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Stationary Phase Method Application for the Analysis
of Radiation of Complex 3-D Conducting Structures

Olga M. Conde, Jesus Pérez, and Manuel Felipe Céatedra

Abstract—The Stationary Phase Method used to calculate the Gauss quadrature [5] is applied, the same problem of ineffi-
radiation pattern of antennas on complex structures. Physical op- ciency arises owing to the rapid oscillation of the integrand’s
tics (PO) approximation has been applied for the induced currents. phase.

The problem is stated directly over the parametric surfaces used . . .
to model the geometry and no translation of geometrical formats The stationary phase method (SPM) is a mathematical ap-

is required. The integral comes from the contribution of certain Proach that takes advantage of the rapidly varying integrand’s
points on the surface (specular, boundary and vertices) where the phase [6]-[16]. The solution to the integral is given by the con-
phase term of the integrand presents a stationary behavior. In gen- tribution of certain points distributed over the surface of the
eral, the asymptofic integration behaves similar to the numerical 1,y |f\e look carefully through the physical meaning of these
one but being more efficient in execution time than the latter. I . . .
contributions, they resemble in same way the typical contribu-
Index Terms—Asymtotic methods, complex structures, paro- tjon points in traditional asymptotic techniques such as geomet-
mgmg dsurfaces' physical optics, radiation, stationary phase |jcq| optics and geometrical theory of diffraction/uniform theory
' of diffraction (GO/UTD) [17]. This fact seems logical as we are
dealing with a high-frequency approximation of the electromag-
I. INTRODUCTION netic (EM) problem.

HE analysis of radiation of on-board antennas is still a Several have been the applications of the SPM in the scope

problem when the structure presents arbitrary shapes.o EM analysis. To the author’s knowledge, most of them are

numerical solution is essential in order to avoid the alwa: rglated to integration in one dimension and very little informa-

cumbersome and expensive trial-and-error measuremeft has been obtained regarding two-dimensional (2-D) inte-

process in anechoic chambers. Appropriate solutions to _@l problems. In one of the earliest applications [18], a modi-

problem should combine the knowledge of two different topic _ed SPM is applied to compute the far-field radiation patterns

1) the geometrical design world and 2) the eIectromagneﬂEparabOIOid reflecto_r anteqnas. In [19].’ the ff"“ field o_fapyr.a-
(EM) analysis field. In the first case, a suitable and accurd idal-horn antenna is obtained numerically in one-dimension

representation of the body should be applied while keepi -D) and asymptotically in the other. Later, Ikuno in [20] ap-

the required storage requirements as low as possible. For Sd the PO approach in the evaluation of the scattered field

present approach, this is achieved by using parametric surfai gy a 2.'D nonconvex scatt.erer .taklng Into account only_the
called nonuniform rational b-splines (NURBS) [1], [23] contribution of points of the first kind. More recently, and with

The radiation problem is tackled by establishing the equiv, 1€ cpllaborauon of Nishimoto [.21]' he ha§ extended the com-
lent current problem. Under the operating conditions, the el nation PO/SPM to the scattering analysis of smooth three-di-

trical size of the structure reaches hundreds or thousanifs Ofmensional (3-D) objects described in terms of polar coordinates

making the analysis by the sampling of the induced current ecfcg-e’ ). Again, only stationary points of first kind are included

nomically unaffordable. Evidently, the technique to be appliéa the analy;is. In [21], they also adyised about the_ difficulty of
ding a uniform asymptotic evaluation for double integrals. In

houl h f h f high-f hni
should be chosen from the group of high-frequency tec nlqulf 2], Nakanoet alemployed the SPM to integrate the resulting

Physical optics (PO) [2], [3] has revealed itself as one of t . X . o
more appropriate techniques [4], and because of this it has pSyfrents for printed wire antennas to obtain the radiation pattern
’ g,a far-field point.

