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Abstract—Previous works have addressed the second-order
statistical characterization of quaternion random vectors, in-
troducing different properness definitions, and presenting the
generalized likelihood ratio tests (GLRTs) for determining the
kind of quaternion properness. This paper considers the more
challenging problem of deriving the locally most powerful in-
variant tests (LMPITs), which can be obtained, even without
an explicit expression for the maximal invariants, thanks to
the Wijsman’s theorem. Specifically, we consider three binary
hypothesis testing problems involving the two main kinds of
quaternion properness, and show that the LMPIT statistics are
given by the Frobenius norm of three previously defined sample
coherence matrices. The proposed detectors exhibit interesting
connections with the problem of testing for the properness of
a complex vector, and with the problems of testing for the
sphericity of a four-dimensional real (or two-dimensional complex
proper) vector. Additionally, some numerical examples show
that in general, the proposed LMPITs outperform their GLRT
counterparts, and in some cases the performance gap is very
noticeable.

Index Terms—Quaternions, properness, second-order circu-
larity, locally most powerful invariant test (LMPIT), maximal
invariant, Wijsman’s theorem.

I. INTRODUCTION

In the last decade, quaternion signal processing has attracted
increasing attention due to its applications in image processing
[1]–[5], computer graphics [6], aerospace and satellite tracking
[7], [8], design and processing of space-time block codes
[9]–[15], detection and processing of polarized waves [16]–
[19], or modeling of wind profiles [20]–[23]. The applica-
tion oriented efforts have been also complemented by some
theoretical works, including those devoted to the statistical
characterization of quaternion random vectors [24] (see also
[25]–[27]).

The second-order statistical analysis of quaternion random
vectors can be seen as a non-trivial extension of several
previous results in the complex case [28]–[38]. In particular,
a complex random vector is said to be proper if it is un-
correlated with its complex conjugate, which results in the
optimality of the conventional linear processing. However,
in the more general case of (possibly) improper complex
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vectors, the optimal linear processing is widely-linear, i.e.,
we have to simultaneously operate on the data vector and
its complex conjugate. The selection of the most convenient
type of processing is an important problem due to the fact
that algorithms adapted for improper signals can fail or suffer
from slow convergence when they are used for proper signals
[39]. Thus, we should follow the principle of parsimony and
choose the simplest model exploiting the statistical properties
of the data, which requires to solve the problem of determining
whether the complex data are proper or not [38], [40]–[46].

The quaternion case is more involved because there ex-
ist two main kinds of properness (Cη-properness and Q-
properness), which also have direct implications on the struc-
ture of the optimal linear processing [24]. Specifically, the
optimal linear processing of a quaternion random vector is
in general full-widely linear, which requires the simultaneous
operation on the quaternion vector and its involutions over
three orthogonal pure quaternions {η, η′, η′′}. However, in the
Cη-proper case, we only need to operate on the quaternion
vector and its involution over η, which is referred to as semi-
widely linear processing, whereas in the Q-proper case the
conventional linear processing is optimal, i.e., we do not need
to operate on the quaternion involutions. Therefore, due to
the existence of three different kinds of linear processing,
and analogously to the complex case, it becomes crucial to
determine the kind of properness of a quaternion random
vector [19]. Additionally, other potential applications of the
quaternion properness tests include i) finding statistical in-
variances to rotations in imaging problems, ii) the statistical
analysis of the dependencies among different trivariate signals,
which could be related by means of random quaternions
(representing rotations), and iii) the statistical characterization
of the analytic signal extensions for trivariate vectors or
bidimensional signals, which could benefit from a quaternionic
representation resulting, in analogy with the unidimensional
case, in proper analytic signals.

Focusing on the two main kinds of quaternion properness,
we define three binary hypothesis testing problems, which
have been previously approached by means of the correspond-
ing generalized likelihood ratio tests (GLRTs). In particular,
the three GLRTs were first proposed in [19], and the exact
distribution of the test statistics, as well as several practical
approximations, were presented in [47]. However, it is well
known that the GLRT is not optimal in the Neyman-Pearson
sense, and its performance can be seriously degraded for small
sample sizes. This paper presents the locally most powerful
invariant tests (LMPITs) for the three testing problems under
the assumption of i.i.d. Gaussian data. That is, following the
principle of invariance, and assuming that the two hypotheses
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are very close, we derive the best (in the Neyman-Pearson
sense) invariant tests.

The principle of invariance is one of the fundamental ideas
in hypothesis testing [48]–[51], and the traditional approach to
derive optimal invariant tests consists in the identification of a
maximal invariant [48], the derivation of its probability density
function (pdf) under the two hypotheses, and the application
of the Neyman-Pearson criterion. However, the theoretical
derivation of the pdf’s can be a very complicated task. Even
worse, in some cases it is difficult to identify a maximal
invariant statistic. Fortunately, this problem can be solved by
means of the Wijsman’s theorem [41], [52]–[54], sometimes
also referred to as the Stein’s theorem [51], [55], which states
that the density ratio of the maximal invariant can be obtained
by integrating over the group of transformations describing the
problem invariances.

Although the identification of the maximal invariants is
relatively easy in two out of the three binary hypothesis
testing problems considered in this paper, the derivation of
the LMPITs require the use of the Wijsman’s theorem. Specif-
ically, it is shown that the LMPIT statistics are given by the
Frobenius norm of three previously defined sample coherence
matrices [19], [24]. In comparison with the respective GLRTs,
which are based on the determinants of the coherence matrices,
the LMPITs require a lower number of vector observations
(sample size). Moreover, it will be shown that the uniformly
most powerful invariant test (UMPIT) only exists in a very
particular situation, and we will explore the interesting con-
nections with the problems of testing for the sphericity of
a four-dimensional real (or two-dimensional complex proper)
vector [56]–[58], as well as with the problem of testing for
the properness of a complex random vector [40]–[43].

The paper is structured as follows: Section II introduces
the basic concepts on quaternion algebra and summarizes the
second-order statistical characterization of quaternion random
vectors. Section III presents the three testing problems and
briefly revisits some previous results. The main contributions
of the paper are presented in Section IV, which addresses
the problem of identifying the maximal invariants, presents
the LMPITs, and analyzes their basic properties. The formal
derivation of the LMPITs is relegated to Section V, and their
practical performance is illustrated in Section VI by means
of some numerical examples, which allow us to conclude that
in general, the LMPITs outperform their GLRT counterparts.
Finally, the paper conclusions are summarized in Section VII.

II. PRELIMINARIES

In this paper we use bold-faced upper case letters to denote
matrices, bold-faced lower case letters for column vectors, and
light-faced lower case letters for scalar quantities. Superscripts
(·)∗, (·)T and (·)H denote quaternion (or complex) conjugate,
transpose and Hermitian (i.e., transpose and quaternion con-
jugate), respectively. The notation A ∈ Fm×n denotes that A
is a m × n matrix with entries in F, where F can be R, the
field of real numbers, C, the field of complex numbers, or
H, the skew-field of quaternion numbers. <(A), Tr(A) and
|A| denote the real part, trace, and determinant of matrix A.

A1/2 (respectively A−1/2) is the Hermitian square root of the
Hermitian matrix A (resp. A−1). The diagonal matrix with
vector a along its diagonal is denoted by diag(a), In is the
identity matrix of dimension n, and 0m×n is the m× n zero
matrix. Finally, the Kronecker product is denoted by ⊗, E
is the expectation operator, and in general Ra,b is the cross-
correlation matrix for vectors a and b, i.e., Ra,b = EabH .

A. Quaternion Algebra

Quaternions are hypercomplex numbers defined by

x = r1 + ηrη + η′rη′ + η′′rη′′ , (1)

where r1, rη, rη′ , rη′′ ∈ R are four real numbers, and the three
imaginary units1 (η, η′, η′′) satisfy

η2 = η′
2

= η′′
2

= ηη′η′′ = −1, (2)

which also implies ηη′ = η′′, η′η′′ = η, and η′′η = η′.
Quaternions form a skew field H [59], which means that

they satisfy the axioms of a field except the commutative law
of the product, i.e., for x, y ∈ H, xy 6= yx in general. The
conjugate of a quaternion x is x∗ = r1−ηrη−η′rη′ −η′′rη′′ ,
and the inner product of two quaternions x, y is defined
as xy∗. Two quaternions are orthogonal if and only if (iff)
their scalar product (the real part of the inner product) is
zero, and the norm of a quaternion x is |x| =

√
xx∗ =√

r2
1 + r2

η + r2
η′ + r2

η′′ . Furthermore, we say that ν is a pure
unit quaternion iff ν2 = −1 (i.e., iff |ν| = 1 and its real part
is zero).

Quaternions admit the Euler representation

x = |x|eνθ = |x| (cos θ + ν sin θ) , (3)

where ν is a pure unit quaternion and θ ∈ R is the angle (or
argument) of the quaternion. Taking this into account, we can
easily define the rotation and involution operations [59]:

Definition 1 (Rotation and Involution): Consider a non-
zero quaternion a = |a|eνθ = |a| (cos θ + ν sin θ), then

x(a) = axa−1, (4)

represents a three-dimensional rotation of the imaginary part of
x. Specifically, the vector [rη, rη′ , rη′′ ]

T is rotated an angle 2θ
in the pure imaginary plane orthogonal to ν. In the particular
case of pure quaternions ν, x(ν) represents a rotation of angle
π, which is an involution.

