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Abstract—In this paper, a new deterministic technique for blind
equalization of multiple-input multiple-output (MIMO) channels
is presented. The proposed method relies on the channel order di-
versity of the finite impulse response-MIMO channel, and it does
not make any assumption about the spectra or the finite alphabet
property of the sources. Assuming that the lengths of the single-
input multiple-output channels are known or estimated a priori, it
is able to extract the sources up to a scale and rotation matrix ambi-
guity, which only affects to those sources associated to single-input
multiple-output (SIMO) channels with equal lengths. Unlike pre-
viously proposed techniques, the method described in this paper
obtains the equalizers and the best linear combination of their out-
puts in a single step and, thus, optimally. The reformulation of the
proposed method as a set of nested canonical correlation analysis
problems is exploited to obtain efficient batch and adaptive equal-
ization algorithms. Finally, the performance of the proposed algo-
rithms is evaluated by means of some simulation examples.

Index Terms—Blind equalization, blind source separation (BSS),
canonical correlation analysis (CCA), channel order diversity, con-
volutive mixtures, multiple-input multiple-output (MIMO).

I. INTRODUCTION

BLIND equalization of finite impulse response (FIR) mul-
tiple-input multiple-output (MIMO) channels is a common

problem encountered in wireless and mobile communications.
Although a number of methods based on higher-order statistics
(HOS) have been successfully applied [1]–[4], it is well known
that, under mild assumptions on the source signals and on the
FIR channels, second-order statistics (SOS) are sufficient for
blind equalization [4], [5].

Blind equalization methods can be divided into indirect
approaches [6]–[11], if they are based on the previous estimate
of the MIMO channel, or direct approaches [12]–[22], which
can be used in adaptive environments avoiding the process
of channel inversion. Additionally, blind channel equaliza-
tion methods can be considered as stochastic or deterministic
techniques. The stochastic methods are based on the estimate
of the correlation matrices of the observations and typically
make some assumptions about the input, such as source signals
with power spectra which are either known [1], [8], [11],
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[16]–[19], [22]–[27], or different [9], [28], [29]. This implies
that the stochastic methods need a relatively large number
of observations to get accurate estimates. On the other hand,
the deterministic techniques are solely based on the subspace
decomposition of the received data matrices and, in the absence
of noise, they are able to obtain exact estimates within a finite
number of observations. Unfortunately, most of the SOS-based
deterministic techniques have been proposed only for SIMO
channels [6], [15], [30]–[33].

In this paper, the problem of SOS-based deterministic direct
blind equalization of MIMO channels is considered. The pro-
posed criterion is based on the property of channel order diver-
sity, which has recently been exploited to derive blind MIMO
channel estimation [10], [34] and equalization techniques [35],
[36], without making any assumption about the spectra of the
sources. Specifically, assuming that the SIMO channel orders
are known or estimated a priori [25], [34], the proposed criterion
is able to extract the sources with the only ambiguity of a scale
factor and a rotation matrix affecting those signals distorted by
SIMO channels of the same order. As a consequence, the pro-
posed technique extends the results in [35], where only the sig-
nals affected by the longest SIMO channel were extracted. If
several SIMO channels of exactly the same order appear (which
is a very unlikely situation in practice), the remaining ambi-
guity could be solved by resorting to the HOS of the sources.
Finally, for those SIMO channels whose length is different from
the remaining ones, the proposed criterion extracts the associ-
ated source signal with the only ambiguity of a scale factor.

The solution of the proposed criterion is given by a set of
nested canonical correlation analysis (CCA) problems. CCA is a
well-known technique in multivariate statistical analysis to find
maximally correlated projections between two data sets, and it
has been widely used in communications and statistical signal
processing problems [37]–[41].

The proposed technique is equivalent to the maximum
variance (MAXVAR) generalization of CCA to several data
sets [42]–[44]. The CCA-MAXVAR method was proposed by
Kettenring [42] and it is closely related to principal component
analysis (PCA). The solution of the CCA-MAXVAR problem
can be directly obtained from a generalized eigenvalue (GEV)
problem [45], [46]. However, the reformulation of CCA as
a set of coupled least squares (LS) regression problems has
recently been exploited to derive efficient batch and adaptive
CCA algorithms [45], [46]. A direct application of these CCA
algorithms yields simple, and online blind MIMO equalization
algorithms.