selected for the case we shall deal with. PO approaches the ) L . . .
dConcernmg the combination of geometrical modeling with

duced current as the one attributed only to the impressed fie SPM d I hieved in 1231 wh h vsi
Afterwards, in order to obtain the radiated field this current h e » goodresu ts were achieved in [ ].W ere the analysis
the scattering field and radar cross section (RCS) of com-

to be integrated. If a typical numerical technique such as A ; . .
g yp g plex targets were studied. In that case, the impressed field was

a planewave and the observation directions were located along
i . . the monostatic direction. In current work, the SPM has been re-
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II. PO INTEGRAL AND THE SPM - fidy . ¥y )
The integral that accounts for the radiated field when the on- .ﬂr_"""" ! i
board antenna generates the incident wave is found after the for- v, el L =L
mulation ofthe Stratton-Chuintegralequations[24]. The radiated E

field at an arbitrary poinf'is provided in terms of tangential and 1
normal components of the total fieltﬂ% H on the surface of the
body. Field vectors are time harmonic with dependence oh
The incident wavefront is assumed spherical, i.e., the antenna
radiates fields with spheres as surfaces of constant phase. Aere

Fig. 1. Localization of the critical points over the Bézier surface.

available antenna could be modeled as a set of infinitesimalH integration domain;
electric or magnetic dipoles considered as the typical spherical? n-dimensional variable that underlies the
sources. The infinitesimal dipoles of the antenna model radiate problem, the two independent variables, v)
under far-field observation [3]. The impressed electric field can that define each Bézier surface;
be represented by g(Z), f(Z) slowing analytical functions in the integration
_ - ; - domain;
Ey(i") = Eo(i)e™ ™ d = |ki| = | = sourcn| (1) k real factor with a large value.
where Similarities can be extracted from integrals (2) and (3),
Eo(7) electric field at the sampling point due to the infunctions g() and f(z) can be clearly identifiedf =
finitesimal source once the phase term has be€m.LUMINATED, 7 = 2 anddx 1 dzs = dudv = ds' = |77, x7,[.
extracted;
7 surface point where the current is determined; [Il. CONTRIBUTIONS TO THEPO INTEGRAL

Tsourcr  lepresents the position coordinates of the SOUrce o, the mathematical point of view, the SPM solves the in-
dipole in the absolute reference system; egral following paths of constant level where the phase has a

k propagation con_stant (the Wavem_meer) whic ationary behavior [8]. The phase term is expanded in Taylor
becomes larger in the range of h|gh—frequenc¥ . . . o
. eries around the stationary points. In the end, the solution is cast
» analysis; as a descending power series in the paraniet&he principal
kr is the unit incident wave direction.

The final expression for the radiated field in the observatiocnonmbunons.to th? double '”teg_“?" come from a small arbitrary
Ly area of certain points, called critical points of the integral, lo-
directionks becomes

cated internally or on the boundary of the integration domain
Bogmy = =3 ¢ [6], [9].
s(7) = A7 In the on-board antenna application, each parametric surface
[,;.S % [(EO(F’) % /;‘1) x il]] s contributes to the integral by means of three different kinds of
\/SILLUMINATED

P critical points [6], [10], [12], see Fig. 1.

eikks T =d) g (2) A. Internal Critical Points

In the integrand of (2), the fractional factor represents the am--trﬁ?e pO'T“S prefstintg ,st_atlona][y behgwo_rr;]n the p_hase for
plitude variation over the surface and the exponential term is rt?eq Imensions of the Bezier surlacéandv. The previous

lated to the optical path [6], [7]. When the shape of the surfaceSiatement is translated: from a mat.hemancal point of'V|ew, into
smooth, the variation of parametérgnormal vector to the sur- the system of two nonlinear equations (4). The solution of the

face),k; (unit incidence direction) and (distance source-sam-SYStém gives rise to the parametric values of the stationary
pling point) is also smooth giving rise to a slowly varying amP0iNts(us, vs) involved in the analysis
plitude. On the other hand, the variation of the optical path is

related to the target size in terms of wavelengths; if this size is in af

the order of several’s, the exponentiati**s ™~ gscillates Fulus,vs) =0 u (s e) =0

very quickly. The phase exhibits maximum or minimum values { Folus,vs) =0 = of o

related to the length of the optical path followed by the field. As 0 ( : =0
Ug,Vg

the amplitude variation is smooth, terms with oscillating phase
and similar amplitude cancel each other in the integral summa- (
tion except in the area where the phase remains roughly con- =
stant, i.e., the stationary points.

