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Stationary Phase Method Application for the Analysis
of Radiation of Complex 3-D Conducting Structures

Olga M. Conde, Jesús Pérez, and Manuel Felipe Cátedra

Abstract—The Stationary Phase Methodis used to calculate the
radiation pattern of antennas on complex structures. Physical op-
tics (PO) approximation has been applied for the induced currents.
The problem is stated directly over the parametric surfaces used
to model the geometry and no translation of geometrical formats
is required. The integral comes from the contribution of certain
points on the surface (specular, boundary and vertices) where the
phase term of the integrand presents a stationary behavior. In gen-
eral, the asymptotic integration behaves similar to the numerical
one but being more efficient in execution time than the latter.

Index Terms—Asymtotic methods, complex structures, paro-
metric surfaces, physical optics, radiation, stationary phase
method.

I. INTRODUCTION

T HE analysis of radiation of on-board antennas is still a
problem when the structure presents arbitrary shapes. A

numerical solution is essential in order to avoid the always
cumbersome and expensive trial-and-error measurement
process in anechoic chambers. Appropriate solutions to the
problem should combine the knowledge of two different topics:
1) the geometrical design world and 2) the electromagnetic
(EM) analysis field. In the first case, a suitable and accurate
representation of the body should be applied while keeping
the required storage requirements as low as possible. For the
present approach, this is achieved by using parametric surfaces
called nonuniform rational b-splines (NURBS) [1], [23].

The radiation problem is tackled by establishing the equiva-
lent current problem. Under the operating conditions, the elec-
trical size of the structure reaches hundreds or thousands of
making the analysis by the sampling of the induced current eco-
nomically unaffordable. Evidently, the technique to be applied
should be chosen from the group of high-frequency techniques.
Physical optics (PO) [2], [3] has revealed itself as one of the
more appropriate techniques [4], and because of this it has been
selected for the case we shall deal with. PO approaches the in-
duced current as the one attributed only to the impressed field.
Afterwards, in order to obtain the radiated field this current has
to be integrated. If a typical numerical technique such as the
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Gauss quadrature [5] is applied, the same problem of ineffi-
ciency arises owing to the rapid oscillation of the integrand’s
phase.

The stationary phase method (SPM) is a mathematical ap-
proach that takes advantage of the rapidly varying integrand’s
phase [6]–[16]. The solution to the integral is given by the con-
tribution of certain points distributed over the surface of the
body. If we look carefully through the physical meaning of these
contributions, they resemble in same way the typical contribu-
tion points in traditional asymptotic techniques such as geomet-
rical optics and geometrical theory of diffraction/uniform theory
of diffraction (GO/UTD) [17]. This fact seems logical as we are
dealing with a high-frequency approximation of the electromag-
netic (EM) problem.

Several have been the applications of the SPM in the scope
of EM analysis. To the author’s knowledge, most of them are
related to integration in one dimension and very little informa-
tion has been obtained regarding two-dimensional (2-D) inte-
gral problems. In one of the earliest applications [18], a modi-
fied SPM is applied to compute the far-field radiation patterns
of paraboloid reflector antennas. In [19], the far field of a pyra-
midal-horn antenna is obtained numerically in one-dimension
(1-D) and asymptotically in the other. Later, Ikuno in [20] ap-
plied the PO approach in the evaluation of the scattered field
from a 2-D nonconvex scatterer taking into account only the
contribution of points of the first kind. More recently, and with
the collaboration of Nishimoto [21], he has extended the com-
bination PO/SPM to the scattering analysis of smooth three-di-
mensional (3-D) objects described in terms of polar coordinates

. Again, only stationary points of first kind are included
in the analysis. In [21], they also advised about the difficulty of
finding a uniform asymptotic evaluation for double integrals. In
[22], Nakanoet al.employed the SPM to integrate the resulting
currents for printed wire antennas to obtain the radiation pattern
at a far-field point.

