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Abstract—In this paper, we present a comparative study of
three neural networks-based solutions for large- and small-signal
modeling of MESFET and HEMT transistors. The first two neural
architectures are specific for this modeling problem: the gener-
alized radial basis function (GRBF) network, and the smoothed
piecewise linear (SPWL) model. These models are compared with
the well-known multilayer perceptron (MLP) network. Results are
presented for both the large- and small-signal regimes separately.
Finally, a global model is proposed that is able to accurately
characterize the whole behavior of the transistors. This model is
based on a simple combination of the best models obtained for the
two kinds of regimes.

Index Terms—Intermodulation, large-signal, microwave transis-
tors, neural networks, nonlinear modeling, small-signal.

I. INTRODUCTION

T HE DESIGN of microwave and millimeter-wave circuits
and the increasing integration of hybrid and monolithic

circuits have reinforced the need of accurate large- and small-
signal device models to improve the performance of these cir-
cuits and to minimize the number of design and fabrication steps
required. For the small-signal models, to reproduce the third-
order intermodulation behavior is quite a difficult and common
task (amplifiers working below the 1 dB compression point and
mixers excited by small RF signals when compared to the local
oscillator are typical examples). In this case, it is necessary to
approximate not only the current–voltage ( ) characteristic,
but also its derivatives up to the third order [1]. For the large-
signal models it is possible to characterize the RF large-signal
behavior approximating the pulsed dc behavior of the devices
[2].

Conventional nonlinear techniques applied to device mod-
eling, such as closed-form equations [3], [4], Volterra series [5],
or the use of look-up tables [6], present high memory require-
ments or a high computational burden. Moreover, they are not
conceived to model the intermodulation behavior.

Recently, some attempts have been made to model the non-
linear behavior of active devices and circuits by using neural net-
works [7], [8]. Neural networks have the capability of approxi-
mating any nonlinear function and the ability to learn from ex-
perimental data; therefore, they are good candidates to solve de-
vice-modeling problems. However, practically all these neural
approaches only consider the use of the multilayer perceptron
(MLP) and, in this case, the memory requirements to give a good
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approximation, and the computational requirements to carry out
the training of the network are also high.

In order to avoid these problems we have recently proposed
two models: the generalized radial basis functions (GRBF) net-
work [9], for small-signal modeling with the capability of repro-
ducing the derivatives, and the smoothed piecewise linear
(SPWL) model [10] for large-signal regimes. Both models re-
quire a low number of parameters, and their computational re-
quirements to train the models are lower than those of the above-
mentioned methods. In this paper, we present a comparative
study of these new architectures (as well as the MLP), applied
to small- and large-signal device modeling. The conclusions of
this study are used to propose a global model formed by merging
in an appropriate way the best small- and large-signal models.

The paper is organized as follows. In Section II the problem
of modeling microwave transistors is stated. In Section III the
GRBF and SPWL models are described. In Section IV the main
results are presented, and in Section V a global model is pro-
posed, to characterize the whole device behavior. Finally, in Sec-
tion VI, the main conclusions are reported.

II. M ODELING OFMESFETAND HEMT TRANSISTORS

In this section we state the problems encountered when mod-
eling microwave devices such as MESFET or HEMT transis-
tors. Fig. 1 shows the most widely accepted equivalent nonlinear
circuit of the FET transistor in its saturated region. Here, we
concentrate on the modeling of the drain-to-source current
static nonlineality, but it is simple to consider the dynamic ele-
ments of the equivalent circuit. Generally, to model a transistor,
there are two clearly different kinds of regimes, the large- and
the small-signal regimes.

A. Small-Signal Modeling of Transistors

In a MESFET or HEMT, the predominant nonlinear element
is the drain-to-source current , which depends on the
drain-to-source , and the gate-to-source , bias voltages.
This dependence is denoted as the characteristic. As it
is shown in [1], the th-order intermodulation output power
varies fundamentally as the square of theth derivative of the

characteristic with respect to the drain-to-source and
gate-to-source voltages. Therefore, if we want to be able to
model the small-signal intermodulation behavior, our model
must accurately fit not only the nonlinear function but also its
derivatives. In particular, when we apply a small-signal RF
input around a bias point, the drain current depends on
the bias point ( ) and on the instantaneous small-signal
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Fig. 1. Nonlinear equivalent circuit of a MESFET transistor.

voltages ( ). We can approximate by the following
truncated Taylor series expansion:

(1)

where is the dc drain current and ( and ) are
coefficients related to theth-order derivatives of the char-
acteristic evaluated at the bias point. For instance, the co-
efficient is defined as

in (2)

Therefore, our small-signal modeling problem consists in fitting
a function (model) , which approximates the
nonlinear mapping from the input space of bias voltages

, to the output space of model parameters
.

