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Abstract—in this paper, we present a comparative study of approximation, and the computational requirements to carry out
three neural networks-based solutions for large- and small-signal the training of the network are also high.
modeling of MESFET and HEMT transistors. The first two neural In order to avoid these problems we have recently proposed

architectures are specific for this modeling problem: the gener- ) . . . .
alized radial basis function (GRBF) network, and the smoothed WO models: the generalized radial basis functions (GRBF) net-

piecewise linear (SPWL) model. These models are compared with WOrk [9], for small-signal modeling with the capability of repro-
the well-known multilayer perceptron (MLP) network. Results are  ducing thel —V" derivatives, and the smoothed piecewise linear
presented for both the Iarge- and small-sign.al regimes separately. (SPWL) model [10] for large-signal regimes. Both models re-
Finally, a global model is proposed that is able to accurately  ice 4 Jow number of parameters, and their computational re-
characterize the whole behavior of the transistors. This model is . . ’
based on a simple combination of the best models obtained for the quwements totrain the mod_els are lower than those of the abO\_/e-
two kinds of regimes. mentioned methods. In this paper, we present a comparative
study of these new architectures (as well as the MLP), applied
to small- and large-signal device modeling. The conclusions of
this study are used to propose a global model formed by merging
in an appropriate way the best small- and large-signal models.
. INTRODUCTION The paper is organized as follows. In Section Il the problem
HE DESIGN of microwave and millimeter-wave circuitsof modeling microwave transistors is stated. In Section Il the
and the increasing integration Of hybnd and mono“t}*n@RBF and SPWL mOde|S are described. In SeCtion |Vthe main

circuits have reinforced the need of accurate large- and sma@sults are presented, and in Section V a global model is pro-
signal device models to improve the performance of these dnased, to characterize the whole device behavior. Finally, in Sec-
cuits and to minimize the number of design and fabrication stef@n VI, the main conclusions are reported.
required. For the small-signal models, to reproduce the third-
order intermodulation behavior is quite a difficult and common
task (amplifiers working below the 1 dB compression point and
mixers excited by small RF signals when compared to the localln this section we state the problems encountered when mod-
oscillator are typical examples). In this case, it is necessarydling microwave devices such as MESFET or HEMT transis-
approximate not only the current-voltage«(V') characteristic, tors. Fig. 1 shows the most widely accepted equivalent nonlinear
but also its derivatives up to the third order [1]. For the largesircuit of the FET transistor in its saturated region. Here, we
signal models it is possible to characterize the RF large-sigraincentrate on the modeling of the drain-to-source cudgnt
behavior approximating the pulsed dc behavior of the devicsttic nonlineality, but it is simple to consider the dynamic ele-
[2]. ments of the equivalent circuit. Generally, to model a transistor,
Conventional nonlinear techniques applied to device mothere are two clearly different kinds of regimes, the large- and
eling, such as closed-form equations [3], [4], Volterra series [3he small-signal regimes.
or the use of look-up tables [6], present high memory require-
ments or a high computational burden. Moreover, they are nQt small-Signal Modeling of Transistors
conceived to model the intermodulation behavior. _ _
Recently, some attempts have been made to model the n_onl—n a MES_FET or HEMT, the predom!nant nonlinear element
linear behavior of active devices and circuits by using neural né}. the drain-to-source currenly,, which depends on the

works [7], [8]. Neural networks have the capability of approxigrai”'to'soumd/ds, and the gate-to-sourde,;, bias voltages.

mating any nonlinear function and the ability to learn from ex!iS dependence is denoted as heV” characteristic. As it
e§hown in [1], thenth-order intermodulation output power

perimental data; therefore, they are good candidates to solve 'qe o
ries fundamentally as the square of tith derivative of the

vice-modeling problems. However, practically all these neur4?

approaches only consider the use of the multilayer perceptr{)ﬁv characteristic with respect to the drain-to-source and

(MLP) and, in this case, the memory requirements to giveagogate-to-source voIFages.' Therefore, _'f we wan.t to be able to
model the small-signal intermodulation behavior, our model

must accurately fit not only the nonlinear function but also its

Index Terms—intermodulation, large-signal, microwave transis-
tors, neural networks, nonlinear modeling, small-signal.
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Fig. 1. Nonlinear equivalent circuit of a MESFET transistor.

