solid lines represent the achievable pairs of values for different values
of �.

Then, it is easy to prove that the maximum a posteriori5 (MAP)
classification rule would be based on the thresholds

(81)

and more importantly

(82)

As an example, Fig. 1(a) shows the space of values of the pair
, as well as the regions associated with a particular

choice of the thresholds , and . Addi-

5Note that this is not a true MAP classification technique because we are
directly plugging the ML estimates of the augmented covariance matrices.

TABLE I
SECOND-ORDER STATISTICS FOR THE SIMULATION EXPERIMENTS

Fig. 2. Convergence example. Evolution of the test statistic �� for five inde-
pendent experiments, each one with 100 different initialization points. (a) �
and� � ��. (b)� and� � ��. (c)� and� � ��. (d)� and� � ��.

tionally, Fig. 1(b) represents the case without previous knowl-
edge of the principal -properness direction. As can be seen, the
optimization in moves the points toward the upper left corner,
and in particular, point moves from the improperness region
to the -properness region (for some pure unit quaternion ).

VI. SIMULATION RESULTS

In this section, the performance of the proposed GLRTs is il-
lustrated by means of some simulation results, which have been
obtained using the MATLAB quaternion Toolbox [62]. Unless
otherwise stated, the experiments are based on i.i.d realiza-
tions of a four-dimensional quaternion Gaussian vector (i.e.,

) with zero mean and second-order statistics as illustrated
in Table I, where the diagonal matrices and are

Thus, with the specified SOS, the principal -properness direc-
tion (under and ) is .

A. Convergence of the Successive Convex Approximations
Method

The first set of examples illustrate the convergence of the
successive convex approximations method. Specifically, Fig. 2
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Fig. 3. Mean square error in the estimates of the principal -properness direc-
tion � after four iterations of the proposed algorithm.

Fig. 4. Cumulative distribution function of the test statistic �� under the null
hypothesis� � � � � � � for � � �.

shows the evolution of the -improperness measure in four
different scenarios, considering five independent examples for
each scenario. In all the cases, the proposed algorithm has been
initialized in 100 randomly generated values of and, after a
few iterations, we can see that the algorithm converges to the
same solution. Based on these and other similar results, we have
limited the proposed algorithm to four iterations. Finally, Fig. 3
shows the mean square error (MSE) in the estimate of the prin-
cipal -properness direction, where we can see that the pro-
posed algorithm provides reliable estimates both in the case of

-proper and improper random vectors.

B. Cumulative Distribution Function of the GLRT Statistics
Under the Null-Hypothesis

As we have previously pointed out, the invariances of the test
statistics , and can be exploited for obtaining their

Fig. 5. Cumulative distribution function of the test statistic �� under the null
hypothesis � � � � � for � � �.

Fig. 6. Cumulative distribution function of the test statistic �� under the null
hypothesis � � � � � � � for � � �.

distribution under the null (proper) hypothesis by means of sim-
ulations. Figs. 4–6 show the numerically obtained cumulative
distribution functions (CDFs) of the three test statistics, both in
the case of known and unknown -properness direction. Addi-
tionally, Tables II–IV show the critical values of the thresholds
for three different probabilities of false alarm and several
values of and . Finally, we must remember that the distribu-
tion of for estimated depends on the actual second-order
statistics. Table III has been obtained using under
the null distribution.

C. Receiver Operating Characteristic Curves

In this set of examples, we show the receiver operating char-
acteristic (ROC) curves for the three proposed GLRTs. Specif-
ically, Figs. 7–9 show the probability of miss (probability of
accepting the null hypothesis when the alternative is true) as
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TABLE II
CRITICAL VALUES � FOR THE -PROPERNESS TEST

TABLE III
CRITICAL VALUES � FOR THE -PROPERNESS TEST

a function of the false alarm probability. Interestingly, the fig-
ures show that the third GLRT ( -properness versus -proper-
ness) is more affected by errors in the estimate of the principal

-properness direction. As previously pointed out, this is due
to the inconsistency of the estimates under the -proper hy-
pothesis.