Finally, a quaternion x can also be represented by means of
the Cayley-Dickson construction x = a1 + η′′a2, where

a1 = r1 + ηrη, a2 = rη′′ + ηrη′ , (5)

can be seen as complex numbers in the plane {1, η}.

1In this paper we use the general representation {η, η′, η′′} instead of the
conventional canonical basis {i, j, k}.
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B. Second-Order Statistics of Quaternion Random Vectors

The second-order statistics (SOS) of a n-dimensional
quaternion random vector x = r1+ηrη+η′rη′+η

′′rη′′ are ob-
viously given by the joint SOS of the vectors r1, rη, rη′ , rη′′ ∈
Rn×1 in its real representation. However, analogously to
the case of complex random vectors [28]–[33], [35], [37],
the statistical analysis can benefit from the definition of an
augmented quaternion vector2

x̄ =


x

x(η)

x(η′)

x(η′′)

 = 2Tnr, (6)

where r =
[
rT1 , r

T
η , r

T
η′ , r

T
η′′

]T
, and Tn ∈ H4n×4n is a unitary

matrix defined as

Tn =
1

2


+1 +η +η′ +η′′

+1 +η −η′ −η′′
+1 −η +η′ −η′′
+1 −η −η′ +η′′

⊗ In. (7)

Thus, the SOS of x are given by the augmented covariance
matrix [24]

Rx̄,x̄ = 4TnRr,rT
H
n

=


Rx,x Rx,x(η) Rx,x(η′) Rx,x(η′′)

R
(η)

x,x(η) R
(η)
x,x R

(η)

x,x(η′′) R
(η)

x,x(η′)

R
(η′)

x,x(η′) R
(η′)

x,x(η′′) R
(η′)
x,x R

(η′)

x,x(η)

R
(η′′)

x,x(η′′) R
(η′′)

x,x(η′) R
(η′′)

x,x(η) R
(η′′)
x,x

 , (8)

which contains the covariance matrix Rx,x = ExxH and three
complementary covariance matrices Rx,x(η) = Exx(η)H ,

Rx,x(η′) = Exx(η′)H and Rx,x(η′′) = Exx(η′′)H . Inter-
estingly, this representation allows us to easily relate the
SOS of the quaternion vector x and those of some common
transformations [24]:

Lemma 1: Consider the full-widely linear transformation

y = FHx̄ x̄ = FH1 x + FHη x(η) + FHη′x
(η′) + FHη′′x

(η′′), (9)

where Fx̄ =
[
FT1 ,F

T
η ,F

T
η′ ,F

T
η′′

]T ∈ H4n×n. Then, the SOS

of y are given by Rȳ,ȳ = F
H

Rx̄,x̄F, where

F =


F1 F

(η)
η F

(η′)
η′ F

(η′′)
η′′

Fη F
(η)
1 F

(η′)
η′′ F

(η′′)
η′

Fη′ F
(η)
η′′ F

(η′)
1 F

(η′′)
η

Fη′′ F
(η)
η′ F

(η′)
η F

(η′′)
1


︸ ︷︷ ︸

4n×4n

. (10)

Lemma 2: A rotation y = x(a) results in a simultaneous ro-
tation of the orthogonal basis {1, η, η′, η′′} and the augmented
covariance matrix

Rȳ,ȳ({1, η, η′, η′′}) = R
(a)
x̄,x̄({1, η(a∗), η′(a

∗), η′′(a
∗)}), (11)

2From now on, we will use the notation F(a) to denote the element-wise
rotation of matrix F.

where the expressions in parentheses make explicit the bases
for the augmented covariance matrices.

Lemma 3: The augmented covariance matrices in two dif-
ferent orthogonal bases are related as

Rx̄,x̄({1, ν, ν′, ν′′}) = ΓRx̄,x̄({1, η, η′, η′′})ΓH , (12)

where

Γ =

[
1 01×3

03×1 ΛνQΛH
η

]
⊗ In, (13)

Q ∈ R3×3 is the rotation matrix for the change of basis
[ν, ν′, ν′′] = [η, η′, η′′]QT , Λν = diag

(
[ν, ν′, ν′′]

T
)

, and

Λη = diag
(

[η, η′, η′′]
T
)

.
Finally, we conclude this subsection by introducing a useful

factorization for complementary covariance matrices and, in
general, for η-Hermitian quaternion matrices [60], i.e. matrices
A ∈ Hn×n satisfying AH = A(η). This tool can be seen
as a quaternion extension of the Takagi’s factorization for
symmetric complex matrices [61], and it is easy to check that
both factorizations coincide when A is a complex matrix with
its imaginary part in the plane {η′, η′′}. For completeness, we
include a proof which avoids the problems encountered in the
case of singular values with multiplicities [60].

Lemma 4 (Unitary Factorization of η-Hermitian Matrices):
Every η-Hermitian matrix A ∈ Hn×n admits a factorization
A = UΛU(η)H , where U ∈ Hn×n is a unitary matrix with
the singular vectors, and Λ ∈ Rn×n is a diagonal matrix with
the singular values.

Proof: Let us start by writing the Cayley-Dickson repre-
sentation A = A1 + ηA2, where A1,A2 ∈ Hn×n belong to
the plane {1, η′}, i.e., they can be seen as complex matrices.
Thus, it is easy to verify that the η-Hermitian condition
AH = A(η) implies A1 = AT

1 and A2 = −AH
2 . Now,

defining the adjoint matrix

Ă =

[
A1 −A∗2
A2 A∗1

]
, (14)

and using the conventional Takagi’s [61] factorization for
complex symmetric matrices, we can obtain the SVD-like
decomposition Ă = ŬΛ̆ŬT , where the unitary matrix Ŭ
belongs to the plane {1, η′}. Moreover, from the uniqueness of
the Takagi’s factorization, we can conclude that the matrices
Ŭ and Λ̆ have the structure

Ŭ =

[
U1 −U∗2
U2 U∗1

]
, Λ̆ =

[
Λ 0n×n

0n×n Λ

]
, (15)

with U1,U2 ∈ Hn×n. Finally, using the Cayley-Dickson
construction U = U1 +ηU2, the decomposition Ă = ŬΛ̆ŬT

can be compactly written as A = UΛU(η)H .

C. Properness of Quaternion Random Vectors

Analogously to the complex case [37], the structure of
the optimal linear processing of quaternion random vectors
depends on the quaternion properness. In [24] (see also [25]–
[27]), the authors have presented two main kinds of quaternion
properness:
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Definition 2 (Q-Properness): A quaternion random vector
x is Q-proper iff the three complementary covariance matrices
Rx,x(η) , Rx,x(η′) and Rx,x(η′′) vanish.

Definition 3 (Cη-Properness): A quaternion random vector
x is Cη-proper iff the complementary covariance matrices
Rx,x(η′) and Rx,x(η′′) vanish.

As a direct consequence of Lemma 3, Q-properness implies
Cη-properness for all pure quaternions η. Furthermore, the
Cη-properness definition is directly related to the complex
properness of the vectors in the Cayley-Dickson representation
of x [24]:

Lemma 5: A quaternion random vector x is Cη-proper iff
the complex vectors a1,a2 ∈ Cn×1 in its Cayley-Dickson
representation x = a1 + η′′a2 are jointly proper, i.e., iff the
complex vector a = [aT1 ,a

T
2 ]T is proper (Ra,a∗ = 02n×2n).

From a practical point of view, the main implications of
the properness definitions consist in the simplification of the
optimal linear processing of quaternion random vectors. In
the general case, the optimal linear processing is full-widely
linear, i.e., we must simultaneously operate on the quaternion
random vector and its three involutions. However, in the case
of proper vectors the optimal linear processing simplifies as
follows [24]:

Lemma 6 (Semi-widely linear processing): The optimal
linear processing of Cη-proper vectors is semi-widely linear

y = FH1 x + FHη x(η). (16)

Lemma 7 (Conventional linear processing): The optimal
linear processing of Q-proper vectors takes the form

y = FH1 x, (17)

i.e., we do not need to operate on the quaternion involutions.
Finally, in [24] the authors introduced a third kind of quater-

nion properness, which can be interpreted as the difference
between Cη and Q properness.

Definition 4 (Rη-Properness): A quaternion random vector
x is Rη-proper iff the complementary covariance matrix
Rx,x(η) vanishes.