voltages {4, vgs). We can approximaté,, by the following A. Generalized Radial Basis Function (GRBF) Network

truncated Taylor series expansion: The GRBF network is an extension of the radial basis func-

tion (RBF) network that relaxes the radial constraint for the basis
5 ) y 5 kernels allowing different variances for each dimension of the
FGm3Vgs + Gm2aVasVqs + GmaaVisVes + Gazvgs (1) input space [9]. In this way, it is possible to reduce the number
of required basis functions, and therefore the number of param-
eters. To perform a generd: R/ — R mapping, thekth
output of the GRBF network is given by

2 2
Ids = Idso + vags + Gdsvds + GmQUgs + Gmdvdsvgs + GdQUds

wherely, is the dc drain current and+,,, ..., andGy3) are
coefficients related to theth-order derivatives of the—V char-
acteristic evaluated at the bias point. For instance(thg, co-
efficient is defined as I

e G(V)=>_ a(V) 3)
: invgs = vgs = 0. (2) i=1

wherei indexes the different GRBF unitg(V) = A\jpo:,(V)

Therefore, our small-signal modeling problem consists in fittingndo; (V') is the activation function of each unit
a function (model)@ss: R2 — R'°, which approximates the 7 )
nonlinear mapping from the input space of bias voltafges 0i(V) = H exp _M (4)
(Vas, Vgs), to the output space of model parametélss = iy 207;
(Id507 Gm; Gd57 G11127 Gm(b Gd27 Gm37 Gm?(b G111d27 Gd3)-

Gmd2 - 5
2
2 Ouge, (Voo s Vas)

Once this model is availabléys is reconstructed by (1). whereV; is thejth element of input vecta’.
The network is initialized by a variant of the orthogonal least
B. Large-Signal Modeling of Transistors squares (OLS) algorithm [11], which is able to work with el-

. . . . _liptical kernels. The error functio to be minimized is the
The large-signal behavior of MESFET or HEMT tranSIStorauadratic error. The variances and the centers of the network

is governed by the nonlinear dynamic pulsedV character- . . ; :
istic that depends on the quiescent bias point [2]. An accuraatree adapted by using the following equations of the gradient

representation of this dc characteristic of pulsed measurements, oF 5 Z Z
dependent on the bias point, can provide a suitable representa- ~ Jo;; -
tion of the RF large-signal behavior of the transistor [2]. There- i

fore, in this case, the drain curreht depends on the bias point cern(Vp)oi (V) Nin i <ij — My ) 2 -
(Vas, Vgs) and on the pulsed voltagés,,, vy) applied over Tij Tij

the bias point. Note that here we are using pulsed dc samples to OF

obtain a suitable representation of the large-signal RF behavior. e =-2 Z Z

Now, our large-signal modeling problem consists in obtaining “ Pk

a functionGrs: ®* — R, which approximates the nonlinear ‘ 1 Vi — iy

mapping from the input space of bias and pulsed voltages ce(Vp)oi(Vp)hin o < oij ) ©

(Vas; Vs vas; vgs) 10 the output space,s (V) = Lus. wherep indexes the input patterns, the output dimensions,

andy(V,,) ande; (V) are the desired output and the network
error, respectively, of theth output dimension for thgth input

In this section, we describe the GRBF and SPWL networlgttern. With the centers and variances fixed, the dependence
that we have proposed to solve the above modeling problemuwiith the A, parameters is linear, and their optimum values are

I1l. PROPOSEDNETWORKS
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easily calculated by least squares. This adaptation procesthat o, s # 0, we can eliminate one coefficient from each
iterated until a suitable error is reached. boundary by rewritinde;, V) — g;, as

B. The Smoothed Piecewise Linear (SPWL) Model bi(V) = miVi+mip Vot +min—1Var-1 — Vi +?10)

~ The SPWL model is an extension of the well-known canoRgherep, (V') denotes théth boundary evaluated &t. Finally,
ical piecewise linear model proposed by Chua [12]. This modehking into account thaB anda in (9) are now a vectob =
asitis shown in [13], can be seen as a neural network. Basica{lgyb ..., bar)T, and a scalas, respectively, our generic SPWL

the model implements a general mapptitgh™ — R asfol- model. withd boundaries, can be written as

lows:
[

6 GV)=a+b"V+> ¢lch(b(V), 7).  (11)
GV)=a+BV+Y ¢l V) -3 7) im1
=1 The model parameters can be grouped into two vectgys:
where grouping the coefficients associated to the linear combination
V anda; vectors of dimensiod/; of components
a andg; vectors of dimensiodV; T
' zp=(a, by, ..., by, 1, ...C 12
B N x M matrix; »=(a b My 2 (12)
Bi scalar; andz,., grouping the parameters defining the boundaries of the
() inner product. domain space