Once this model is available, is reconstructed by (1).

B. Large-Signal Modeling of Transistors

The large-signal behavior of MESFET or HEMT transistors
is governed by the nonlinear dynamic pulsed character-
istic that depends on the quiescent bias point [2]. An accurate
representation of this dc characteristic of pulsed measurements,
dependent on the bias point, can provide a suitable representa-
tion of the RF large-signal behavior of the transistor [2]. There-
fore, in this case, the drain current depends on the bias point

and on the pulsed voltages applied over
the bias point. Note that here we are using pulsed dc samples to
obtain a suitable representation of the large-signal RF behavior.
Now, our large-signal modeling problem consists in obtaining
a function , which approximates the nonlinear
mapping from the input space of bias and pulsed voltages

to the output space .

III. PROPOSEDNETWORKS

In this section, we describe the GRBF and SPWL networks
that we have proposed to solve the above modeling problems.

A. Generalized Radial Basis Function (GRBF) Network

The GRBF network is an extension of the radial basis func-
tion (RBF) network that relaxes the radial constraint for the basis
kernels allowing different variances for each dimension of the
input space [9]. In this way, it is possible to reduce the number
of required basis functions, and therefore the number of param-
eters. To perform a general mapping, the th
output of the GRBF network is given by

(3)

where indexes the different GRBF units
and is the activation function of each unit

(4)

where is the th element of input vector .
The network is initialized by a variant of the orthogonal least

squares (OLS) algorithm [11], which is able to work with el-
liptical kernels. The error function to be minimized is the
quadratic error. The variances and the centers of the network
are adapted by using the following equations of the gradient

(5)

(6)

where indexes the input patterns, the output dimensions,
and and are the desired output and the network
error, respectively, of theth output dimension for theth input
pattern. With the centers and variances fixed, the dependence
with the parameters is linear, and their optimum values are
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easily calculated by least squares. This adaptation process is
iterated until a suitable error is reached.

B. The Smoothed Piecewise Linear (SPWL) Model

The SPWL model is an extension of the well-known canon-
ical piecewise linear model proposed by Chua [12]. This model,
as it is shown in [13], can be seen as a neural network. Basically,
the model implements a general mapping as fol-
lows:

(7)

where
and vectors of dimension ;
and vectors of dimension ;

matrix;
scalar;
inner product.

The model divides the input space into different regions by
means of several boundaries implemented by hyperplanes of
dimension (defined by the expression inside the absolute
value function), and it carries out the function approximation by
means of the combination of hinging hyperplanes of dimension

, which are the result of joining linear hyperplanes over the
boundaries defined in the input space. In any region the model
is composed by a linear combination of linear hyperplanes,
and the transitions at the boundaries are governed by the
absolute value function. Therefore, this model inherits some
properties from the absolute value function: it is continuous
but not derivable along the boundaries. Moreover, the second-
and higher order derivatives are zero except at the boundaries
where they are discontinuous.

To overcome this drawback, the SPWL model substitutes the
absolute value function for a smooth and derivable function in
order to smooth the transition at the boundaries dividing the
input space [10]. Several possibilities exist to smooth the ab-
solute value function allowing, at the same time, a parametric
control of the “sharpness” of the transition. We have proposed
the following smoothing function:

(8)

where is a parameter that allows controlling the smoothness
of the transition. Finally, the proposed SPWL model is given by

(9)

The training of this network is carried out by means of an op-
timization method equivalent to the method proposed by Chua
for the canonical piecewise linear model [12].