III. TESTING FOR QUATERNION PROPERNESS: PROBLEM
STATEMENT AND PREVIOUS RESULTS

A. Problem Formulation

Analogously to the complex case [42], [43], determining the
kind of properness of a quaternion random vector is an impor-
tant problem because it establishes the most convenient kind
of linear processing. Here, we consider the three following
hypotheses:
• HQ: The quaternion random vector x is Q-proper.
• HCη : The quaternion random vector x is Cη-proper.
• HI : The quaternion random vector x is not constrained

to be Q-proper nor Cη-proper.
Depending on the particular problem/application, we could

have some a priori information. For instance, if we know that
the quaternion random vector has been obtained from two
jointly-proper complex vectors a1, a2 in the plane {1, η},

we should take into account that x = a1 + η′′a2 is Cη-
proper. Thus, in this paper we consider three different binary
hypothesis testing problems:
• Q-properness test: This is the problem of determining

whether x is Q-proper or not. That is, we are testing the
hypothesis HQ versus HI .

• Cη-properness test: The problem of determining whether
x is Cη-proper or not. In other words, this is the problem
of testing HCη versus HI .

• Q-properness versus Cη-properness test: This is the prob-
lem of determining whether the Cη-proper vector x is
also Q-proper, i.e., HQ versus HCη .

In order to solve these binary hypothesis testing problems,
we will assume T i.i.d. realizations of a zero-mean quaternion
Gaussian vector. Therefore, the tests to be presented do not
need to be optimal in any sense for non-Gaussian distributions
or non i.i.d. vector realizations.3 Although the case of non-
Gaussian data has been addressed in [47], where the authors
proposed a modified version of the GLRT, the derivation
of tests for more general families of distributions and for
correlated data is an interesting topic for future research, but
it is beyond the scope of this paper.

With the above assumptions, the probability density function
(pdf) of the random vector x ∈ Hn×1 is [24]

p(x) =
1

(π/2)2n|Rx̄,x̄|1/2
exp

(
−1

2
x̄HR−1

x̄,x̄x̄

)
, (18)

and from the T i.i.d. realizations x[t] (t = 0, . . . , T − 1) we
can define the augmented sample-covariance matrix

R̂x̄,x̄ =
1

T

T−1∑
t=0

x̄[t]x̄H [t]

=


R̂x,x R̂x,x(η) R̂x,x(η′) R̂x,x(η′′)

R̂
(η)

x,x(η) R̂
(η)
x,x R̂x,x(η′′) R̂x,x(η′)

R̂
(η′)

x,x(η′) R̂
(η′)

x,x(η′′) R̂
(η′)
x,x R̂

(η′)

x,x(η′)

R̂
(η′′)

x,x(η′′) R̂
(η′′)

x,x(η′) R̂
(η′′)

x,x(η) R̂
(η′′)
x,x

 , (19)

which also provides obvious definitions of the sample covari-
ance R̂x,x and complementary covariance R̂x,x(η) , R̂x,x(η′) ,
R̂x,x(η′′) matrices.

B. Previous Works: Generalized Likelihood Ratio Tests

The three proposed binary hypothesis testing problems have
been previously considered in [19], [47]. In particular, in
[19] the authors presented the three associated generalized
likelihood ratio tests (GLRTs), as well as the asymptotic
distribution of the test statistics and a multiple hypotheses
testing procedure based on the combination of the three
GLRTs. In [47], the authors derived the three GLRTs in an
alternative way, and provided the exact distribution of the test

3Nevertheless, the proposed tests could be easily adapted to some rela-
tively simple cases, such as the signal model

[
x[0] · · · x[T − 1]

]
=[

s[0] · · · s[T − 1]
]
B, where x[t] (t = 0, . . . , T − 1) denotes the

correlated observations, s[t] represents T i.i.d. realizations of a quaternion
Gaussian vector s, and B ∈ HT×T controls the horizontal correlation. In
this case, and assuming that the matrix B is known, the observations x[t] can
be horizontally prewhitened, recovering the model addressed in this paper.
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statistics, as well as several practical approximations. In this
subsection, we summarize the main results in [19], which also
allows us to introduce some definitions that will be useful
in the following sections. In particular, we define the block-
diagonal matrices

D̂Cη =


R̂x,x R̂x,x(η) 0n×n 0n×n

R̂
(η)

x,x(η) R̂
(η)
x,x 0n×n 0n×n

0n×n 0n×n R̂
(η′)
x,x R̂

(η′)

x,x(η′)

0n×n 0n×n R̂
(η′′)

x,x(η) R̂
(η′′)
x,x

 , (20)

and

D̂Q =


R̂x,x 0n×n 0n×n 0n×n

0n×n R̂
(η)
x,x 0n×n 0n×n

0n×n 0n×n R̂
(η′)
x,x 0n×n

0n×n 0n×n 0n×n R̂
(η′′)
x,x

 , (21)

and summarize the main results in [19] in Table I, which shows
the three GLRT statistics. The GLRTs reject the null (proper)
hypothesis for high values of P̂Q, P̂Cη or P̂Rη , which can
be seen as estimates of the improperness measures presented
in [24]. Specifically, the test statistics are obtained from the
sample coherence matrices

Φ̂Q = D̂
−1/2
Q R̂x̄,x̄D̂

−1/2
Q , (22)

Φ̂Cη = D̂
−1/2
Cη R̂x̄,x̄D̂

−1/2
Cη , (23)

Φ̂Rη = D̂
−1/2
Q D̂CηD̂

−1/2
Q , (24)

and they satisfy the relationship

P̂Q = P̂Cη + P̂Rη , (25)

which has been used in [19] for introducing a multiple hy-
potheses test based on the three previous measures. Moreover,
using the Cayley-Dickson representation, we can rewrite the

augmented quaternion vector as x̄ =
[
x̃T , x̃(η′)T

]T
, where the

semi-augmented quaternion vector x̃ is given by [24][
x

x(η)

]
︸ ︷︷ ︸

x̃

=
√

2

(
1√
2

[
1 η′′

1 −η′′
]
⊗ In

)
︸ ︷︷ ︸

L

[
a1

a2

]
︸︷︷︸

a

. (26)

Thus, taking into account the unitarity of the operator L, it
is easy to prove that the sample Cη-coherence matrix can be
rewritten as

Φ̂Cη =

[
L 02n×2n

02n×2n L(η′)

]
Φ̂ã

[
L 02n×2n

02n×2n L(η′)

]H
, (27)

where Φ̂ã = D̂
− 1

2

ã R̂ã,ãD̂
−H2
ã is the sample coherence matrix

for the complex vector ã =
[
aT ,aH

]T
, and

D̂ã =

[
R̂a,a 02n×2n

02n×2n R̂∗a,a

]
. (28)

Therefore, we can conclude that the Cη-properness GLRT is
equivalent to the GLRT for testing the properness of the com-
plex vector a = [aT1 ,a

T
2 ]T , or equivalently, for determining

whether a1 and a2 are jointly complex-proper or not [19],
[24], [38], [42]–[46].

TABLE I
GLRT STATISTICS

Test Sample Size GLRT statistic

HQ vs. HI T ≥ 4n P̂Q = − 1
2
ln
∣∣∣Φ̂Q

∣∣∣
HCη vs. HI T ≥ 4n P̂Cη = − 1

2
ln
∣∣∣Φ̂Cη

∣∣∣
HQ vs. HCη T ≥ 2n P̂Rη = − 1

2
ln
∣∣∣Φ̂Rη

∣∣∣

IV. LOCALLY MOST POWERFUL INVARIANT TESTS

Although the GLRTs are simple detectors with nice detec-
tion rules, they can suffer from poor performance, especially
for small sample sizes T . This motivates us to consider
the derivation of the locally most powerful invariant tests
(LMPITs), i.e., the most powerful tests (in the Neyman-
Pearson sense) among those preserving the particular in-
variances [48], [49] of each testing problem, when the null
(proper) and alternative hypotheses are very close. In this
section, we start by summarizing the invariances of each
testing problem, which is complemented with a discussion on
the derivation of the maximal invariants. Finally, we introduce
the LMPITs, analyze their properties, and point out the con-
nections with the LMPITs for some related testing problems.

A. Problem Invariances and Maximal Invariants

Before proceeding, let us summarize the invariances of the
two main quaternion properness definitions:

Property 1 (Q-Properness Invariances): The Q-properness
definition is invariant to rotations and invertible conventional
linear transformations, i.e., x is Q-proper iff y = FH1 x(a) is
Q-proper for all non-null a ∈ H and invertible F1 ∈ Hn×n.

Property 2 (Cη-Properness Invariances): The Cη-
properness definition is invariant to invertible semi-
widely linear transformations, i.e., x is Cη-proper iff
y = FH1 x + FHη x(η) is Cη-proper for all F1,Fη ∈ Hn×n

resulting in an invertible transformation ȳ = F
H

x̄.
These properties, which follow directly from Lemmas 1-

3 and the properness definitions, allow us to establish the
invariances of the three binary hypothesis tests:

Lemma 8 (Invariances of the Q-Properness test): The
problem of testing HQ versus HI is invariant under the group
GQ of quaternion rotations and invertible conventional linear
transformations.

Lemma 9 (Invariances of the Cη-Properness test): The
problem of testing HCη versus HI is invariant under the
group GCη of invertible semi-widely linear transformations.