Concerning the combination of geometrical modeling with
the SPM, good results were achieved in [23] where the analysis
of the scattering field and radar cross section (RCS) of com-
plex targets were studied. In that case, the impressed field was
a planewave and the observation directions were located along
the monostatic direction. In current work, the SPM has been re-
formulated and it has been used to see how it performs with
regard to a radiation problem. The incident field is now a spher-
ical wavefront, the source is positioned over the surface of the
structure, and the observation direction can be any given direc-
tion, in order to calculate the radiation pattern.

0018–926X/01$10.00 © 2001 IEEE
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II. PO INTEGRAL AND THE SPM

The integral that accounts for the radiated field when the on-
board antenna generates the incident wave is found after the for-
mulationof theStratton-Chuintegralequations[24].Theradiated
field at an arbitrary point is provided in terms of tangential and
normal components of the total fields on the surface of the
body. Field vectors are time harmonic with dependence on.

The incident wavefront is assumed spherical, i.e., the antenna
radiates fields with spheres as surfaces of constant phase. Any
available antenna could be modeled as a set of infinitesimal
electric or magnetic dipoles considered as the typical spherical
sources. The infinitesimal dipoles of the antenna model radiate
under far-field observation [3]. The impressed electric field can
be represented by

(1)

where
electric field at the sampling point due to the in-
finitesimal source once the phase term has been
extracted;
surface point where the current is determined;
represents the position coordinates of the source
dipole in the absolute reference system;
propagation constant (the wavenumber) which
becomes larger in the range of high-frequency
analysis;
is the unit incident wave direction.

The final expression for the radiated field in the observation
direction becomes

(2)

In the integrand of (2), the fractional factor represents the am-
plitude variation over the surface and the exponential term is re-
lated to the optical path [6], [7]. When the shape of the surface is
smooth, the variation of parameters(normal vector to the sur-
face), (unit incidence direction) and(distance source-sam-
pling point) is also smooth giving rise to a slowly varying am-
plitude. On the other hand, the variation of the optical path is
related to the target size in terms of wavelengths; if this size is in
the order of several’s, the exponential oscillates
very quickly. The phase exhibits maximum or minimum values
related to the length of the optical path followed by the field. As
the amplitude variation is smooth, terms with oscillating phase
and similar amplitude cancel each other in the integral summa-
tion except in the area where the phase remains roughly con-
stant, i.e., the stationary points.

The SPM is a mathematical procedure that solves integrals on
the shape

(3)

Fig. 1. Localization of the critical points over the Bézier surface.

where
integration domain;

-dimensional variable that underlies the
problem, the two independent variables
that define each Bézier surface;

, slowing analytical functions in the integration
domain;
real factor with a large value.

Similarities can be extracted from integrals (2) and (3),
functions and can be clearly identified:

, and .

III. CONTRIBUTIONS TO THEPO INTEGRAL

From the mathematical point of view, the SPM solves the in-
tegral following paths of constant level where the phase has a
stationary behavior [8]. The phase term is expanded in Taylor
series around the stationary points. In the end, the solution is cast
as a descending power series in the parameter. The principal
contributions to the double integral come from a small arbitrary
area of certain points, called critical points of the integral, lo-
cated internally or on the boundary of the integration domain
[6], [9].

In the on-board antenna application, each parametric surface
contributes to the integral by means of three different kinds of
critical points [6], [10], [12], see Fig. 1.

A. Internal Critical Points

These points present a stationary behavior in the phase for
both dimensions of the Bézier surfaceand . The previous
statement is translated, from a mathematical point of view, into
the system of two nonlinear equations (4). The solution of the
system gives rise to the parametric values of the stationary
points involved in the analysis

(4)

A trivial solution of the system (4) is the case of coincident
incidence and observation directions ,

. The points that accomplish with this condition are
those where the observation direction is hidden by the struc-
ture. The solution is found after the minimization of a
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function that is formulated in terms of geometrical pa-
rameters as

(5)