D. Practical Example

In the final example, we show a practical application of the
derived GLRTs. In particular, we consider an optical communi-
cation system with dual polarization that, considering a single
frequency, can be modeled as [36]–[38]

(83)

where (resp. ) is a complex
vector in the plane representing the transmitted (resp.
received) signals in the two orthogonal principal states of

TABLE IV
CRITICAL VALUES � FOR THE - VERSUS -PROPERNESS TEST

Fig. 7. Receiver operating characteristic. -properness GLRT.

polarization (PSP), represents the i.i.d. circular
complex Gaussian noise

(84)

are complex rotation matrices representing the PSP mismatch
between the fiber and the transmitted signals, and

(85)

represents the polarization dependent losses (PDLs).
In particular, the PDL factor is defined as

.
In the experiments, we consider a communication system

transmitting QPSK symbols with signal-to-noise ratio (SNR) of



1368 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 4, APRIL 2011

Fig. 8. Receiver operating characteristic. -properness GLRT.

Fig. 9. Receiver operating characteristic. -properness versus -properness
GLRT.

20 dB and random matrices and . Furthermore, we consider
a possible IQ imbalance in the transmitted signals , where
the IQ imbalance factor is defined as ,
with and representing the power in the in-phase and
quadrature components of the transmitted signals. Thus,
defining the quaternions and ,
our goal consists in applying the linear, semi-widely linear, or
full-widely linear quaternion LMS algorithm [9]–[11] for re-
covering from . In particular, the quaternion LMS updating
rule can be written as

(86)

where is the estimate of is the error, is
the system equalizer, and is the input for the LMS algorithm.
Here, we consider four different scenarios.

• Balanced system : In this case, the source
quaternion is -proper, and the channel preserves the

Fig. 10. Convergence of the quaternion LMS algorithm in the four different
scenarios. The curves show the conventional linear LMS (Linear), the semi-
widely linear LMSs (SWL � and SWL � ), the full-widely linear LMS (FWL),
and the proposed technique (Classifier). (a) Balanced system. (b) System with
IQ imbalance. (c) System with PDL. (d) System with PDL and IQ imbalance.

quaternion structure. Therefore, is also -proper, and
the most appropriate processing is the conventional linear
model. That is, we should select for the quaternion
LMS.

• System with IQ imbalance : In this
case, the source and observation are -proper. The
optimal linear processing is semi-widely linear in , which
means that we should select .

• System with PDL : Although the
source quaternion is -proper, the channel introduces
a power imbalance, and the received quaternion is

-proper. Therefore, the most appropriate processing is
semi-widely linear in .

• System with PDL and IQ imbalance :
The source is -proper, but is improper. Furthermore,
the principal -properness direction and the -improper-
ness measure depend on the particular value of and . In
general, the optimal linear processing is full-widely linear

.
The proposed GLRTs, including the principal -properness

direction algorithm, are applied to a set of observa-
tions for solving the multiple-hypotheses testing problem and
selecting the most convenient kind of processing. In case of se-
lecting the semi-widely linear processing, we use the estimated
principal -properness direction , i.e., we use
as input for the LMS algorithm. In order to achieve the same
steady-state error in the -proper case, the learning rate has
been selected as in the case of conventional linear
processing, for semi-widely linear processing, and

for full-widely linear processing. The results, aver-
aged for 1000 independent simulations, are shown in Fig. 10.
As can be seen, the performance of the proposed technique is
always very close to that of the most convenient kind of pro-
cessing, and the small deviations in the -proper and improper
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scenarios are due to classification mistakes and residual errors
in the estimate of the principal -properness direction.

VII. CONCLUSION

In this paper, we have presented three generalized likelihood
ratio tests (GLRTs) for testing the properness of a quaternion
random vector. This is an important problem because the type
of quaternion properness will determine the required kind
of linear processing (full-widely linear, semi-widely linear,
or conventional linear processing). The proposed tests have
been derived under the Gaussian assumption, and they re-
duce to the estimation, and comparison to a fixed threshold,
of three previously proposed improperness measures. Addi-
tionally, we have presented an algorithm for the estimation
of the principal -properness direction, or equivalently, to
decompose the quaternion vector into two complex vectors
with the lowest improperness degree. The proposed technique
is based on the successive convex approximations method,
which guarantees the convergence to a solution satisfying the
Karush–Kuhn–Tucker conditions. Finally, the performance
and practical application of the proposed techniques have been
illustrated by means of several simulation examples.
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