Lemma 10 (Invariances of the HQ versus HCη test): The
problem of testing HQ versus HCη is invariant under the
group GRη of invertible conventional linear transformations.

Here, we must point out that the three GLRTs presented
in the previous section preserve the invariances of the corre-
sponding testing problems. In other words, the three GLRTs
belong to the class of invariant detectors to be explored in
the rest of the paper. Finally, taking into account the test
invariances, we are ready to consider the derivation of the
associated maximal invariants [48], [49].
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1) Maximal invariant for HQ versus HCη : It can be easily
proved that the sufficient statistic for this testing problem is
D̂Cη , and taking into account the invariance under invertible
conventional linear transformations, we can introduce a trans-
formation y[t] = FH1 x[t] such that R̂y,y = In and R̂y,y(η) is
a real diagonal matrix, where the entries in the diagonal are
given by the (ordered) sample canonical correlations [24], [62]
between the random vectors x and x(η).4 Thus, the n sample
canonical correlations constitute a maximal invariant (under
the group of invertible conventional linear transformations)
for testing HQ versus HCη . Moreover, it is straightforward to
prove that there exists a one-to-one correspondence between
the n sample canonical correlations and the eigenvalues of the
sample Rη-coherence matrix Φ̂Rη , i.e., we can consider the
eigenvalues of Φ̂Rη as the maximal invariant.

2) Maximal invariant for the Cη-Properness test: In this
case the sufficient statistic is R̂x̄,x̄, and taking into account the
invariance of the testing problem under invertible semi-widely
linear transformations, we can introduce a transformation
y[t] = FH1 x[t] + FHη x(η)[t] such that

R̂y,y = In, (29)

R̂y,y(η) = 0n×n, (30)

R̂y,y(η′) = Σ̂η′ = diag (ĉ1)− diag (ĉ2) , (31)

R̂y,y(η′′) = Σ̂η′′ = diag (ĉ1) + diag (ĉ2) , (32)

where ĉ =
[
ĉT1 , ĉ

T
2

]T ∈ R2n×1 are the (ordered) sample
canonical correlations between the complex vectors a =
[aT1 ,a

T
2 ]T and a∗, i.e., c contains the sample circularity

coefficients of the complex random vector a [34], [38], [42].
Thus, the maximal invariant is given by the diagonal matrices
Σ̂η′ , Σ̂η′′ , or by the sample circularity coefficients ĉ. More-
over, since there exists a one-to-one correspondence between
ĉ and the eigenvalues of the sample Cη-coherence matrix
Φ̂Cη (which are the same as those of Φ̂ã), we can use the
eigenvalues of Φ̂Cη (or Φ̂ã) as a maximal invariant.

3) Maximal invariant for the Q-Properness test: This case
is much more involved than the previous ones. Following the
previous lines, we can see that the sufficient statistic R̂x̄,x̄ can
be decomposed as[

F̃ 02n×2n

02n×2n F̃(η′)

]−H [
I2n Σ̃

Σ̃ I2n

][
F̃ 02n×2n

02n×2n F̃(η′)

]−1

,

(33)

with

F̃ =

[
F1 F

(η)
η

Fη F
(η)
1

]
, Σ̃ =

[
Σ̂η′ Σ̂η′′

Σ̂η′′ Σ̂η′

]
. (34)

Thus, introducing the transformation y[t] = FH1 x[t] and
defining G = F−1

1 Fη , we can see that a maximal invariant
(under invertible conventional linear transformations) for the
Q-properness test is given by{

Σ̂η′ , Σ̂η′′ ,G
}
, (35)

4In particular, the matrix F1 is given by F1 = R
−1/2
x,x U, where U is the

unitary matrix in the factorization of R
−1/2
x,x Rx,x(η)R

(η)
x,x

−1/2
provided by

Lemma 4.

TABLE II
LMPIT STATISTICS

Test Invariances Sample Size LMPIT statistic

HQ vs. HI FH1 x(a) T ≥ n
∥∥∥Φ̂Q

∥∥∥2

HCη vs. HI FH1 x + FHη x(η) T ≥ 2n
∥∥∥Φ̂Cη

∥∥∥2

HQ vs. HCη FH1 x T ≥ n
∥∥∥Φ̂Rη

∥∥∥2

i.e., 2n (ordered) sample canonical correlations and a quater-
nion matrix G ∈ Hn×n, which is unambiguously specified up
to individual products of its rows by unit quaternions in the
plane {1, η}.

Obviously, the above maximal invariant does not have
the nice form of those derived in the previous cases. In
particular, there is not a one-to-one correspondence between
the maximal invariant and the eigenvalues of the sample Q-
coherence matrix Φ̂Q. Moreover, although the consideration
of the invariance under quaternion rotations y = x(a) could
introduce a slight reduction in the degrees of freedom of the
quaternion matrix G, it is not enough for providing such an
elegant maximal invariant.

B. Locally Most Powerful Invariant Test (LMPITs)

Interestingly, although the derivation of the maximal invari-
ant in the case of the Q-properness test seems to be very
complicated, the three LMPITs can be directly obtained with
the help of the Wijsman’s theorem [50], [51], [54], [63],
[64], whose details are provided in the next section. Here, we
present the three LMPITs and analyze some of their properties
and connections with related problems.

The LMPITs, which are summarized in Table II, reject the
null (proper) hypothesis for high values of the test statistics.
As can be seen, all the test statistics are functions of the
eigenvalues of the associated sample coherence matrices,
which was obvious in the cases of testing HCη versus HI ,
and HQ versus HCη , but it was not clear (although intuitively
appealing) for the Q-properness test. Moreover, it can be seen
that the LMPITs require a lower number of vector samples
than their GLRT counterparts, and it is also easy to prove that
the LMPIT statistics never exceed 16n2.

As previously noted, the GLRTs for the Cη-properness of
x and the complex properness of a = [aT1 ,a

T
2 ]T coincide

[40], [42], [43], and the same happens with the LMPITs. In
particular, the LMPIT statistic for the complex properness of

a can be written as
∥∥∥Φ̂ã

∥∥∥2

[40], [43], and due to eq. (27) and

the unitarity of L, it is clear that
∥∥∥Φ̂Cη

∥∥∥2

=
∥∥∥Φ̂ã

∥∥∥2

. Thus,
as suggested by Lemma 5, the Cη-properness test reduces to
the problem of testing for the joint properness of the complex
vectors a1, a2 in the Cayley-Dickson representation x = a1 +
η′′a2.

The particular case of scalar quaternions x ∈ H also
provides some interesting insights.5 Specifically, in the scalar

5The careful reader will also note that in the scalar case the LMPITs require
T > 1.
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case we have R̂x̄,x̄ = 4T1R̂r,rT
H
1 and D̂Q = Tr(R̂r,r)I4,

and therefore the Q-properness GLRT and LMPIT statistics
can be rewritten as

P̂Q = −2 ln
|R̂r,r|1/4

Tr(R̂r,r)/4
, (36)

∥∥∥Φ̂Q

∥∥∥2

= 16

∥∥∥R̂r,r

∥∥∥2

Tr2(R̂r,r)
, (37)

which coincide with the GLRT [56] and LMPIT [57] statis-
tics for testing the sphericity of the real vector r =
[r1, rη, rη′ , rη′′ ]

T ∈ R4×1. Here, we must note an important
difference with the scalar complex case [40], [42], [43], which
consists in the fact that in the quaternion scalar case, the Q-
properness (and Cη-properness) GLRT and LMPIT do not
coincide. Finally, in the case of testing for the Q-properness
of the Cη-proper quaternion x ∈ H (HQ versus HCη ), the
GLRT and LMPIT coincide, and they amount to testing for
the sphericity of the proper complex vector a = [a1, a2]T .

Regarding the distribution of the LMPIT statistics, we must
note that, even in the complex [43] or the quaternion scalar
case [58], this is a very difficult problem beyond the scope of
this paper. However, analogously to the GLRT case [19], [47],
the invariance principle allows us to obtain the distributions of
the tests statistics under the null (proper) hypothesis by means
of simulations. As we will see in Section VI, the distributions
can be obtained from Gaussian data with Rx̄,x̄ = I4n, and
we only need to tabulate the results for different values of n
and T . On the other hand, if we focus on the null (proper)
hypothesis and asymptotically large sample sizes (T → ∞),
we will have sample coherence matrices close to the identity,
which allows us to relate the GLRT and LMPIT statistics as

P̂Q
HQ' 1

4

∥∥∥Φ̂Q

∥∥∥2

− n, (38)

P̂Cη
HCη' 1

4

∥∥∥Φ̂Cη
∥∥∥2

− n, (39)

P̂Rη
HQ' 1

4

∥∥∥Φ̂Rη
∥∥∥2

− n, (40)

where the notation 'H means approximated under the hy-
pothesis H and T → ∞. Thus, applying the Wilks’ theorem
to the GLRT statistics [19], [47], [65], we can obtain the
approximated distributions

T

2

(∥∥∥Φ̂Q

∥∥∥2

− 4n

)
HQ∼ χ2

dQ
, (41)

T

2

(∥∥∥Φ̂Cη
∥∥∥2

− 4n

)
HCη∼ χ2

dCη
, (42)

T

2

(∥∥∥Φ̂Rη
∥∥∥2

− 4n

)
HQ∼ χ2

dRη
, (43)

where ∼H means approximated distribution under the hypoth-
esisH and T →∞, χ2

d is a central chi-square distribution with
d degrees of freedom and [19], [47]

dRη =
1

2
dCη =

1

3
dQ = n(2n+ 1). (44)

Interestingly, due to the finite support [0, 16n2] of the
LMPIT statistics, the Wilks’ approximation (or any other

approximation with infinite support [0,∞]) is conservative,
which most statisticians consider preferable to the alternative,
described as liberal tests. In other words, for sufficiently
low nominal levels of the false alarm probability Pf , which
is defined as the probability of rejecting the null (proper)
hypothesis when it is true, the actual false alarm probability
of the LMPITs based on the Wilks’ approximation is lower
than its nominal level.