The deterministic nature of the proposed algorithms allows
us to exactly recover the signals in the absence of noise within
a finite number of observations. Furthermore, unlike previous
techniques [12]–[15], the proposed method obtains, in a single
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Fig. 1. MIMO system.

step, the set of equalizers and the best combination of their out-
puts with respect to a PCA criterion. This property is directly
related with the interpretation of the obtained equalizers as es-
timates of the minimum mean square error (MMSE) solutions,
unlike the typical zero-forcing (ZF) equalizers obtained in other
SIMO [12]–[15], [22] and MIMO [17], [20] equalization tech-
niques. Thus, the proposed method avoids the noise enhance-
ment problem commonly associated to the ZF solutions.

The paper is structured as follows. The problem of blind
equalization of MIMO systems and the main assumptions are
presented in Section II. The proposed blind equalization crite-
rion is introduced in Section III and its equivalence to a set of
nested CCA problems is pointed out in Section IV. In Section V,
the proposed blind MIMO equalization procedure is outlined
and its relationship with previously proposed techniques is
discussed. Finally, the performance of the proposed algorithms
is evaluated in Section VI by means of some simulations, and
the main conclusions are summarized in Section VII.

II. BLIND EQUALIZATION OF MIMO CHANNELS

A. Notation and Data Model

Throughout this paper, we will use bold-faced upper case let-
ters to denote matrices, e.g., , with elements ; bold-faced
lower case letters for column vector, e.g., , and light-faced
lower case letters for scalar quantities. The superscripts and

denote transpose and Hermitian, respectively. The super-
script will denote estimated matrices, vectors or scalars. The
Frobenius norm of a matrix will be denoted as . and

will denote the identity and zero matrices of the required di-
mensions. Finally, will denote the convolution operator.

Suppose the noise free system shown in Fig. 1, where
the signals , are the outputs of an un-
known -input/ -output FIR system driven by signals

. Assuming an FIR-MIMO channel of length
, the input-output relationship can be expressed as

where is the vector of observations,
is the input signal and

is the discrete-time channel matrix defined as

...
. . .

...

where , , denotes the channel response
between the th transmit and th receive antennas. The transfer
function associated to the above model is

Stacking successive observations into the vector
, we obtain

(1)

where denotes the FIR-SIMO channel of length associated
to the th source signal, ,
and

...
. . .

. . .
. . .

...

is the filtering matrix associated to the th
FIR-SIMO channel. Equation (1) can be expressed in a more
compact form as

(2)

where , and
is the MIMO channel filtering matrix.

B. Main Assumptions

The formulation given by (2), which is known as the
slide-window formulation [4, Ch. 4], has typically been used to
develop different blind identification/equalization algorithms.
Common assumptions or constraints imposed to eliminate the
inherent ambiguities of the problem in the FIR-MIMO case are
the following:

• full column rank of the filtering matrix : [7],
[10]–[15], [18]–[22], [28], [33], [47], [48];

• spatially uncorrelated and white source signals: [1], [8],
[11], [16], [17], [22]–[27];

• spatially uncorrelated source signals with known power
spectra: [18], [19];

• spatially uncorrelated source signals with different power
spectra: [9], [28], [29];

• previous knowledge (at least partially) of the HOS of the
sources: [1]–[3], [23], [33], [48].

Unlike the previous assumptions, in this work, we resort
to the channel order diversity of the MIMO channel (i.e.,
different SIMO channel orders). The channel order diversity
has recently been exploited in [10], [11], [34], [35]. However,
most of these techniques are stochastic approaches that only
consider the identification problem [10], [11], [34]. Blind
equalization exploiting the channel order diversity is studied
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in [35], although this work only considers the extraction of the
signals affected by the longest SIMO channel. Moreover, none
of these techniques are suited for adaptive implementations.
In this paper, the channel order diversity is exploited to obtain
deterministic batch and adaptive blind equalization algorithms
for FIR-MIMO channels.

Specifically, the assumptions of the proposed criterion are the
following.