The model divides the input space into different regions b _(
means of several boundaries implemented by hyperplanesof

dimensionM — 1 (defined by the expression inside the absolute (13)
value function), and it carries out the function approximation byh
means of the combination of hinging hyperplanes of dimension

T
TL Ly oeey UL M <1y +vvy TG 1y - TG M1, t1, ... T0)".

e error function to be minimized is given by

M, which are the result of joining linear hyperplanes over the N

boundaries defined in the input space. In any region the mod&(z,, ) = Z

is composed by a linear combination of linear hyperplanes, =1

and the transitions at the boundaries are governed by the 4 2
absolute value function. Therefore, this model inherits some -<y1 — <a—|—bTVl + Z ci leh(b;(Vy), 7))) (14)
properties from the absolute value function: it is continuous i=1

but not derivable along the boundaries. Moreover, the SeCoRgse gigorithm begins by fixing the initial location of each parti-
and higher order derivatives are zero except at the boundagigs boundary, i.e., the vecte.. Generally, they are chosen ran-

where they are discontinuous. domly. Then, the approximation erréi(z,, z,) is a quadratic

To overcome this drawback, the SPWL model substitutes g, tion of z,, and its minimum is easily obtained by least
absolute value function for a smooth and derivable function uares.

order to smooth the transition at the boundaries dividing the 5o the optimak,, parameters (for a given initiaj,. parti-

. e g . y 4

input space [10]. Several possibilities exist to smooth the afg5) are calculated, the algorithm estimates a new optimal par-
solute value function allowing, at the same time, a parametig, 2. This partition is found by calculating the gradiant

control of the “sharpness” of the transition. We have proposegd the Hessiali’, which specify the optimal searching direc-
the following smoothing function: tion to modify z,. according to

1 =-Ylg. 15

lch(z, v) = = ln(cosh(v z)) (8) ? 9 (19)
K The gradieny and the Hessiall are given by

where« is a parameter that allows controlling the smoothness

of the transition. Finally, the proposed SPWL model is given by 9 =2KGe, (16)
oG
Y =2KGG'K + 2K —e¢ (17)
6 0z,
G(V)=a+BV + ; eileh ({ei, V) = Fi, 7). (9) wheree = (ey, ..., ex)? is the vector of errorsK is given by
The training of this network is carried out by means of an op; .
Lo . =diag | C1y 00y  C1C2y vuvy Ca " Chy o nny Coy
timization method equivalent to the method proposed by Chua Tz e 2
for the canonical piecewise linear model [12]. M—lterms M—lterms  M—lterms
Let us consider that we want to approximate a mapping
RM — R using a set ofV input—output samplesV{, ), 1, ¢z, .5 c0 | (18)

[ = 1, ..., N with V, = (Vl,la VQJ, caey VMJ). Assuming
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TABLE |
SMALL -SIGNAL RESULTS USING INDIVIDUAL NETWORKS FOREACH OUTPUT. THE NUMBER BETWEEN PARENTHESESINDICATES
THE NUMBER OF BASIS FUNCTIONS EMPLOYED FOR EACH MODEL

Ngara.m I ds GdZ Gd3 Gds Gm 1 GmZ GmZd Gm3 Gmd Gde
MLP(6) 25x10 |38.4 [24.9 |20.1 |37.6 [42.4 |38.4 {21.5 [21.2 |32.4 |20.1
GRBF(5) |25x10 |44.3 [29.1 |21.5 |38.8 [43.7 |34.3 [22.2 {252 |34.3 |22.2
SPWL(6) [22x10 [45.4 |28.8 |19.8 |43.3 |46.5 [36.7 |22.7 [23.0 |35.2 [19.9

TABLE I
SMALL -SIGNAL RESULTS USING A SINGLE NETWORK. THE NUMBER BETWEEN PARENTHESES INDICATES THE
NUMBER OF BASIS FUNCTIONS EMPLOYED FOR EACH MODEL