Finally, we must note that the LMPIT statistics do not
satisfy a relationship similar to that in eq. (25). However, from
eqs. (38)-(40), we can write∥∥∥Φ̂Q

∥∥∥2 HQ'
∥∥∥Φ̂Cη

∥∥∥2

+
∥∥∥Φ̂Rη

∥∥∥2

− 4n. (45)

Apart from the derivation of the LMPITs, it is important to
consider the existence of uniformly most powerful invariant
tests (UMPITs). From the derivation in the next section, it
is easy to conclude that the only binary hypothesis testing
problem for which a UMPIT exists is the problem of testing
whether the Cη-proper scalar quaternion x ∈ H is also Q-
proper. As previously pointed out, in this case the GLRT and
LMPIT coincide, and they are also equivalent to the UMPIT,
whose statistic is given by the absolute value of the sample
correlation coefficient (or canonical correlation [24], [62])
between x and x(η). This is not a surprising result because
we already knew that, for complex vectors, the UMPIT only
exists in the scalar case [40], [43]. Therefore, since the Cη-
properness test is equivalent to the problem of testing for
the complex properness of a = [aT1 ,a

T
2 ]T , it is clear that

there does not exist a Cη-properness UMPIT. On the other
hand, the Q-properness test can be seen as a problem more
complicated than the Cη-properness test, and therefore we
should not expect the existence of a Q-properness UMPIT,
which is corroborated by the results in the next section.

V. DERIVATION OF THE LMPITS

As previously pointed out, the key ingredient for the deriva-
tion of the LMPITs is provided by the Wijsman’s theorem
[50], [51], [54], [63], [64], which allows us to obtain the
ratio between the densities of the maximal invariants, not only
without the knowledge of the densities, but also without an
explicit expression for the maximal invariants. The key idea of
the Wijsman’s theorem consists in integrating over the group
describing the problem invariance. In particular, if we consider
a binary hypothesis testing problem with observations6 x ∈ S,
and invariant under the group G of linear transformations
y = Gx (G ∈ G), the Wijsman’s theorem states that the
ratio R(m̂) between the densities of the maximal invariant m̂
is given by

R(m̂) =
p(m̂;H1)

p(m̂;H0)
=

∫
G p(Gx;H1) |G| dG∫
G p(Gx;H0) |G| dG

, (46)

where p(·;H0) and p(·;H1) denote the densities of m̂ or x
under the null and alternative hypotheses, G is the Jacobian
of the transformation y = Gx, and dG is an invariant group

6Here, the vector x denotes the observations (or a sufficient statistic) of a
general testing problem, and should not be interpreted as a quaternion random
vector.
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measure, which in this paper can be considered as the usual
Lebesgue measure.

The idea of integrating over the group describing the
problem invariances was first introduced by Stein [55], and
the conditions for the validity of the Wijsman’s theorem have
been studied by several authors [41], [50], [52], [53], [63],
[66], [67]. For our purposes, it is sufficient to consider the
simplest conditions [63], which state that G is a Lie group,
and S is a linear Cartan G-space, i.e., it is a nonempty open
subset of the Euclidean space such that, for every x ∈ S,
there exists a neighborhood V for which the closure of
{G ∈ G : GV ∩ V 6= ∅} is compact.

The derivation of the three LMPITs follows the lines in
[40] for the complex case (see also [41]), and it is divided in
three main parts. Firstly, the density ratio is obtained by direct
application of the Wijsman’s theorem; secondly, the density
ratio is simplified for the case of very close null (proper) and
alternative hypotheses; finally, some straightforward algebra
allows us to solve the integrals and obtain the LMPIT statistics.

For the sake of space, here we focus on the most compli-
cated case, which is that of the Q-properness LMPIT. The
other two LMPITs are briefly commented in Subsection V-D,
but its complete derivation is left as an exercise for the
interested readers.

A. First Step: Ratio of Maximal Invariant Densities

As we have seen, the Q-properness test is invariant under the
group GQ of conventional linear transformations and quater-
nion rotations y = FH1 x(a). However, in order to simplify the
derivation of the LMPIT, we can avoid redundancies focusing
on right-Clifford translations, i.e., right products by a unit
quaternion a (|a| = 1), and conventional linear transformations

y = FH1 xa. (47)

Thus, taking into account the isomorphism between Hn×1 and
R4n×1, it is easy to prove that GQ is a Lie group and, for
T ≥ n quaternion vector observations x[t] (t = 0, . . . , T − 1),
the observation space S = Hn×T is a linear Cartan GQ-space.
Therefore, the direct application of the Wijsman’s theorem
allows us to write

RQ = R(Φ̂Q) = R(m̂Q) =
p(m̂Q;HI)

p(m̂Q;HQ)

=

∫
F1

∫
|a|=1

(∏T−1
t=0 pHI (FH1 x[t]a)

) ∣∣FH1 F1

∣∣2T dF1da∫
F1

∫
|a|=1

(∏T−1
t=0 pHQ(FH1 x[t]a)

) ∣∣FH1 F1

∣∣2T dF1da
,

(48)

where we have used the fact that the Jacobian of the right-
Clifford translation is one, and it has been explicitly stated
that the density ratio of the maximal invariant m̂Q can be
written as a function of the sample Q-coherence matrix Φ̂Q.

Denote now the augmented covariance matrix under the
two hypotheses as Rx̄,x̄(HQ) and Rx̄,x̄(HI). Then, thanks
to the invariance of the testing problem under invertible
quaternion linear transformations, we can assume without loss

of generality that R−1
x̄,x̄(HI) = Rz̄,z̄, with

Rz̄,z̄ =


In Rz,z(η) Rz,z(η′) Rz,z(η′′)

R
(η)

z,z(η) In R
(η)

z,z(η′′) R
(η)

z,z(η′)

R
(η′)

z,z(η′) R
(η′)

z,z(η′′) In R
(η′)

z,z(η)

R
(η′′)

z,z(η′′) R
(η′′)

z,z(η′) R
(η′′)

z,z(η) In

 , (49)

where the augmented quaternion vector z̄ is defined, under
the hypothesis HI , as z̄ = R−1

x̄,x̄(HI)x̄. Thus, using the
expression in (18) for the quaternion Gaussian distribution we
get7

RQ ∝

∫
F

∫
|a|=1

∣∣F∣∣T e−T2 <[Tr
(
R−1

x̄,x̄(HI)F
H
R̂ȳ,ȳF

)]
dFda∫

F

∫
|a|=1

∣∣F∣∣T e−T2 <[Tr
(
R−1

x̄,x̄(HQ)F
H
R̂ȳ,ȳF

)]
dFda

,

(50)

where F is the (block-diagonal) full-widely linear operator
associated to the conventional linear transformation, ∝ means
equality up to constant terms (0 in this case) and a scaling
factor (

∣∣R−1
x̄,x̄(HI)Rx̄,x̄(HQ)

∣∣T2 ) that does not depend on
the observations, and R̂ȳ,ȳ denotes the augmented sample
covariance matrix of the vector y = xa. Moreover, taking
into account the invariance of RQ under invertible linear
transformations, we can always introduce a transformation
such that the sample covariance matrix of x is R̂x,x = In,
which also implies R̂y,y = In, and allows us to replace R̂x̄,x̄

by Φ̂Q without loss of generality. Thus, we have

RQ ∝

∫
F

∫
|a|=1

∣∣F∣∣T e−T2 <[Tr
(
R−1

x̄,x̄(HI)F
H
R̂ȳ,ȳF

)]
dFda∫

F

∫
|a|=1

∣∣F∣∣T e−T2 <[Tr
(
R−1

x̄,x̄(HQ)F
H
F
)]
dFda

,

(51)

and since the denominator does not depend on the observations
we can write

RQ ∝
∫
F

∫
|a|=1

∣∣F∣∣T e−T2 <[Tr
(
R−1

x̄,x̄(HI)F
H
R̂ȳ,ȳF

)]
dFda,

(52)

or equivalently

RQ ∝
∫
F1

∫
|a|=1

∣∣FH1 F1

∣∣2T e−2TTr(FH1 F1)e−2T θ̂adF1da,

(53)
where θ̂a = θ̂η,a + θ̂η′,a + θ̂η′′,a, and

θ̂ν,a = <
[
Tr
(
R

(ν)

z,z(ν)F
H
1 R̂y,y(ν)F

(ν)
1

)]
, (54)

for all pure unit quaternions ν.