Let us consider that we want to approximate a mapping
using a set of input–output samples ( ),

with . Assuming

that , we can eliminate one coefficient from each
boundary by rewriting , as

(10)
where denotes theth boundary evaluated at. Finally,
taking into account that and in (9) are now a vector

, and a scalar, respectively, our generic SPWL
model, with boundaries, can be written as

(11)

The model parameters can be grouped into two vectors:
grouping the coefficients associated to the linear combination
of components

(12)

and , grouping the parameters defining the boundaries of the
domain space

(13)

The error function to be minimized is given by

(14)

The algorithm begins by fixing the initial location of each parti-
tion boundary, i.e., the vector . Generally, they are chosen ran-
domly. Then, the approximation error is a quadratic
function of , and its minimum is easily obtained by least
squares.

Once the optimal parameters (for a given initial parti-
tion) are calculated, the algorithm estimates a new optimal par-
tition . This partition is found by calculating the gradient
and the Hessian , which specify the optimal searching direc-
tion to modify according to

(15)

The gradient and the Hessian are given by

(16)

(17)

where is the vector of errors. is given by

(18)
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TABLE I
SMALL -SIGNAL RESULTS USING INDIVIDUAL NETWORKS FOREACH OUTPUT. THE NUMBER BETWEEN PARENTHESESINDICATES

THE NUMBER OF BASIS FUNCTIONS EMPLOYED FOREACH MODEL

TABLE II
SMALL -SIGNAL RESULTS USING A SINGLE NETWORK. THE NUMBER BETWEEN PARENTHESESINDICATES THE

NUMBER OF BASIS FUNCTIONS EMPLOYED FOREACH MODEL

and is the following matrix:

...
(19)

where are matrices with elements
, and is the matrix

with elements . The second term of
(17) involves the second derivative of the SPWL model

, which is a localized function along the bound-
aries: only points close to the boundaries contribute to this term.
In practice, it has been observed that a great computational
saving (without any noticeable degradation) can be achieved
by dropping out this term, that is, we use .
Once the search direction (15) has been calculated, the new
boundaries are estimated as

(20)

where . With this new partition,
the process is repeated: the optimal coefficientsare calcu-
lated for these new boundaries, and then the optimal partition is
re-estimated again, until a given error is reached.

IV. RESULTS

In this section, we present the results obtained to model the
NE72084 MESFET from experimental measurements with the
two networks described in the previous section, and they are
compared with those provided by the MLP network as an appro-
priate reference. Moreover, a brief study of the computational
burden needed to train the models is also presented. Although
here we are only presenting results for a MESFET transistor, the
proposed models can also be applied to HEMT transistors.

A. Small-Signal Results

For the small-signal model, we dispose of a set of mea-
surements of the parameters included in the Taylor series (1)

,
which compose the output of the small-signal model. These
parameters were measured at different bias voltages in the
following grid: from 3 to 6 V in steps of 0.25 V, and
from 2 to 0 V in steps of 0.05 V; thus giving a total of 533
input–output patterns. In our experience, because of the small
number of measurements and of the low level of noise in the
samples, the partitioning of this particular data set into training
and testing sets does not necessarily improve the network’s
generalization performance. Therefore, the whole measurement
data set is used for training.

In the first approach, we use an individual network to model
each output of this model. This approach leads to the results
presented in Table I. The accuracy of the models is measured
in terms of the signal-to-noise ratio (SNR), in decibels, for each
scalar output. It can be seen that the SPWL and the GRBF model
provide better results than the MLP in almost all of the func-
tions to be modeled. However, there is not a network that pro-
vides the best results globally. This is due to the different na-
ture of the basis functions of each network. Depending on the
shape of the function to be modeled, a different basis function is
more suitable. Therefore, an obvious solution would be to use a
mixed model combining these two kinds of networks, selecting
for each output the network providing the best results. This so-
lution, although it provides good results, presents a relatively
high number of parameters to be implemented in a simulator.
In order to reduce the number of parameters, a second approach
consists in using a common network to perform the whole map-
ping globally. Table II presents the results obtained with such
a solution. It can be seen that, in this case, the SPWL model
provides slightly better results than the GRBF. These results are
slightly lower than those provided by using a different network
for each output, but the saving in the number of parameters is
relevant. In general terms, the second approach is preferable: it
provides a reasonable solution with a reduced number of param-
eters, especially when compared with conventional approaches
such as look-up tables. For instance, Fig. 2 shows the intermod-
ulation contours obtained with the model GRBF(8), with 114
parameters (a look-up table would need, in this case,
parameters), and compares them with those obtained from ex-
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(a)

(b)

Fig. 2. Contours of theC=I ratio of the NE72084 MESFET: (a) using the
measured parameters and (b) using the GRBF(8) network model.

perimental measurements. From the figure, the fidelity of the
intermodulation prediction can be seen.