Condition 1 (MIMO Channel): The MIMO channel fil-
tering matrix is full column rank.
Condition 2 (Source signals): The source signals are spa-
tially uncorrelated and, for some finite , the matrices

. . .
...

...
. . .

. . .
...

(3)
are full column rank for , , and

.
Condition 3 (SIMO Channel lengths): The SIMO channel
lengths are known (or estimated) a priori.

It can be proved [4, Ch. 4] that, in order to satisfy Condition
1, the MIMO channel must be irreducible and column
reduced. Furthermore, it can be directly deduced that, in order
to satisfy Condition 1, the MIMO
channel filtering matrix must be a tall matrix, i.e.,

which constitutes a necessary condition. Finally, the following
sufficient condition on the equalizer length is given in [49] and
[50] (see also [24])

Regarding Condition 2, the full rank property of the matrices
defined in (3) establishes a persistent excitation condition.
This condition is easily satisfied, and it is assumed by most
of the blind channel identification/equalization techniques.
For instance, taking into account the definition of linear
complexity given in [6], the full rank condition is satisfied
if and only if the linear complexity of the finite sequences

is greater or equal than
, for , and .

Two final comments regarding Condition 3 are now in order.
First, this assumption makes necessary to estimate in advance
the effective orders [51] of the SIMO channels composing the
MIMO system. Analogously to the large number of contribu-
tions for estimating the order of a SIMO system [26], [31], [47],
[51], the recent interest in exploiting the channel order diver-
sity has motivated the development of some techniques for blind
MIMO order estimation [25], [34] that can be used for this pur-
pose. Second, we must point out that multiple sources affected
by channels of the same length can only be estimated up to a
scale and rotation (unitary) matrix. To solve this situation, we
could exploit some properties of the sources, such as their be-
longing to a finite alphabet or their spectral properties.

III. PROPOSED EQUALIZATION CRITERION

A. Preliminaries

Based on Condition 1, it can be easily proved that there exists
a set of matrices of size , with ,
such that

Denoting the th column of as , we can write, for
and

i.e., the columns of the left-inverse of provide a set of
zero-forcing (ZF) equalizers with different delays for the
source signals. This implies

(4)

which constitutes the basis of the proposed technique. How-
ever, we must note that the converse is only true in the case of
SIMO channels. In general, there exist additional solutions of
(4) which are not directly given by the columns of the left-in-
verse of , as we will prove later.

The formulation in (4) has already been exploited in the
derivation of direct blind ZF equalizers in the case of SIMO
channels [12]–[15]. Typically, the difference among the equal-
izer outputs is considered as a cost function, and in order to
avoid the trivial solution, a unit norm [13]–[15] or a linear
constraint [12] on the equalizer coefficients is applied. The
main difference among the above referred methods relies on
the selection of the cost function. For instance, the differ-
ence between the outputs of consecutive equalizers ( and

) is considered in [12] and [13], whereas the techniques
proposed in [14] and [15] are based on the distance between
the outputs of the equalizer with the minimum delay and
the remaining ones. Finally, a solution taking into account all
possible combinations of equalizer outputs is also presented in
[13]. Another interesting difference consists on the selection
of the best equalizer or the best combination of equalizers that
provide the estimated source signals. Typically, this problem
is solved in a second step. The selection of an equalizer with
a moderate delay (for instance ) has been considered
in [12]. In [14] and [15] (see also [22]) the authors propose
a method to find the linear combination of the ZF equalizers
providing a MMSE estimate. Finally, in [21], the authors
propose to obtain the MMSE equalizers from the estimated ZF
solutions in a second step.

B. Proposed Criterion

The main contributions of the proposed method are the
following.

• The equalizers and the best linear combination of their out-
puts, with respect to a PCA criterion, are obtained in a
single step and, thus, optimally.

• Unlike the techniques in [12]–[15], the differences among
the outputs of all the equalizers are considered.
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• The proposed method is derived from a deterministic
framework. In the absence of noise, it is able to exactly
recover the sources within a finite number of observations.

• The constraint on the equalizer coefficients is replaced by a
constraint on the energy of the equalized signals. This con-
straint reduces the noise enhancement problem, especially
in the case of colored signals or a small number of obser-
vations [46].