B. Second Step: Approximation for Rz̄,z̄ ≈ I4n

The ratio of maximal invariant densities in (53) provides the
test statistic for the most powerful invariant test (MPI). How-
ever, the density ratio depends on the unknown parameters in
Rz̄,z̄ through the coefficient θ̂a, which precludes the obtention

7Note that the real operator in the exponents are due to the non-
commutativity of the quaternion product. Alternatively, we could write
<
[

Tr
(
R−1

x̄,x̄F
H

R̂ȳ,ȳF
)]

= Tr
(
R
−1/2
x̄,x̄ F

H
R̂ȳ,ȳFR

−1/2
x̄,x̄

)
.
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TABLE III
EFFECT OF RIGHT-CLIFFORD TRANSLATIONS ON THE COEFFICIENTS θ̂ν,a

Right-Clifford Translations Coefficients

x[t] θ̂η,a θ̂η′,a θ̂η′′,a
x[t]η θ̂η,a −θ̂η′,a −θ̂η′′,a
x[t]η′ −θ̂η,a θ̂η′,a −θ̂η′′,a
x[t]η′′ −θ̂η,a −θ̂η′,a θ̂η′′,a

of a uniformly most powerful invariant test (UMPIT). Here,
we focus on the challenging case in which the null (HQ)
and alternative (HI) hypotheses are very close. That is, we
assume Rz̄,z̄ ≈ I4n and apply a second-order Taylor’s series
approximation to the second exponential in (53)

e−2T θ̂a ≈ 1− 2T θ̂a + 2T 2θ̂2
a, (55)

which yields

RQ ∝
∫
F1

∫
|a|=1

∣∣FH1 F1

∣∣2T e−2TTr(FH1 F1)
(
T θ̂2

a − θ̂a
)
dF1da.

(56)
Now, taking into account y = xa, and using the result in

Lemma 2, it is easy to prove that R̂y,y(ν) = R̂
x,x(ν(a))ν

(a)ν∗

and, as a consequence

θ̂ν,a = <
[
Tr
(
Rz,z(ν)ν∗FH1 R̂

x,x(ν(a))ν
(a)F1

)]
. (57)

This allows us to obtain the results in Table III, which
summarizes the effects on the coefficients θ̂ν,a, of some right-
Clifford translations x[t]ν of the observations. Furthermore,
thanks to the invariance under right-Clifford translations, the
vector observations x[t] can be replaced by x[t]ν without
changing the density ratio RQ. Thus, averaging the expressions
in (56) for the right-Clifford translations in Table III, we can
get rid of the linear and cross-product terms and obtain

RQ ∝ µη + µη′ + µη′′ , (58)

where

µν =

∫
F1

∫
|a|=1

θ̂2
ν,a

∣∣FH1 F1

∣∣2T e−2TTr(FH1 F1)dF1da. (59)

C. Third Step: Integrals for the Coefficients µν
At this point, the problem reduces to solve the integrals

in (59). In order to do that, let us start by focusing on
the coefficients θ̂ν,a, and using the unitary factorization (see
Lemma 4) of the matrices Rz,z(ν) and R̂

x,x(ν(a)) to write

Rz,z(ν)ν∗ = QΛνQH R̂
x,x(ν(a))ν

(a) = Q̂Λ̂νQ̂H , (60)

where Q, Q̂ ∈ Hn×n are unitary matrices, and Λ, Λ̂ ∈ Rn×n
are diagonal matrices with the singular values λk, λ̂k ∈ R in
their diagonal entries.

Due to the unitarity of Q, Q̂, these matrices can be absorbed
in F1 without changing the integral in (59), which yields

θ̂ν,a =

n∑
k=1

n∑
l=1

λkλ̂l<
(
νf∗k,lνfk,l

)
, (61)

where fk,l is the entry in the k-th row and l-th column of F1.
Thus, (59) can be rewritten as

µν = ε

n∑
k=1

λ2
k

∫
|a|=1

n∑
k=1

λ̂2
kda

= ε
∥∥Rz,z(ν)

∥∥2
∫
|a|=1

∥∥∥R̂
x,x(ν(a))

∥∥∥2

da, (62)

where

ε =

∫
F1

∣∣FH1 F1

∣∣2T e−2TTr(FH1 F1)
[
<
(
νf∗k,lν

(a)fk,l

)]2
dF1.

(63)
Furthermore, a simple change of the integration variable allows
us to conclude that the integral in (62) does not depend on ν,
i.e.,

β = β(ν) =

∫
|a|=1

∥∥∥R̂
x,x(ν(a))

∥∥∥2

da, (64)

which yields β = (β(η)+β(η′)+β(η′′))/3, and using Lemmas

2 and 3 we can write β ∝
∥∥∥R̂x̄,x̄

∥∥∥2

. Finally, taking into
account that we have introduced a linear transformation such
that R̂x,x = In, and combining eqs. (58), (59) and (62),
we obtain the Q-properness LMPIT statistic, i.e., the ratio of
maximal invariant densities for close hypotheses HQ and HI
is

RQ ∝
∥∥∥Φ̂Q

∥∥∥2

. (65)

D. Derivation of the Remaining LMPITs
As previously noted, the derivation of the remaining

LMPITs follows the lines in the previous subsections. Here,
the principal details are briefly summarized.

1) Ratio of Maximal Invariant Densities: The group of
transformations for the Cη-properness test (respectively for
the problem of testing HQ versus HηC) consists in invertible
semi-widely linear transformations GCη (resp. invertible con-
ventional linear transformations GRη ). For the application of
the Wijsman’s theorem, we need the observation space S to
be a linear Cartan GCη - (resp. GRη -) space, which is satisfied
iff T ≥ 2n (resp. T ≥ n). Under these conditions, the
counterparts of eqs. (53) and (54) for the Cη-properness test
are

RCη =
p(m̂Cη ;HI)

p(m̂Cη ;HCη )
∝
∫
F̃

∣∣∣F̃HF̃
∣∣∣T e−TTr(F̃H F̃)e−T θ̂Cη dF̃,

(66)

θ̂Cη = <
[
Tr
(
R

(η′)

z̃,z̃(η′)F̃
HR̂x̃,x̃(η′)F̃(η′)

)]
, (67)

where the invertible semi-widely linear operator F̃ is defined
in (34), x̃ = [xT ,x(η)T ]T was defined in (26) as the semi-
augmented quaternion vector, z̄ = [z̃T , z̃(η′)T ]T , and we have
introduced an invertible semi-widely linear transformation
such that Rz̃,z̃ = I2n, with Rz̄,z̄ = R−1

x̄,x̄(HI). Analogously,
for the problem of testing HQ versus HCη

RRη =
p(m̂Rη ;HCη )

p(m̂Rη ;HQ)

∝
∫
F1

∣∣FH1 F1

∣∣2T e−2TTr(FH1 F1)e−2T θ̂Rη dF1, (68)

θ̂Rη = <
[
Tr
(
R

(η)

z,z(η)F
H
1 R̂x,x(η)F

(η)
1

)]
, (69)
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Fig. 1. Cumulative distribution function of the normalized statistics
for testing HQ versus HCη . Hypothesis HQ and n = 10. Dash-dotted
line: Wilks’ asymptotic approximation. Red solid line: normalized LMPIT
T/2(‖Φ̂Rη‖2 − 4n). Blue dashed line: normalized GLRT statistic 2T P̂Rη .

where now Rz̄,z̄ = R−1
x̄,x̄(HCη ) and Rz,z = In.

2) Approximation for Rz̄,z̄ ≈ I4n: The second step is
significatively easier. It should be noted that now we only
have one term (θ̂Cη or θ̂Rη ) instead of the three (θ̂η,a, θ̂η′,a
and θ̂η′′,a) for the Q-properness test. Therefore, we do not
have cross-products of integrals, and it is easy to prove that
the linear terms in the second-order Taylor’s approximations
vanish. Thus, the counterparts of eqs. (58) and (59) are

RCη ∝
∫
F̃

θ̂2
Cη
∣∣∣F̃HF̃

∣∣∣T e−TTr(F̃H F̃)dF̃, (70)

RRη ∝
∫
F1

θ̂2
Rη
∣∣FH1 F1

∣∣2T e−2TTr(FH1 F1)dF1. (71)

Furthermore, it is easy to see that in the scalar case, θ̂Rη (and
therefore also RRη ) is proportional to R̂x,x(η) , which reduces
to the sample canonical correlation (the absolute value of the
sample correlation coefficient) between x and x(η). This means
that the UMPIT for testing HQ versus HCη coincides with the
GLRT and LMPIT, and it reduces to the comparison of this
sample canonical correlation with a threshold.