The SPM is a mathematical procedure that solves integralson . . ) . o
the shape A trivial solution of the system (4) is the case of coincident

incidence and observation directiohs = kr, ¥ = acos(ks -
I— N FE dut dey - - de,, kr) = 0. The points that gccomph;h vy|th .thIS condition are
/H 9(@)e oo n those where the observation direction is hidden by the struc-
Z=(x1,22, "+, Zn) (3) ture. The solutiorfus, vs) is found after the minimization of a

s ]fz) N Fu|('u,5,'1;5) =0 (4)
( Us kz) . FU|('U5,'U5) =0.

= b e D
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function s(«, v) that is formulated in terms of geometrical pa-
rameters as

s(u, v) 281£U7 U_? + 32(27 UZ _
={[kr - k1)* = |k1[ks - kr]}
+ {[Er - Br)? — [ks - k1))

kr(u,v) =7 (u,v) — TSOURCE. (5) Fig.2. Four boundaries of a parametric patch with their tangent vectors.

Other solutions of (4) are also the specular points that accom-
plish with the Snell's Law. These points are found after the gen-  the contribution has a lower order in the paraméter
eralization of Fermat’s Principle by the minimization of a dis- O(k=(/9)). The contribution for a squared domain as the
tance function [3], [25], [26]. This function is composed of two parametric one is shown in [12], [29].
partial lengthsid; andd,. The termd; accounts for the path  2) Internal stationary points located at a corner or vertex of
from the source to the surface point wherdass the distance the domain; different expressions [15], [29] are applied
between the surface point and a plane perpendicular to the ob- for the case of a local extremupiy, £, > (fz,)? (max-
servation direction located at a distance much greater than the imum or minimum) or a saddle-poirff}, £, < (fi,)*.
structure dimensiond;y If several stationary points are found and provided they are
well separated, their contributions must be added to account for
d(u, v) =di(u,v) + d2(u, v) R the total effect of the structure. In general, internal critical points
= {7 (u,v) — Fsourcel} + {dinr — ks -7 (u,v)}.  are assumed to be isolated, i.e., they are not close to each other
(6) and consequently their areas do not overlap. The fact of non-

o ) _ isolated critical points would reflect that we are dealing with a
The minimization ofi(u, v) takes us to the Geometric Opticscaystic line where the field comes from an infinite number of

solution for reflection points. In the minimization process of (Sjoints on the surface and, therefore, the radiated field becomes
and (6), a numerical algorithm based on the conjugate-gradigi¥nite in the observation direction.

method [5] with the Polak—Ribiere formula is applied. Once the

point Iogatlc_)n(us, U.S) is determm_ed, the next step c_:ons_lsts 9% critical Boundary Points

calculating its contribution to the integral. The contribution de- ] - )
pends on the characteristics of the phase function. The notatiod'S (€ir name reveals, they are positioned over the boundaries

to be utilized is that circumvent the area of the parametric patch. For each Bézier
surface four boundaries are analyzed: one for each line of the
7 =3dlus,vs), f° = flus,vs) parametric square, Fig. 2;. = 0.0, u. = 1.0, v. = 0.0 and
S 1uS . S or  or v. = 1.0. At each boundary, one parametric coordinate is fixed
ds” =|ry X 7| = ERaI (o) and the phase function must exhibit a stationary behavior in the
nens remaining coordinate
s _ Pf s _ O
e 8u2 (us,vs) “ dudv (ug,vs) Ue =0 or Ue = l=a= Ue
S _ ﬁ{: o fS = ﬁ; o = fola,ve) = 0= (ks — kr) - 7oliaw) =0
v (us,vs) v (ug,vs) Ve =0 or ve=1=>a=uv.
When we face a simple isolated internal point that is non- = fultie, ) = 0= (ks — kr) - 7ul(u,.) = 0. (9)
degenerate and does not present any singularity, the following
contribution is considered [6], [8], [10], [12]-[16]: From a physical point of view, this condition leads us to the

o Keller's cone, i.e., the incidence and observation directions
T — 21g” inygs 1.0 i(x/4)o(5+1) ;.5  (kr,ks) make equal angles with the vector tangent to the
§s=— ¢ 5 5 521 ¢ ds
k |fuu vv ( ub) |
o)

boundary curvey, or #,. To find these critical points, instead

o = sign(f of formulating a 1-D minimization process, a root finding

= 5= sign(fS 5, — (£5,)?) algorithm is stated following a technique based on Brent's
_ 1 z>00 T algorithm that combines root bracketing, bisection, and inverse
sign(x) = {_1 r < 0.0. ) quadratic interpolation [5]. This technique has been found