Other solutions of (4) are also the specular points that accom-
plish with the Snell’s Law. These points are found after the gen-
eralization of Fermat’s Principle by the minimization of a dis-
tance function [3], [25], [26]. This function is composed of two
partial lengths: and . The term accounts for the path
from the source to the surface point whereasis the distance
between the surface point and a plane perpendicular to the ob-
servation direction located at a distance much greater than the
structure dimension,

(6)

The minimization of takes us to the Geometric Optics
solution for reflection points. In the minimization process of (5)
and (6), a numerical algorithm based on the conjugate-gradient
method [5] with the Polak–Ribiere formula is applied. Once the
point location is determined, the next step consists of
calculating its contribution to the integral. The contribution de-
pends on the characteristics of the phase function. The notation
to be utilized is

(7)

When we face a simple isolated internal point that is non-
degenerate and does not present any singularity, the following
contribution is considered [6], [8], [10], [12]–[16]:

(8)

Values and depend on whether the stationary point is a
local minimum, a local maximum or a saddle point [9], [15].
Moreover, when the interior stationary point lies directly over
one of the boundaries of the surface, the contribution is half of
(8), [8], [12]–[15]. Additionally, as special cases we deal with
the following singularities:

1) Degenerate stationary points where the Hessian matrix
of is singular . In this case,

Fig. 2. Four boundaries of a parametric patch with their tangent vectors.

the contribution has a lower order in the parameter,
. The contribution for a squared domain as the

parametric one is shown in [12], [29].
2) Internal stationary points located at a corner or vertex of

the domain; different expressions [15], [29] are applied
for the case of a local extremum (max-
imum or minimum) or a saddle-point .

If several stationary points are found and provided they are
well separated, their contributions must be added to account for
the total effect of the structure. In general, internal critical points
are assumed to be isolated, i.e., they are not close to each other
and consequently their areas do not overlap. The fact of non-
isolated critical points would reflect that we are dealing with a
caustic line where the field comes from an infinite number of
points on the surface and, therefore, the radiated field becomes
infinite in the observation direction.

B. Critical Boundary Points

As their name reveals, they are positioned over the boundaries
that circumvent the area of the parametric patch. For each Bézier
surface four boundaries are analyzed: one for each line of the
parametric square, Fig. 2: , , and

. At each boundary, one parametric coordinate is fixed
and the phase function must exhibit a stationary behavior in the
remaining coordinate

(9)

From a physical point of view, this condition leads us to the
Keller’s cone, i.e., the incidence and observation directions
( ) make equal angles with the vector tangent to the
boundary curve, or . To find these critical points, instead
of formulating a 1-D minimization process, a root finding
algorithm is stated following a technique based on Brent’s
algorithm that combines root bracketing, bisection, and inverse
quadratic interpolation [5]. This technique has been found
faster than minimization, as well as more robust.

Before displaying the contributions for each point, the fol-
lowing remark in notation is made:

(10)
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Fig. 3. Boundary critical point located on boundaries that join two parametric
surfaces with continuity in their normal vectors.

When a point on a boundary is isolated from neigh-
boring points, its contribution to the PO integral is performed
computing the following expression [12], [16]:

(11)

The condition for isolation is driven by the parameterde-
fined as

(12)

When is lower than a specific value, the boundary point is
coupled with a critical interior point. Coupled points are taken
into account by formulating the contribution in terms of a tran-
sition function such as the uniform Fresnel integral,, with
the argument [16]

(13)

Expression (13) is applied whenever . When
, large parameter for the Fresnel integral, the asymp-

totic formula (11) is employed. Again, some cases have to be
approached specifically:

1 A boundary point coincident with an internal crit-
ical point, its contribution as a boundary point is dis-
charged because one half of expression (8) accounts
for it.
2 Points located at boundaries shared between two
Bézier patches with continuity in the normal vector,
Fig. 3. Both contributions, one for each surface, cancel
each other out.