3) Solution of the Integrals: Finally, the solutions of the
integrals in eqs. (70) and (71) follow the lines in Subsection
V-C and, as expected, the final expressions for the two density
ratios are

RCη ∝
∥∥∥Φ̂Cη

∥∥∥2

, RRη ∝
∥∥∥Φ̂Rη

∥∥∥2

. (72)

VI. NUMERICAL EXAMPLES

The performance of the proposed tests is illustrated in this
section by means of some Monte Carlo simulations, which
have been obtained with the help of the Matlabr quaternion
Toolbox [68]. In particular, all the examples are based on
T i.i.d. realizations of a zero-mean n-dimensional quaternion
Gaussian vector with the appropriate SOS.
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Fig. 2. Cumulative distribution function of the normalized statistics
for the Cη-properness test. Hypothesis HCη and n = 10. Dash-dotted
line: Wilks’ asymptotic approximation. Red solid line: normalized LMPIT
T/2(‖Φ̂Cη‖2 − 4n). Blue dashed line: normalized GLRT statistic 2T P̂Cη .

A. Null Distributions and Critical Regions

Analogously to the complex case [42], [43], the invariance
of the testing problems under invertible conventional (or semi-
widely) linear transformations can be directly exploited to
obtain, by means of simulations with Rx̄,x̄ = I4n, the distribu-
tions of the test statistics under the null (proper) hypothesis.
As an example, Figs. 1-3 show the cumulative distribution
functions (CDFs), for n = 10 and different sample sizes T ,
of the normalized LMPIT and GLRT statistics. The figures
also show the approximated asymptotic distributions provided
in eqs. (41)-(43), which corroborates the accuracy and the
conservative nature of the Wilks’ approach, i.e., for sufficiently
large values of the test statistic, the Wilks’ approximation can
be seen as a lower bound for the actual distribution. From
these figures, it is easy to obtain the thresholds γRη , γCη , γQ
(or critical regions) for a fixed false alarm probability Pf . In
particular, Tables IV-VI show the thresholds of the LMPITs
for different values of n, T and Pf .

B. Receiver Operating Characteristic Curves (ROCs)

In order to compare the performance of the LMPITs and
GLRTs, we consider an additional example with n = 10
and SOS as specified in Table VII. The ROC curves for
different sample sizes (T ) are shown in Figs. 4-6, where we
can see that the LMPITs outperform their GLRT counterparts.
Interestingly, although there is only a slight difference in the
two first testing problems,8 the difference is more noticeable in
the Q-properness test. Moreover, it is clear that the advantage
of the LMPITs decreases with the sample size (T ), which can
be seen as a direct consequence of the assumption T θ̂a ≈ 0
made in the second-order Taylor’s approximation in eq. (55)
(equivalently in eqs. (70) and (71)). That is, as T (or the
theoretical improperness) increases, the approximation in (55)

8A similar observation was made in [43] for the problem of testing the
properness of a complex vector.
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TABLE IV
CRITICAL VALUES γRη FOR THE HQ VERSUS HCη LMPIT.

n Pf T = 40 T = 60 T = 80 T = 100

0.1 4.3080 4.2065 4.1542 4.1249
1 0.05 4.3796 4.2559 4.1922 4.1552

0.01 4.5355 4.3663 4.2754 4.2243

0.1 8.7732 8.5217 8.3932 8.3149
2 0.05 8.8757 8.5924 8.4475 8.3584

0.01 9.0888 8.7468 8.5614 8.4497

0.1 18.2704 17.5346 17.1563 16.9303
4 0.05 18.4284 17.6457 17.2430 17.0003

0.01 18.7454 17.8670 17.4131 17.1395

0.1 28.5291 27.0619 26.3086 25.8553
6 0.05 28.7362 27.2113 26.4273 25.9506

0.01 29.1301 27.5054 26.6527 26.1365

0.1 39.5497 37.1062 35.8589 35.0987
8 0.05 39.8015 37.2912 36.0023 35.2169

0.01 40.2673 37.6435 36.2761 35.4492

0.1 51.3463 47.6636 45.7927 44.6524
10 0.05 51.6236 47.8772 45.9633 44.7933

0.01 52.1522 48.2831 46.2818 45.0590

TABLE V
CRITICAL VALUES γCη FOR THE Cη -PROPERNESS LMPIT.

n Pf T = 40 T = 60 T = 80 T = 100

0.1 4.5058 4.3431 4.2603 4.2085
1 0.05 4.5869 4.4018 4.3045 4.2449

0.01 4.7536 4.5204 4.4000 4.3226

0.1 9.3388 8.9106 8.6895 8.5546
2 0.05 9.4540 8.9939 8.7539 8.6079

0.01 9.6875 9.1617 8.8882 8.7167

0.1 20.1061 18.7985 18.1243 17.7085
4 0.05 20.2779 18.9313 18.2295 17.7967

0.01 20.6177 19.1887 18.4322 17.9697

0.1 32.3714 29.7046 28.3250 27.4872
6 0.05 32.5941 29.8738 28.4656 27.6032

0.01 33.0104 30.2059 28.7307 27.8339

0.1 46.1358 41.6334 39.3039 37.8826
8 0.05 46.3818 41.8480 39.4823 38.0293

0.01 46.8472 42.2286 39.8055 38.3108

0.1 61.3873 54.5712 51.0530 48.9045
10 0.05 61.6485 54.8021 51.2510 49.0720

0.01 62.1150 55.2275 51.6185 49.3896

TABLE VI
CRITICAL VALUES γQ FOR THE Q-PROPERNESS LMPIT.

n Pf T = 40 T = 60 T = 80 T = 100

0.1 4.7193 4.4832 4.3621 4.2909
1 0.05 4.8263 4.5562 4.4172 4.3341

0.01 5.0653 4.7186 4.5358 4.4284

0.1 9.9599 9.3208 8.9937 8.7971
2 0.05 10.1269 9.4307 9.0782 8.8670

0.01 10.4571 9.6574 9.2514 9.0066

0.1 22.1940 20.1686 19.1415 18.5154
4 0.05 22.4625 20.3561 19.2855 18.6327

0.01 22.9937 20.7132 19.5709 18.8641

0.1 36.7460 32.5787 30.4612 29.1841
6 0.05 37.1098 32.8305 30.6547 29.3452

0.01 37.8063 33.3194 31.0351 29.6567

0.1 53.6284 46.5538 42.9674 40.8030
8 0.05 54.0729 46.8749 43.2157 41.0089

0.01 54.8952 47.4747 43.6898 41.4068

0.1 72.8242 62.1021 56.6590 53.3605
10 0.05 73.3321 62.4772 56.9543 53.6069

0.01 74.2717 63.1714 57.5134 54.0752
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Fig. 3. Cumulative distribution function of the normalized statistics for
the Q-properness test. Hypothesis HQ and n = 10. Dash-dotted line: Wilks’
asymptotic approximation. Red solid line: normalized LMPIT T/2(‖Φ̂Q‖2−
4n). Blue dashed line: normalized GLRT statistic 2T P̂Q.

TABLE VII
SECOND-ORDER STATISTICS FOR THE SIMULATION EXAMPLES

Rx,x Rx,x(η) R
x,x(η′) R

x,x(η′′)

HI I10 0.2I10 0.2I10 0.2I10

HCη I10 0.2I10 010×10 010×10

HQ I10 010×10 010×10 010×10

becomes less accurate, and the GLRTs could even outperform
the LMPITs.

VII. CONCLUSIONS

This paper has addressed the problem of testing the proper-
ness of a quaternion random vector. Focusing on the two
main kinds of quaternion properness, three different binary
hypothesis testing problems have been considered, and the
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Fig. 4. Receiver Operating Characteristic. HQ versus HCη tests. n = 10
and SOS as specified in Table VII.
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Fig. 5. Receiver Operating Characteristic. Cη-properness tests. n = 10 and
SOS as specified in Table VII.
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Fig. 6. Receiver Operating Characteristic. Q-properness tests. n = 10 and
SOS as specified in Table VII.

respective locally most powerful invariant tests (LMPITs) have
been presented. Interestingly, even though there is not a simple
expression for the maximal invariant of the most complicated
testing problem (Q-properness test), the LMPITs can be ob-
tained thanks to the Wijsman’s theorem. The proposed tests
result in simple detection rules based on the Frobenius norm of
three previously defined coherence matrices. Furthermore, we
have analyzed the connections with the generalized likelihood
ratio tests (GLRTs), with the problem of testing for the
properness of a complex vector, and with the sphericity tests
for four-dimensional real (or two-dimensional proper complex)
vectors. Finally, some numerical examples have shown that
the LMPITs generally outperform their GLRT counterparts,
and the performance gain is especially noticeable for small
sample sizes and the Q-properness test.
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VÍA AND VIELVA: LOCALLY MOST POWERFUL INVARIANT TESTS FOR THE PROPERNESS OF QUATERNION RANDOM VECTORS 13

[25] N. N. Vakhania, “Random vectors with values in quaternion Hilbert
spaces,” Theory of Probability and its Applications, vol. 43, no. 1, pp.
99–115, 1999.