• It can be proved that the obtained equalizers can be inter-
preted as an estimate of the MMSE equalizers, unlike the
ZF solutions obtained in [12]–[15] and [22].

In order to introduce the proposed criterion, let us start by
considering, without loss of generality, .
Remember that is the number of equalizers that allows us
to extract delayed versions of the th source, which is distorted
by a SIMO channel of length (i.e., ).
Then, considering a block of observation vectors

, we can define, for ,
and , the following matrices:

Based on these definitions, (4) can be rewritten as

(5)

Let us now introduce the following theorem.
Theorem 1: If (or ), and the matrices

are full column rank for and some , then
the set of equalizers ( ) is a solution of (5) iff

where is an arbitrary vector of size , for
.

Proof: See Appendix I.
Remark 1: Under Condition 2, the matrices

defined in (3) are full column rank. Furthermore, the condition
of spatially uncorrelated sources implies that, for some finite
number of observations , the matrices are full column
rank with probability one, and then Theorem 1 applies.

Considering that there exists a subset of FIR-SIMO
channels with length , the implications of Theorem 1 are the
following.

• The solutions of (5) are given by
a subspace of dimension , where

• The effect of the signals distorted by SIMO channels with
length is cancelled.

• The interference among the input signals distorted by
SIMO channels of length is reduced to instanta-
neous mixtures, i.e., the ISI is eliminated.

• The interference of signals affected by longer SIMO chan-
nels is still present, but the interfering signals
are distorted by equivalent FIR-SIMO channels of reduced
length: .

Several alternatives to cancel the previously extracted signals
can be applied. Here, we will use a deflation procedure based on
the assumption of spatially uncorrelated sources, which implies
the asymptotic orthogonality among the matrices

, , i.e.,

and then the proposed technique is implicitly assuming that
.

Finally, denoting the desired equalizers as , for
, , the problem that we solve

in this paper can be stated as follows.
For , find the equalizers
producing the unit-energy equalized signals

which admit the best 1-D PCA representa-
tion uncorrelated with the previous estimates ,

, and their delayed versions.
In other words, we propose to measure the difference among

the equalizer outputs by means of a PCA criterion, i.e., the dif-
ference among the equalized signals is given by the residual
error of a unidimensional PCA representation. From a geomet-
rical point of view, we are looking for the projectors pro-
viding a set of most similar unit-norm (or unit-variance) pro-
jections . To quantify precisely this similarity among the
projections, we require that they can be projected onto a new
common vector retaining as much energy as possible. Fur-
thermore, the vector must be orthogonal to previously ob-
tained vectors , . In the next section, it is proved that
the solution of this problem can be obtained by means of a set
of nested CCA problems.

IV. EQUIVALENCE TO CANONICAL CORRELATION ANALYSIS

CCA is a well-known technique in multivariate statistical
analysis to find maximally correlated projections between two
data sets. CCA was developed by Hotelling [52] and it has
been widely used in economics, meteorology and in many
modern information processing fields, such as communication
problems [53]–[55], statistical signal processing [37]–[41],
[56], independent component analysis [57], and blind source
separation (BSS) [58].

Although CCA was originally proposed for two data sets, it
has been generalized to the case of several data sets. Specifi-
cally, the MAXVAR generalization proposed by Kettenring [42]
solves the problem of finding the projections that can be best ap-
proximated by a 1-D PCA model. This generalization preserves
the property of invariance under uncoupled nonsingular trans-
formations [42], and for Gaussian data gives a measure of the
mutual information among the data sets [57, App. A].
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In this section, we prove that the solution associated to the
proposed blind equalization criterion is given by a set of nested
CCA-MAXVAR problems, and we propose batch and adaptive
algorithms based on the reformulation of CCA as a set of cou-
pled LS regression problems.

A. Solution of the Proposed Problem

Taking into account Theorem 1, the criterion for the obten-
tion of the linearly independent solutions of (5) can
be stated as the problem of successively
finding a set of equalizers and the corre-
sponding outputs , which admit the best
possible 1-D PCA representation and subject to the con-
straints for and

for . The cost function to be minimized in
terms of is

(6)

where is the vector containing the
weights for the best combination of the outputs. In order to
avoid the trivial solution ( , ), the energy
of or has to be constrained to some value, for in-
stance [45], [46].