N& I ds Gd2 Gd3 Gds Gml GmZ Gm2d Gm3 Gmd Gde

MLP(8) | 114|298 |17.9117.7]34.0[36.2[29.0[202]|19.624.6|17.6
GRBF(8) | 114 129.7[17.5]18.5[30.4|31.0]26.2|224(22.0|24.2]18.9
SPWL(7) | 115[36.1 {17.6 |17.633.6|39.6|27.1 204 ]|17.8|29.1|18.5
MLP(11) | 153 ]30.922.819.2(34.637.9]29.0]232(21.4|258]184
GRBF(11) | 154 132.2119.419.7]133.7136.0{31.2123.5]23.029.121.5
SPWL(10)| 151 | 423 1276|188 |41.2|41.6(31.7{22.3}21.0{32.1]22.0

andG is the fOIIOWing matrix: (Idsm Gm; Gd57 GmQ; Gmda Gd27 Gm37 G1112d7 G111d27 Gdg),
1 which compose the output of the small-signal model. These
G parameters were measured at different bias voltages in the
: following grid: Vs from 3 to 6 V in steps of 0.25 V, ani,
G=| (19)  from —2to 0 V in steps of 0.05 V; thus giving a total of 533
G input—output patterns. In our experience, because of the small
r number of measurements and of the low level of noise in the
N _ ) samples, the partitioning of this particular data set into training
wkhere G* are M - 1 x N matrices with elements 5ng testing sets does not necessarily improve the network’s
9i; = Vijtanh(vby(V;)), and P is the 6 x N matrix generalization performance. Therefore, the whole measurement
with elementsp; ; = tanh(vb;(V;)). The second term of yai5 set is used for training.
(17)2 involves the second derivative of the SPWL model | the first approach, we use an individual network to model
sech”(b;(V7)), which is a localized function along the boundeach output of this model. This approach leads to the results
aries: only points close to the boundaries contribute to this terﬂ?esented in Table I. The accuracy of the models is measured
In practice, it has been observed that a great computatiofilerms of the signal-to-noise ratio (SNR), in decibels, for each
saving (without any noticeable degradation) can be achievggy|ar output. It can be seen that the SPWL and the GRBF model
by dropping out this term, that is, we use = 2KGG" K. provide better results than the MLP in almost all of the func-
Once the search direction (15) has been calculated, the nfyks to be modeled. However, there is not a network that pro-
boundaries are estimated as vides the best results globally. This is due to the different na-
ture of the basis functions of each network. Depending on the
shape of the function to be modeled, a different basis function is
wherea = arg min(E(z,, 2 + as)). With this new partition, More suitable. Ther_efore, an obviou_s solution would be to use a
the process is repeated: the optimal coefficientsre calcu- mixed model combining these two kinds of networks, selecting

lated for these new boundaries, and then the optimal partitior] @& ach output the network providing the best results. This so-
re-estimated again, until a given error is reached. lution, although it provides good results, presents a relatively
high number of parameters to be implemented in a simulator.

In order to reduce the number of parameters, a second approach
consists in using a common network to perform the whole map-
In this section, we present the results obtained to model thg globally. Table Il presents the results obtained with such
NE72084 MESFET from experimental measurements with theso|ution. It can be seen that, in this case, the SPWL model
two networks described in the previous section, and they &gyvides slightly better results than the GRBF. These results are
compared with those provided by the MLP network as an appiglightly lower than those provided by using a different network
priate reference. Moreover, a brief study of the computation@ each output, but the saving in the number of parameters is
burden needed to train the models is also presented. Althoyglevant. In general terms, the second approach is preferable: it
here we are only presenting results for a MESFET transistor, thevides a reasonable solution with a reduced number of param-
proposed models can also be applied to HEMT transistors. eters, especially when compared with conventional approaches
. such as look-up tables. For instance, Fig. 2 shows the intermod-
A. Small-Signal Results ulation contours obtained with the model GRBF(8), with 114
For the small-signal model, we dispose of a set of meparameters (a look-up table would need, in this ca3&x 10
surements of the parameters included in the Taylor series fiBrameters), and compares them with those obtained from ex-

Zr = zp+ as (20)

IV. RESULTS
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TABLE I
LARGE-SIGNAL RESULTS THE NUMBER BETWEEN PARENTHESESINDICATES
THE NUMBER OF BASIS FUNCTIONS EMPLOYED FOR EACH MODEL

Model Parameters | SNR (dB)
MLP (5) 31 24.60
GRBF (4) 36 24.95
SPWL (5) 31 28.70
MLP (9) 55 26.44
GRBF (6) 54 27.55
SPWL (10) 56 31.58
MLP (11) 67 27.36
GRBF (7) 63 28.00
SPWL (12) 66 32.67
0.07 T T
— Measurements | 0l 0w
0.06L - SPWL model I
0.05
<
~ 0.04
e
0.03+
0.02
0.01
0
0

Fig. 3. Experimentally measured MESFET characteristic.( = —2 V,
Vas = 2 V) (continuous line) and SPWL modeled surface (dashed line).