C. Vertices Points

These are points where the tangent vector to the boundary do-
main presents discontinuity. In the squared parametric domain,
the vertices are obviously located at the four corners with values
for : (0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0). No con-
dition has to be satisfied; vertices points contribute for all radi-
ation directions. If one vertex has been detected previously as
a boundary point or as an interior point, its contribution is now
discharged.

The same notation is adopted, where now, the superscript
denotes the particularization for the parametric coordinates of
each vertex . At this point, the parameters that allow us

to switch between the asymptotic and the uniform expressions
and are checked for each variableand

(14)

When and , the vertex contribution is
[12]

(15)

However, when the parameters are lower than the required
limit; in other words, the vertex point is not isolated, the contri-
bution becomes

(16)

As the integration domain is , i.e., the illumi-
nated region discrete points (specular, boundary, vertex) should
be visible from the source. To prove this fact, Culling’s condi-
tion is verified. Once each kind of contribution
is calculated, the total value of the PO integral for a specific ra-
diation direction becomes from the summation of all the SPM
contributions.

We have to keep in mind that the final summation of all con-
tributions yields only to the PO solution for the radiated field.
This has been the assumption for the statement of the problem
and for the approach followed to reach the final expression for
the integral. No diffraction effects are taken into account. For
this last task, additional corrections to the PO solution should
be considered in terms of the physical theory of diffraction [27],
equivalent current method [28], etc.

One of the main premises of the PO approach is to assume
current only on the illuminated region of the structure, there-
fore, the line that splits the structure into shadowed and illu-
minated regions should be determined and considered as a new
boundary of the model. For the automatic determination of the
shadow boundary, a classification of surfaces is made according
to its visibility from the source point. As result, three groups
of surfaces can be obtained: 1) totally illuminated surfaces; 2)
completely shadowed surfaces; and 3) partially illuminated sur-
faces. The shadow boundary determination is performed by the
automatic recursive subdivision in halves of the partially illu-
minated surfaces for both parametric dimensionsand [29].
The contribution of the boundaries of the resulting illuminated
subpatches will approximate the effect of the shadow boundary.

IV. NUMERICAL RESULTS

Comparisons between the numerical and the asymptotic inte-
gration of PO currents are shown. All the simulations have been
performed in a silicon graphics machine called Power Challenge
(size L) and based on R10000 microprocessors with a peak per-
formance for each microprocessor of 380 MFlops.
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(a)

(b)

Fig. 4. Radiation pattern cut for an infinitesimal electric dipole facing a flat sur-
face: (a) vertical dipole, parallel to -axis. (b) horizontal dipole, parallel to -axis.

A. Plate

As a preliminary result, an infinitesimal electric dipole cen-
tered and 25 above a square plate is analyzed. In
[30], the CGM-FFT solves the electric field integral equation
(EFIE) for the structure. Fig. 4 displays radiation patterns with
comparisons between numerical (continuous line) and asymp-
totic (dashed line) integration procedures and the rigorous solu-
tion from [30] (dotted line). The antenna is vertically oriented
with respect to the surface [Fig. 4(a)] or parallel to the facet
[Fig. 4(b)]. For both configurations we analyze the radiation
pattern cut, . The efficiency attained is reflected by the
computation time. While the numerical integration took 17 min
9 s, the asymptotic integration obtained the solution in only 7 s.

B. Fuselage

A combined curved-planar structure is represented in Fig. 5
with four NURBS surfaces. It resembles the fuselage of an air-
plane with the flat facets acting as wings. At 3.0 GHz, the elec-
trical size is with a surface area of 3755.
The source is an infinitesimal electric dipole located 10over
the cylinder with a dipole moment value of .
The radiation pattern cut is , transversal to the cylinder
axis, with a sweep in angle and displaying the Ecomponent is
shown in Fig. 6. The continuous-thick line (PO) corresponds to
the analysis with numerical integration, the continuous thin-line

Fig. 5. Fuselage geometry modeled with 4 NURBS surfaces.