Taking the derivative of (6) with respect to and
equating to zero, we get

(7)

where . Now, substituting (7)
into (6), the cost function becomes

(8)
where is an eigenvalue of
(which depends on ) and is the associated eigenvector
scaled to .

Here we must point out that, in the case of the first CCA solu-
tion , (8) is the classical PCA problem and the solution is
given by the eigenvector associated to the largest eigenvalue

. However, in the general case , the orthogonality con-
straints have the effect of modifying the
PCA problem, which implies that the solution is not neces-
sarily the eigenvector associated to the largest eigenvalue ,
i.e., the subsequent PCA problems are not independent.

Interestingly, the above problem is the CCA-MAXVAR gen-
eralization to several data sets proposed in
[42]. In [45] and [46], we have proved that the CCA-MAXVAR
solutions can be directly obtained from a GEV problem. For
completeness, this result is also included here.

Theorem 2: The solutions of the CCA-MAXVAR generaliza-
tion of (8) can be obtained solving the following GEV problem

(9)

where , are the
canonical vectors, the matrices and are defined as

...
. . .

...
...

. . .
...

(10)
and are the estimates of the crosscorrela-
tion matrices. The canonical variates are defined as

, and
is the best 1-D PCA approximation. Finally, the generalized
canonical correlations are defined
as

Proof: See Appendix II.

B. CCA Algorithms

In [45] and [46], the CCA-MAXVAR problem has been for-
mulated in a more intuitive manner. Specifically, if we define the
successive canonical vectors (equalizers) and variates (equal-
ized signals) as and , respectively,
the MAXVAR generalization can be defined as the problem of
sequentially maximizing the generalized canonical correlation

subject to the following energy and orthogonality constraints to
avoid the trivial solutions:

where .
Furthermore, we have shown that the GEV problem (9) can

be rewritten as a set of coupled LS regression problems, whose
solutions are obtained by means of the pseudoinverses

of the data matrices as

(11)

This LS regression framework resembles the idea of mutually
referenced equalizers, which has been exploited in [12] to derive
a blind equalization algorithm for FIR-SIMO channels.

V. PROPOSED BLIND MIMO EQUALIZATION PROCEDURE

In this section, the CCA-MAXVAR technique is applied to
the blind equalization of FIR-MIMO channels, obtaining effi-
cient batch and adaptive algorithms based on the idea of coupled
LS regression problems.
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A. Outline of the CCA-Based Algorithms

Let us start by considering , and assuming,
without loss of generality, an index such that (or

). Then, we can introduce the following lemma.
Lemma 1: Under the conditions in Section II-B and in the

absence of noise, the largest canonical correlation of the CCA-
MAXVAR problem with matrices is equal
to one and has multiplicity , and the associated canon-

ical variates , or equalizer outputs,
span the subspace defined by

Proof: This is a direct consequence of Theorem 1.
Lemma 1 implies that, in the absence of noise, the first

solutions of the CCA-MAXVAR problem with
form an orthogonal basis for the desired

signals affected by SIMO channels of length , and the
spurious signals (and their delayed versions) affected

by SIMO channels with . When noise is present,
the orthogonal basis can be approximately obtained from the
main CCA-MAXVAR solutions, and the associated
canonical correlations will be .

The deflation process to avoid the interference of the spurious
signals is very simple: we only have to project the

first solutions of our CCA problem onto the comple-
mentary subspace to that defined by the previously estimated set
of matrices, i.e.,

This deflation step can be directly incorporated in the CCA algo-
rithms proposed in [45] and [46]. In fact, we only have to include
the previously estimated interfering signals in the orthogonality
constraints (as if they were the main CCA solutions), and
extract the following solutions applying the CCA algorithms
based on coupled LS regressions. Thus, the canonical vectors
will provide the equalizers for the extraction of the basis of the

desired signals. As pointed out in Theorem 2, these equal-
izers are scaled by the corresponding PCA weights, and then,
the best linear combination of the equalizer outputs is directly
obtained as the mean.