. .. faster than minimization, as well as more robust.
Value_Sg ands depend on.whether . staﬂonqry pointis a Before displaying the contributions for each point, the fol-
local minimum, a Ioc.aI maximum or a saddlg point [9], [15]lowing remark in notation is made-:
Moreover, when the interior stationary point lies directly over
one of the boundaries of the surface, the contribution is half of
(8), [8], [12]-[15]. Additionally, as special cases we deal with . -
the following singularities: g =glucre,vc), [° = flucre,vc)

1) Degenerate stationary points where the Hessian matrix vere =0 or verp=1l=a=v, B=u

of fis singular|f2, 5 — (f2)?| = 0. In this case, 7 =3uc,vere), f€ = fluc,vere).  (10)

uwere =0 or werp=l=a=wu, f=wv
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u> to switch between the asymptotic and the uniform expressions

v, andwv,, are checked for each variahleandv

[
surface 7 L L
\4 Vv
Fig. 3. Boundary critical point located on boundaries that join two parametric Whenv,, > 3.0 andv, > 3.0, the vertex contribution is
surfaces with continuity in their normal vectors. [12]
. . . > sy (LOye Ty
When a point on a boundafy.c, v¢) is isolated from neigh- Iy = —g¥et*s e v (15)
boring points, its contribution to the PO integral is performed K2 fa fs
computing the following expression [12], [16]: However, when the parameters are lower than the required
e - limit; in other words, the vertex point is not isolated, the contri-
Ty = (1 ders L [ AT 0 (11) bution becomes
B =)= —= s
k & kfﬁcﬁ =V

The condition for isolation is driven by the parametgrde- k

fined as 1 , , ,
k \ F7 v sien (£Y) sign (£Y)T, T, ds"

c
Vg = . 12 , . ,
|fa | 2| ga| ( ) T, =sign (ft\t)Fsign(fX)(Ut)e_J sxgn(ft\g)vtz’ t=u,v.

Whenuw,, is lower than a specific value, the boundary point is (16)
coupled with a critical interior point. Coupled points are taken As the integration domain iSir.r.umMINATED, I-€., the illumi-
into account by formulating the contribution in terms of a tramated region discrete points (specular, boundary, vertex) should
sition function such as the uniform Fresnel integial,, with  be visible from the source. To prove this fact, Culling’s condi-

the argument,, [16] tion k7 - A(7) < 0.0 is verified. Once each kind of contribution

e is calculated, the total value of the PO integral for a specific ra-

s = (_1)aL gk I e (£5) diation direction becomes from the summation of all the SPM

B k C | fC g o' . .
f,a,a| ol contributions.
. sign (ffa)Fsign(rga)(va)e*j sign(fg’a)vi dsCF 4 (x) _We_ have_to keep in mind that the f||_1al summatlon_ of all con-
- tributions yields only to the PO solution for the radiated field.
= / I gt (13) This has been the assumption for the statement of the problem
z and for the approach followed to reach the final expression for

Expression (13) is applied whenever, < 3.0. When the integral. No diffraction effects are taken into account. For
v > 3.0, large parameter for the Fresnel integral, the asymii¥s last task, additional corrections to the PO solution should
totic formula (11) is employed. Again, some cases have to be considered in terms of the physical theory of diffraction [27],
approached specifically: equivalent current method [28], etc.

1 A boundary point coincident with an internal crit-  One of the main premises of the PO approach is to assume
ical point, its contribution as a boundary point is dis€urrent oqu on the |I!um|nated reglonlof the structure, thgre—
charged because one half of expression (8) accoufREe, the line that splits the structure into shadowed and illu-
for it. minated regions should be determined and considered as a new
2 Points located at boundaries shared between tlgundary of the model. For the automatic determination of the
Bézier patches with continuity in the normal vectorshadow boundary, a classification of surfaces is made according

Fig. 3. Both contributions, one for each surface, canclq its visibility from the source point. As result, three groups

each other out. of surfaces can be obtained: 1) totally illuminated surfaces; 2)
completely shadowed surfaces; and 3) partially illuminated sur-
C. Vertices Points faces. The shadow boundary determination is performed by the

These are points where the tangent vector to the boundary 88F°ma“° recursive subdivision in halyes of Fhe partially illu-
Inated surfaces for both parametric dimensio@dv [29].