B. Large-Signal Results

For the large-signal model, we dispose of a set of 4050
measurements arranged in a grid of the four input variables
( and ). A set of 1000 samples randomly
selected was employed for training, and another set of 1000
samples was used as a test set to avoid overtraining. The final
results are evaluated over the whole data set.

The results obtained using the different neural models are
shown in Table III. The results presented correspond to solu-
tions with a low number of parameters to facilitate the imple-
mentation of the solution in simulators. In this case, the SPWL

TABLE III
LARGE-SIGNAL RESULTS. THE NUMBER BETWEEN PARENTHESESINDICATES

THE NUMBER OF BASIS FUNCTIONS EMPLOYED FOREACH MODEL

Fig. 3. Experimentally measured MESFET characteristic (V = �2 V,
V = 2 V) (continuous line) and SPWL modeled surface (dashed line).

TABLE IV
TRAINING TIME FOR THE DIFFERENTMODELS

model clearly provides the best results. The GRBF network, on
the other hand, provides results similar to the MLP. As an ex-
ample, Fig. 3 compares the measured characteristic and
the approximation obtained with the SPWL with 12 neurons for
a bias point of V and V.

C. Computational Burden of the Models

Another interesting aspect to be considered is the computa-
tional burden associated to each model. Table IV shows a com-
parison of this cost, presenting the training time of each model
under the same training conditions. It can be seen that, with re-
spect to the computational burden, the SPWL network presents
the fastest training, and the GRBF is faster than the MLP net-
work. Moreover, it can be taken into account that all these net-
works present the problem of local minima, and several simula-
tions have to be performed to obtain a suitable solution, which
increases the penalty for a slow training.
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Fig. 4. Modular neural network structure for global modeling of MESFET/HEMT transistors.

V. GLOBAL MODEL PROPOSED

In the previous sections, we have treated the large- and small-
signal problems of modeling a transistor separately. We have
obtained a model for each regime. Therefore, one model must be
selected in function of the kind of regime in which the transistor
will work.

In order to avoid this unrealistic situation, we propose to use
a single global model to completely characterize the transistor’s
behavior. This model combines the two best submodels pre-
viously obtained: one for the large-signal regime, and another
one for the small-signal regime. The global model is obtained
by weighting the outputs of the two submodels (modules) in
a reasonable way. For example, it is possible to use a simple
fuzzy combiner (Fig. 4 shows this approach). The fuzzy com-
biner weights each module taking into account the distance,,
of the instantaneous voltages with respect to the bias point

(21)

and using this distance, the membership function for the small-
signal module is given by

(22)

whereas for the large-signal regime, we have
. The parameters and defining the transition points

between the two modules take in this case the values
and V. These values allow an appropriate smooth
transition between the large- and the small-signal modules. This
global solution provides a single model that would be able to
adequately characterize the whole behavior of a transistor.

VI. CONCLUSION

In this paper, we have presented a comparative study of sev-
eral neural network solutions for the large- and small-signal
modeling of MESFET and HEMT transistors.

For the small-signal regime, when using a single network,
the SPWL model provides slightly better results than the GRBF
network. However, when a very high accuracy is needed, the

option of a mixed model, using independent SPWL and GRBF
networks for each output, can be employed, paying the price of
a higher number of parameters. For the large-signal behavior,
the SPWL model provides clearly the best results.

Relative to the computational burden, the SPWL has proved
to be the more efficient network, and the GRBF network, in any
case, requires a lower computational burden than the MLP.

Finally, we have proposed a global model combining in a
simple way the submodels obtained for both the large- and
small-signal regimes. This model allows a whole characteriza-
tion of the device, avoiding the need of working with several
models for the same device.
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