TABLE IV
TRAINING TIME FOR THE DIFFERENT MODELS
Large-signal Small-signal
Model Time (min) Model Time (min)
MLP(11) 90 MLP(8) 47
GRBF(7) 32 GRBF(8) 15
SPWL(12) 14 SPWL(7) 7

(b)

Fig. 2. Contours of the”/I ratio of the NE72084 MESFET: (a) using the .
measured parameters and (b) using the GRBF(8) network model. model clearly provides the best results. The GRBF network, on

the other hand, provides results similar to the MLP. As an ex-
ample, Fig. 3 compares the-V measured characteristic and

perimental measurements. From the figure, the fidelity of the 555 roximation obtained with the SPWL with 12 neurons for
intermodulation prediction can be seen. a bias point of, = 2V andV,, = —2 V.

B. Large-Signal Results C. Computational Burden of the Models

For the large-signal model, we dispose of a set of 4050Another interesting aspect to be considered is the computa-
measurements arranged in a grid of the four input variablésnal burden associated to each model. Table IV shows a com-
(Vas, Vas, vas, andugg). A set of 1000 samples randomlyparison of this cost, presenting the training time of each model
selected was employed for training, and another set of 10008der the same training conditions. It can be seen that, with re-
samples was used as a test set to avoid overtraining. The fispéct to the computational burden, the SPWL network presents
results are evaluated over the whole data set. the fastest training, and the GRBF is faster than the MLP net-

The results obtained using the different neural models am®rk. Moreover, it can be taken into account that all these net-
shown in Table lll. The results presented correspond to soluerks present the problem of local minima, and several simula-
tions with a low number of parameters to facilitate the impldions have to be performed to obtain a suitable solution, which
mentation of the solution in simulators. In this case, the SPWhcreases the penalty for a slow training.
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Fig. 4. Modular neural network structure for global modeling of MESFET/HEMT transistors.

V. GLOBAL MODEL PROPOSED

In the previous sections, we have treated the large- and sm
signal problems of modeling a transistor separately. We ha
obtained a model for each regime. Therefore, one model mus
selected in function of the kind of regime in which the transistor
will work.

In order to avoid this unrealistic situation, we propose to u
a single global model to completely characterize the transistor’s
behavior. This model combines the two best submodels p?é-
viously obtained: one for the large-signal regime, and anoth
one for the small-signal regime. The global model is obtain
by weighting the outputs of the two submodels (modules)
a reasonable way. For example, it is possible to use a simple
fuzzy combiner (Fig. 4 shows this approach). The fuzzy com-
biner weights each module taking into account the distad\ce,
of the instantaneous voltages with respect to the bias point

d = \/vi, + 3

and using this distance, the membership function for the smal
signal module is given by

[
2
(21)

3l

[4]

1a |d| S dl
do —d
NSS(d) = ﬁ, di < d <do (22) [5]
07 |d| Z d2

[6]
whereas for the large-signal regime, we hayg (d) = 1 —
uss(d). The parameterg, andd, defining the transition points
between the two modules take in this case the valyes 0.25
and d» 0.3 V. These values allow an appropriate smooth
transition between the large- and the small-signal modules. Thigs]
global solution provides a single model that would be able to
adequately characterize the whole behavior of a transistor.

(71

[0l
VI. CONCLUSION [10]
In this paper, we have presented a comparative study of sev-
eral neural network solutions for the large- and small-signal
modeling of MESFET and HEMT transistors. [11]
For the small-signal regime, when using a single network,
the SPWL model provides slightly better results than the GRBlflz]
network. However, when a very high accuracy is needed, the

option of a mixed model, using independent SPWL and GRBF
gﬁ:_tworks for each output, can be employed, paying the price of
Jﬂgher number of parameters. For the large-signal behavior,
%SPWL model provides clearly the best results.

elative to the computational burden, the SPWL has proved
to be the more efficient network, and the GRBF network, in any
ggse, requires a lower computational burden than the MLP.
Finally, we have proposed a global model combining in a
mple way the submodels obtained for both the large- and
%pall—signal regimes. This model allows a whole characteriza-
dion of the device, avoiding the need of working with several
models for the same device.
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