The batch procedure for the sequential extraction of the
source signals is summarized in Algorithm 1, and a direct ap-
plication of the RLS-based adaptive CCA algorithm presented
in [45] and [46] is used in this paper to develop an adaptive
version of the MIMO blind equalization technique.1

1Due to the lack of space, we do not provide details here.

Algorithm 1: Summary of the CCA procedure for blind
equalization of FIR MIMO channels.

Initialize and arrange .

while do

Obtain the number of signals to extract and update
.

Obtain the number of restrictions to apply
.

Form the CCA problem with data sets
.

Assume as the main solutions

.

Obtain the basis for the
next signals .

Update .

end while

B. Further Comments and Relationship With Other Techniques

• One of the advantages of the proposed criterion is that the
obtained equalizers can be seen as estimates of the MMSE
equalizers. In order to clarify this point, let us notice that
(11) implies that the obtained equalizers satisfy the fol-
lowing LS regression problems:

Taking into account that is an (hopefully accurate)
estimate of the source , the above equation can be
interpreted as an estimate of the Wiener filter. This result
contrasts with the techniques proposed in [12]–[15], and
[17], which only consider the obtention of ZF equalizers
or their best combination in terms of MMSE2 [14], [15],
[22].

• In [12], the authors have presented an adaptive algorithm
for blind equalization of SIMO channels, which is based
on a linear constraint on the equalizers and the inversion,
by means of the RLS, of a correlation matrix of dimensions

(with ). In the case of SIMO chan-
nels, the CCA-based technique solves regression prob-
lems, of size . However, taking into account the rela-
tionship among the matrices , the com-
putational cost is equivalent to a unique RLS problem of
size . This implies that the computational complexity
of the proposed technique is lower than that of [12].

• In [20], the authors have proposed a deterministic tech-
nique for blind equalization of FIR-MIMO channels. This
technique can be considered as a deterministic generaliza-
tion to MIMO channels of the methods in [12] and [13].
It assumes SIMO channels with equal lengths and the final

2See also [21] for the obtention, in a second step, of the MMSE equalizers
from the estimated ZF ones.



VÍA et al.: DETERMINISTIC CCA-BASED ALGORITHMS 3873

TABLE I
EQUALIZATION TEST (EQX) POWER PROFILE

s

dB

TABLE II
TYPICAL URBAN (TU) POWER PROFILE

s

dB

s

dB

TABLE III
IMPULSE RESPONSES OF THE MIMO CHANNEL USED IN THE SIMULATION EXAMPLES

extraction of the sources is based on their belonging to a fi-
nite alphabet. Another interesting blind equalization tech-
nique for MIMO channels is proposed in [35] (see also
[36]). This technique is also based on the diversity of the
channel order. However, it only considers the extraction of
the signals affected by the SIMO channels with the largest
order.

• In a realistic scenario, the effective channel orders [51]
must be estimated, and, hence, the performance of the pro-
posed technique depends on the accuracy of the channel
order estimation algorithms. This dependence is illustrated
in the next section by means of a simulation example.

VI. SIMULATION RESULTS

In this section, the performance of the proposed blind MIMO
technique is evaluated by means of some numerical examples.
In all the simulations the results of 300 independent realizations
are averaged. We consider source signals distorted by a SIMO
or MIMO channel and corrupted by zero-mean white Gaussian
noise.

A. Channel Model

The simulation examples are similar to those in [12]. We as-
sume a digital wireless communication system at 900 MHz with

or sensors distributed on a uniform circular array
of radius cm. The propagation model is generated
based on the model of Clarke [12], [59] and the two following
power profiles are used:

• Equalization Test (EQx) model for highly dispersive chan-
nels (see Table I).

• Typical urban (TU) model (see Table II).
The symbols are unit-variance 16-QAM with duration 3.7 s.

Squared root raised cosine filters with roll-off 0.5 are used at
the transmitter and receiver, and the continuous-time
SIMO channels are sampled at the baud rate and are normal-
ized to have gain . Although the theoretical channel lengths
(noiseless case) could be considered larger than five taps for
both models, in the simulation examples we will consider the
effective channel lengths (number of taps that concentrate most
of the channel energy [51]) as 4 and 2 for the EQx and TU, re-
spectively. Finally, the central taps of the sampled SIMO chan-
nels are shown in Table III.
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Fig. 2. Performance of the blind SIMO equalization techniques as a function of
the number of observations; 1� 2 SIMO channel with lengthL = 2. Equalizer
length K = 2.