main presents discontinuity. In the squared parametric domajn, o . N .
the vertices are obviously located at the four corners with valu Qe contnbutpn of the_boundanes of the resulting illuminated
for (uy, vy ): (0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0). No COn§ubpatches will approximate the effect of the shadow boundary.
dition has to be satisfied; vertices points contribute for all radi-
ation directions. If one vertex has been detected previously as
a boundary point or as an interior point, its contribution is now Comparisons between the numerical and the asymptotic inte-
discharged. gration of PO currents are shown. All the simulations have been
The same notation is adopted, where now, the superscripperformed in a silicon graphics machine called Power Challenge
denotes the particularization for the parametric coordinates(sfze L) and based on R10000 microprocessors with a peak per-
each verteXuy , vy ). At this point, the parameters that allow ugormance for each microprocessor of 380 MFlops.

IV. NUMERICAL RESULTS
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(®) Fig. 6. Radiation pattern cut of an infinitesimal electric dipole over the

Fig.4. Radiation pattern cutfor an infinitesimal electric dipole facing a flat sufuselage. E-component.
face: (a) vertical dipole, parallel to -axis. (b) horizontal dipole, parallel to -axis.

A. Plate i y jr=did

As a preliminary result, an infinitesimal electric dipole cen-
tered and 2% above a50\ x 50X square plate is analyzed. In
[30], the CGM-FFT solves the electric field integral equation
(EFIE) for the structure. Fig. 4 displays radiation patterns with
comparisons between numerical (continuous line) and asymp-
totic (dashed line) integration procedures and the rigorous solu-
tion from [30] (dotted line). The antenna is vertically oriented
with respect to the surface [Fig. 4(a)] or parallel to the facet
[Fig. 4(b)]. For both configurations we analyze the radiation
pattern cutyy = 0°. The efficiency attained is reflected by the
computation time. While the numerical integration took 17 mihig. 7. Shadow boundary on a spherical sector with the source out of the axis.
9 s, the asymptotic integration obtained the solutioninonly 7 s.

(SPM-1st) shows the contribution of only the specular points and
B. Fuselage the dashed thick-line (SPM-all) represents the contribution of the

A combined curved-planar structure is represented in FigVé'0le Setof points (specular, boundary and vertices points). The
with four NURBS surfaces. It resembles the fuselage of an a?@lysis with numerical integration took 46 min 34 s, whereas,

plane with the flat facets acting as wings. At 3.0 GHz, the elel1€ @symptotic only needs 1 min and 32 s, respectively. Fig. 6 re-
trical size is120\ x 40\ x 10\ with a surface area of 3758, vealstheimportance of considering second and third order points
The source is an infinitesimal electric dipole locatech I¥er contribution. The traditional first order points contribution is not

the cylinder with a dipole moment value &f - I = (1.0,0°). €noughtoachieve asatisfactory result.
The radiation pattern cut is = 90°, transversal to the cylinder
axis, with a sweep il angle and displaying thesEeomponent is

shown in Fig. 6. The continuous-thick line (PO) corresponds to The effect of the shadow boundary is analyzed for the ge-
the analysis with numerical integration, the continuous thin-liremetry sketched in Fig. 7. This figure depicts a spherical

C. Spherical Sector
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Fig. 8. Radiation pattern cut of the on-board antenna over the spherical sedtg. 9. Radiation pattern cut 45for the spherical sector. E-component.
(a) E¢-component. (b)26-component. (a) Without shadow boundary effect. (b) With shadow boundary effect.

sector with a radius of 40 The source is an infinitesimal V. CONCLUSION
electric dipole parallel t& -axis, elevated 2B over the sur-

face, and displaced from th&-axis to originate a nonsym-
metrical shadow boundary. The angular coordinates of t

The SPM has been applied in the resolution of the integral that
ﬁ\gcounts for the radiated field associated with antennas mounted
. o . . on complex geometries. The surface of the body is represented
source arépp = 20°, oprp = 30°, and its dipole moment is . ; : :
Io-1 = (1.0,0°) by a set of parametric surfaces, which can be directly defined

0° % = AT e . . . by the most common geometric modeling tools. Closed-form

Results comparing numerical (continuous-line) and asymp= . . Lo

. N . N xpressions have been obtained for the contributions of the Sta-
totic (dashed-line) integrations for a constant éut 90° are