[26] P. Amblard and N. Le Bihan, “On properness of quaternion valued
random variables,” in IMA Conference on Mathematics in Signal Pro-
cessing, Cirencester (UK), 2004, pp. 23–26.

[27] C. C. Took and D. P. Mandic, “Augmented second-order statistics of
quaternion random signals,” Signal Processing, vol. 91, no. 2, pp. 214–
224, Feb. 2011.

[28] F. Neeser and J. Massey, “Proper complex random processes with
applications to information theory,” IEEE Transactions on Information
Theory, vol. 39, no. 4, pp. 1293–1302, Jul 1993.

[29] B. Picinbono, “On circularity,” IEEE Transactions on Signal Processing,
vol. 42, no. 12, pp. 3473–3482, Dec. 1994.

[30] B. Picinbono and P. Chevalier, “Widely linear estimation with complex
data,” IEEE Transactions on Signal Processing, vol. 43, no. 8, pp. 2030–
2033, Aug 1995.

[31] A. van den Bos, “The multivariate complex normal distribution-a gen-
eralization,” IEEE Transactions on Information Theory, vol. 41, no. 2,
pp. 537–539, Mar 1995.

[32] P. Schreier and L. Scharf, “Second-order analysis of improper complex
random vectors and processes,” IEEE Transactions on Signal Processing,
vol. 51, no. 3, pp. 714–725, March 2003.

[33] P. Schreier, L. Scharf, and C. Mullis, “Detection and estimation of
improper complex random signals,” IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 306–312, Jan. 2005.

[34] J. Eriksson and V. Koivunen, “Complex random vectors and ICA
models: identifiability, uniqueness, and separability,” IEEE Transactions
on Information Theory, vol. 52, no. 3, pp. 1017–1029, Mar. 2006.

[35] P. Schreier, “A unifying discussion of correlation analysis for complex
random vectors,” IEEE Transactions on Signal Processing, vol. 56, no. 4,
pp. 1327–1336, April 2008.

[36] E. Ollila, “On the circularity of a complex random variable,” IEEE
Signal Processing Letters, vol. 15, pp. 841–844, 2008.

[37] P. J. Schreier and L. L. Scharf, Statistical signal processing of complex-
valued data: the theory of improper and noncircular signals. Cam-
bridge: Cambridge University Press, 2010.

[38] J. Eriksson, E. Ollila, and V. Koivunen, “Essential statistics and tools for
complex random variables,” IEEE Transactions on Signal Processing,
vol. 58, no. 10, pp. 5400–5408, Oct. 2010.

[39] J.-P. Delmas, A. Oukaci, and P. Chevalier, “Asymptotic distribution
of GLR for impropriety of complex signals,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2010),
Mar. 2010, pp. 3594 –3597.

[40] S. A. Andersson and M. D. Perlman, “Two testing problems relating
the real and complex multivariate normal distribution,” Journal of
Multivariate Analysis, vol. 15, no. 1, pp. 21–51, 1984.

[41] R. A. Wijsman, “Invariant measures on groups and their use in statistics,”
in Lecture Notes–Monograph Series. Hayward, CA: Institute of
Mathematical Statistics, 1990, vol. 14.

[42] P. Schreier, L. Scharf, and A. Hanssen, “A generalized likelihood ratio
test for impropriety of complex signals,” IEEE Signal Processing Letters,
vol. 13, no. 7, pp. 433–436, July 2006.

[43] A. Walden and P. Rubin-Delanchy, “On testing for impropriety of
complex-valued Gaussian vectors,” IEEE Transactions on Signal Pro-
cessing, vol. 57, no. 3, pp. 825–834, March 2009.

[44] E. Ollila and V. Koivunen, “Generalized complex elliptical distributions,”
in IEEE Sensor Array and Multichannel Signal Processing Workshop
(SAM 2004), July 2004, pp. 460–464.

[45] ——, “Adjusting the generalized likelihood ratio test of circularity
robust to non-normality,” in IEEE 10th Workshop on Signal Processing
Advances in Wireless Communications (SPAWC 2009), June 2009, pp.
558–562.

[46] M. Novey, T. Adalı, and A. Roy, “Circularity and Gaussianity detection
using the complex generalized Gaussian distribution,” IEEE Signal
Processing Letters, vol. 16, no. 11, pp. 993–996, Nov. 2009.

[47] P. Ginzberg and A. T. Walden, “Testing for Quaternion propriety,” IEEE
Transactions on Signal Processing, vol. 59, no. 7, pp. 3025–3034, July
2011.

[48] E. L. Lehmann and J. P. Romano, Testing Statistical Hypothesis, 3rd ed.
New York: Springer, 2005.

[49] L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time
Series Analysis. New York: Addison-Wesley, 1991.

[50] M. L. Eaton, Group Invariance Applications in Statistics. Inst. Math.
Statist. Amer. Statist. Assoc., 1989.

[51] N. C. Giri, Multivariate Statistical Analysis: Revised And Expanded,
2nd ed. CRC Press, 2003.

[52] R. A. Wijsman, “Proper action in steps, with application to density ratios
of maximal invariants,” Annals of Statistics, vol. 13, no. 1, pp. 395–402,
1985.

[53] ——, “Correction: Proper action in steps, with application to density
ratios of maximal invariants,” Annals of Statistics, vol. 21, no. 4, pp.
2168–2169, 1993.

[54] J. Gabriel and S. Kay, “Use of Wijsman’s theorem for the ratio of
maximal invariant densities in signal detection applications,” in Thirty-
Sixth Asilomar Conference on Signals, Systems and Computers, vol. 1,
Nov. 2002, pp. 756–762.

[55] C. Stein, “Some problems in multivariate analysis, part 1,” Dept. Statist.,
Stanford Univ., Tech. Rep., 1956.

[56] J. Mauchly, “Significance test for sphericity of a normal n-variate
distribution,” Ann. Math. Statist., vol. 11, pp. 204–209, 1940.

[57] S. John, “Some optimal multivariates tests,” Biometrika, vol. 58, no. 1,
pp. 123–127, 1971. [Online]. Available: http://www.jstor.org/stable/
2334322

[58] ——, “The distribution of a statistic used for testing sphericity of
normal distributions,” Biometrika, vol. 59, no. 1, pp. 169–173, 1972.
[Online]. Available: http://www.jstor.org/stable/2334628

[59] J. P. Ward, Quaternions and Cayley numbers: Algebra and applications.
Dordrecht, Netherlands: Kluwer Academic, 1997.

[60] C. C. Took, D. P. Mandic, and F. Zhang, “On the unitary diagonalisation
of a special class of quaternion matrices,” Applied Mathematics Letters,
vol. 24, no. 11, pp. 1806–1809, 2011.

[61] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, UK:
Cambridge University Press, 1985.

[62] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, pp. 321–377, 1936.

[63] R. A. Wijsman, “Cross-sections of orbits and their application to
densities of maximal invariants,” in Fifth Berkeley Symp. Math. Statist.
Probability, vol. 1, 1967, pp. 389 – 400.

[64] J. Gabriel and S. Kay, “On the relationship between the GLRT and
UMPI tests for the detection of signals with unknown parameters,” IEEE
Transactions on Signal Processing, vol. 53, no. 11, pp. 4194–4203, Nov.
2005.

[65] G. A. Young and R. L. Smith, Essentials of Statistical Inference.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[66] S. Andersson, “Distributions of maximal invariants using quotient
measures,” The Annals of Statistics, vol. 10, no. 3, pp. 955–961, 1982.
[Online]. Available: http://www.jstor.org/stable/2240918

[67] S. Andersson, H. Brøns, and S. Tolver Jensen, “Distribution of eigenval-
ues in multivariate statistical analysis,” The Annals of Statistics, vol. 11,
pp. 392–415, 1983.

[68] S. J. Sangwine and N. Le Bihan, “Quaternion Toolbox for Matlab R©,”
[Online], 2005, software library available at: http://qtfm.sourceforge.net/.

Javier Vı́a (S’04-M’08) received his Telecommuni-
cation Engineer Degree and his Ph.D. in electrical
engineering from the University of Cantabria, Spain
in 2002 and 2007, respectively. In 2002 he joined
the Department of Communications Engineering,
University of Cantabria, Spain, where he is currently
Associate Professor. He has spent visiting periods
at the Smart Antennas Research Group of Stanford
University, and at the Department of Electronics
and Computer Engineering (Hong Kong University
of Science and Technology). Dr. Vı́a has actively

participated in several European and Spanish research projects. His current
research interests include blind channel estimation and equalization in wireless
communication systems, multivariate statistical analysis, quaternion signal
processing and kernel methods.



14 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 3, MARCH 2012

Luis Vielva was born in Santander, Spain, in 1966.
He received his Licenciado degree in Physics and his
Ph.D. in Physics from the University of Cantabria,
Spain. In 1989 he joined the Departamento de Inge-
niera de Comunicaciones, Universidad de Cantabria,
Spain, where he is currently an Associate Professor.
His current research interests include systems biol-
ogy, convex optimization and geometric algebra.