B. SIMO Examples

In this section, the proposed method (referred to as CCA) is
compared with the second-order statistics algorithm (SOSA)
and modified SOSA (MSOSA) proposed in [13], and the
technique proposed in [12] (referred to as SOSA-LIN). These
techniques impose either a quadratic (SOSA and MSOSA) or
a linear constraint (SOSA-LIN) on the equalizer coefficients.
Moreover, they do not resolve the problem of finding the best
linear combination of the equalizer outputs. For these methods,
the final equalized signal has been obtained as the best linear
combination of the outputs [14], [15].

In the first example, a source signal is distorted by a 1 2
SIMO channel obtained from antennas 1 and 3 of the second
SIMO channel ( , ) shown in Table III. Low
SNR dB and moderate SNR dB noise levels

have been considered. Fig. 2 shows the MSE of the equalized
signals as a function of the number of available samples . The
deterministic nature of the CCA method and the constraint on
the energy of the outputs explain the good performance for high
SNR and small number of data samples.

In the second example, we have considered the second SIMO
channel with and receive antennas. The equalizer
length is and the number of observations is .
Fig. 3 shows the MSE for the equalized signals. Surprisingly, for
the SOSA and MSOSA techniques, the performance is degraded
when the number of receive antennas is increased. This is due
to the fact that for this example there exists a set of

equalizers in the null subspace of (which for
and is of dimension 2). This pair of equalizers

cancel the source signal at their outputs. This is translated into a
high noise enhancement effect, which is partially avoided by the
linear constraint on the equalizers (SOSA-LIN), and completely
eliminated when the constraint on the energy of the equalizer
outputs is imposed (CCA).

Fig. 3. Effect of increasing the number of receive antennas; (left) 1 � 2 and
(right) 1 � 4 SIMO channel with length L = 2. Number of data samples
N = 1000. Equalizer length K = 1.

The proposed on-line algorithm (CCA) has been compared
with the RLS-based adaptive version of the SOSA-LIN [12],
the constant modulus algorithm (CMA) [2], and the RLS with
training symbols. Fig. 4 shows the convergence curves for the
previous 1 2 SIMO channel with length , and the
1 4 SIMO channel with length . The forgetting factor
for the RLS problems is and the signal to noise ratio
is SNR dB. As can be seen, the performance of the
SOSA-LIN technique is degraded for problems with moderate
complexity ( , ), even for high forgetting factors

, which is due to the large RLS problem to solve and the
possible ill conditioning of the correlation matrix. On the other
hand, the proposed CCA technique is faster than the HOS-based
CMA.

C. MIMO Examples

In this section, the performance of the CCA technique is eval-
uated and compared with the deterministic method proposed in
[20] (denoted here as MIMO-SOSA) and the MIMO-CMA al-
gorithm [2]. In all the examples we have considered the 2 4
MIMO channel presented in Table III, and the equalizer length
parameter has been set to .

In the first example, the performance of the CCA and MIMO-
SOSA methods is evaluated. The number of observations is

, and the instantaneous mixture of signals given by
the MIMO-SOSA has been resolved using the knowledge of
the sources. Fig. 5 shows the MSE of the equalized signals,
where we can see that the proposed method outperforms the
MIMO-SOSA, which fails to extract the second signal

. This is due to the implicit assumption of SIMO channels
of the same length [20]. Furthermore, we must note that the
noise floor for the proposed technique is due to the effect of the
heading and trailing terms of the channel and not to the deflation
process (which only affects to the second signal). Thus, we can
conclude that the effect of the deflation technique is irrelevant
in realistic cases.
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Fig. 4. Convergence of the adaptive algorithms; (left) 1 � 2 SIMO channel
with length L = 2 and (right) 1 � 4 SIMO channel with length L = 4.
SNR = 30 dB, K = 2. RLS forgetting factor � = 0:9.