Fig. 6. Radiation pattern cut of an infinitesimal electric dipole over the
fuselage. E-component.

Fig. 7. Shadow boundary on a spherical sector with the source out of the axis.

(SPM-1st) shows the contribution of only the specular points and
the dashed thick-line (SPM-all) represents the contribution of the
whole set of points (specular, boundary and vertices points). The
analysis with numerical integration took 46 min 34 s, whereas,
the asymptotic only needs 1 min and 32 s, respectively. Fig. 6 re-
veals the importance of considering second and third order points
contribution. The traditional first order points contribution is not
enough to achieve a satisfactory result.

C. Spherical Sector

The effect of the shadow boundary is analyzed for the ge-
ometry sketched in Fig. 7. This figure depicts a spherical
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(a)

(b)

Fig. 8. Radiation pattern cut of the on-board antenna over the spherical sector.
(a)E�-component. (b)E�-component.

sector with a radius of 40. The source is an infinitesimal
electric dipole parallel to -axis, elevated 20 over the sur-
face, and displaced from the-axis to originate a nonsym-
metrical shadow boundary. The angular coordinates of the
source are , and its dipole moment is

.
Results comparing numerical (continuous-line) and asymp-

totic (dashed-line) integrations for a constant cut are
displayed in Fig. 8. For this radiation pattern, the shadow
boundary does not introduce any modification and, therefore,
it is not considered. Fig. 9 reveals the effect of the shadow
boundary in a constant cut for the E component.
In Fig. 9(a) only the contribution of specular, vertices, and
lateral boundary points is considered. However, in Fig. 9(b),
the contribution of the boundary points located over the
shadow boundary is also added, giving rise to an improve-
ment for the observation directions with ( values greater
than 150). The time for the numerical integration was 20
min 27 s, whereas, the asymptotic one took 5 s without
the calculation of the shadow boundary, and 17 s with its
computation.

(a)

(b)

Fig. 9. Radiation pattern cut 45for the spherical sector. E-component.
(a) Without shadow boundary effect. (b) With shadow boundary effect.

V. CONCLUSION

The SPM has been applied in the resolution of the integral that
accounts for the radiated field associated with antennas mounted
on complex geometries. The surface of the body is represented
by a set of parametric surfaces, which can be directly defined
by the most common geometric modeling tools. Closed-form
expressions have been obtained for the contributions of the Sta-
tionary Phase Method (specular, boundary and vertices points)
in the context of NURBS parametric modeling.

One of the drawbacks is the behavior when the antenna is re-
ally quite close to the surface. A hybrid scheme is needed to
deal with this feature. The region under the antenna should be
treated following a rigorous procedure such as the MFIE, or the
EFIE, and the structure far from the antenna point following the
asymptotic technique. The causes that bring about the method
failure are inherent to the statement of the problem. PO approx-
imation fails because this case represents a typical spherical in-
cidence with no possibility of local plane approximation. More-
over, the premises for the SPM application also fail due to an
uneven behavior of the amplitude function (fast variation of the
radial component of the incident field due to a source point) and
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hence, the principle of phase cancellation is not accomplished.
An additional condition to be satisfied by the geometry for an
appropriate application of PO approximation is the fact of pre-
senting smooth surfaces with a low number of discontinuities.
To deal with such discontinuities, an EM complement such as
PTD or the method of equivalent currents should be included.
An additional contribution due to the effect of the creeping wave
on the shadow region should also be added, this effect could be
considered through the introduction of the Fock wave [31]. An-
other point of further research would be the improvement of the
transition function. This function gives rise to a uniform for-
mulation for the case of a first order stationary phase point ap-
proaching a boundary of the integration domain. In literature,
this problem is considered difficult [6], [21] and no simple so-
lution has yet been found. Finally, this work represents an ef-
ficient component in order to be introduced in a more complex
computational tool able to analyze, in a complete and rigorous
way, the effect on arbitrary structures on the radiation pattern of
boarded antennas.
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