Fig. 5. Blind MIMO equalization algorithms; 2 � 4 MIMO channel, N =

1000, K = 4.

Fig. 6. Blind MIMO equalization algorithm including the channel order esti-
mation; 2 � 4 MIMO channel, N = 1000,K = 4.

Fig. 7. Adaptive blind MIMO equalization algorithms; 2� 4 MIMO channel.
RLS forgetting factor � = 0:99,K = 4, SNR = 10 dB.

In order to evaluate the performance of the proposed tech-
nique with estimated channel orders, the previous example has
been repeated including the channel order estimation step. The
technique proposed in [25] has been applied excluding the de-
noising step.3 Fig. 6 shows the simulation results, where we can
see that the MSE for the first signal is close to the MSE in the
case of known channel order, whereas the second signal is more
affected by channel order estimation errors.

Finally, the CCA adaptive algorithm has been compared with
the MIMO-CMA algorithm [2]. The RLS forgetting factor has
been set to , and we have found that the MIMO-CMA
fails to extract the second signal. Fig. 7 shows the convergence
curves for the extraction of the sources. As can be seen, the pro-
posed criterion is able to extract both sources and it outperforms
the MIMO-CMA technique in terms of convergence speed.

VII. CONCLUSION

In this paper, a new deterministic technique for blind equal-
ization of FIR-MIMO channels has been presented. The pro-
posed method does not impose any constraint on the spectra
of the source signals, which is a common assumption for most
of the blind algorithms for MIMO channel estimation/equaliza-
tion. The main assumption of the proposed technique relies on
the order diversity of the MIMO channel. Exploiting this prop-
erty, the proposed method is able to extract the source signals up
to a scale and rotation matrix indeterminacy, which only affects
to those sources associated to FIR-SIMO channels of the same
length. The reformulation of the blind equalization problem as
a set of nested CCA problems has been exploited to obtain, si-
multaneously, the set of equalizers for each source and the best
combination of their outputs. Furthermore, it has been proved
that the proposed solutions can be interpreted as estimates of
the MMSE equalizers, unlike the classical blind zero-forcing
solutions. Finally, batch and adaptive algorithms have been ob-
tained by reformulating CCA as a set of coupled LS regression
problems. The performance of the proposed algorithms has been
shown by means of some simulation examples.

3By means of simulations, we have verified that the denoising step does not
provide good results for channels with small heading and trailing terms.
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APPENDIX I
PROOF OF THEOREM 1

In this Appendix we show that, if (or ),
and the matrices

are full column rank for and some , then
the set of equalizers ( ) is a solution of (5) iff

(12)

where is an arbitrary vector of size , for
.

Proof: It is obvious that (12) implies (5). In order to prove
that (5) implies (12), let us start by writing

and

(13)

where is
the composite channel-equalizer response. Then, (5) can be
rewritten as

for , or equivalently, for

(14)

Taking into account that the first columns of

and the last columns of coincide,
(14) can be rewritten as

where . Defining now
the above equality yields

(15)

Since the matrices are full column rank, from (15),
we can conclude that and then, for ,

, and

which implies

if
otherwise

or in a more intuitive manner

where , , is some constant. Finally, it
is straightforward to prove that the above equation yields, for

and

where . Replacing the above
equality into (13) we obtain (12), which concludes the proof.

APPENDIX II
PROOF OF THEOREM 2

In this appendix, we prove the equivalence between the CCA-
MAXVAR problem and the GEV in (9). For notational sim-
plicity, we will omit here the temporal index .

Proof: Let us start writing ,
where is the singular value decomposition
(SVD) of , and satisfies as
a direct consequence of the constraint . Taking (8)
into account, we can write

(16)

where , and

. . .
. . .

...
...

. . .
. . .

Since and , we have
, and the solution maximizing (16) is given by the eigen-

vector associated to the th eigenvalue of , i.e.,

(17)

Defining now , where

...
. . .

...
...

. . .
...

we can rewrite (17) as

and taking into account that and
are the matrices defined in (10), we obtain
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where . Thus, it can
be proved in a straightforward manner that

which implies . Finally, the best 1-D
PCA approximation of the projections is

which concludes the proof.
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