: N . e tionary Phase Method (specular, boundary and vertices points)
displayed in Fig. 8. For this radiation pattern, the shadoI\N the context of NURBS parametric modeling

boundary does not introduce any modification and, therefore,One of the drawbacks is the behavior when the antenna is re-

it is not cqn5|dered. Fig. 9 reveals the effect of the shadoémy quite close to the surface. A hybrid scheme is needed to
boundary in a constant cyt = 45° for the B component. gea| with this feature. The region under the antenna should be
In Fig. 9(a) only the contribution of specular, vertices, anfleated following a rigorous procedure such as the MFIE, or the
lateral boundary points is considered. However, in Fig. 9(bgr|E, and the structure far from the antenna point following the

the contribution of the boundary points located over thgsymptotic technique. The causes that bring about the method
shadow boundary is also added, giving rise to an improvgslure are inherent to the statement of the problem. PO approx-
ment for the observation directions with ( values great@hation fails because this case represents a typical spherical in-
than 150). The time for the numerical integration was 2Qidence with no possibility of local plane approximation. More-

min 27 s, whereas, the asymptotic one took 5 s withougver, the premises for the SPM application also fail due to an
the calculation of the shadow boundary, and 17 s with it;meven behavior of the amplitude function (fast variation of the

computation. radial component of the incident field due to a source point) and
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To deal with such discontinuities, an EM complement such as__ 1979

PTD or the method of equivalent currents should be included:

21] H. Ikuno and M. Nishimoto, “Calculation of transfer functions of three-
dimensional indented objects by the physical optics approximation com-

An additional contribution due to the effect of the creeping wave  bined with the method of the stationary phad&EE Trans. Antennas
on the shadow region should also be added, this effect could tfgz] Propagat, vol. 39, pp. 585-590, May 1991.

H. Nakano, S. R. Kerner, and N. G. Alexopoulos, “The moment method

con3|der.ed through the introduction of the F_OCk wave [31]. An- solution for printed wire antennas of arbitrary configuratiofEEE
other point of further research would be the improvement of the  Trans. Antennas Propagatol. AP-36, pp. 1667-1674, Dec. 1988.
transition function. This function gives rise to a uniform for- [23] J. Pérez and M. F. Catedra, “Application of physical optics to the RCS

computation of bodies modeled with NURBS surfacdEEE Trans.

mulatiqn for the case of a first_order s_tationary _phase_point ap-  Antennas Propagatvol. 42, pp. 14041411, Oct. 1994.
proaching a boundary of the integration domain. In literature[24] G.T.RuckRadar Cross Section HandbaokNew York: Plenum Press,
this problem is considered difficult [6], [21] and no simple so- __ 1970.

lution has yet been found. Finally, this work represents an ef?®)

S.-W. Lee, P. Cramer, Jr., K. Woo, and Y. Rahmat-Samii, “Diffraction by
an arbitrary subreflector: GTD solution[EEE Trans. Antennas Prop-

ficient component in order to be introduced in a more complex  agat, vol. AP-27, pp. 305-316, May 1979.
computational tool able to analyze, in a complete and rigorouf#6] J. Pérez, J. A. Saiz, 0. M. Conde, R. P. Torres, and M. F. Catedra, “Anal-

ysis of antennas on board arbitrary structures modeled by NURBS sur-

way, the effect on arbitrary structures on the radiation pattern of  f;ces |EEE Trans. Antennas Propagatol. 45, pp. 1045-1053, June
boarded antennas. 1997.

[27] P. Y. Ufimtsev, “Elementary edge waves and the physical theory of
diffraction,” Electromagneticsvol. 11, pp. 127—-160, Apr.—June 1991.
ACKNOWLEDGMENT [28] A. Michaeli, “Elimination of infinities in equivalent edge currents, part
I: Fringe current components|EEE Trans. Antennas Propagatiol.

The authors wish to thank Professor P. H. Pathak for his 34, pp. 912-918, July 1986.
helpful comments on this study about high-frequency tech[29] O. M. Conde, “Contribucion al Estudio del Comportamiento de An-

tenas Embarcadas Empleando Técnicas Integrales y Asintéticas,” Ph.D.

niques. thesis, University of Cantabria, Spain, July 1999.
[30] M. F. Céatedra, J. G. Cuevas, and L. Nufio, “A scheme to analyze con-
ducting plates of resonant size using the conjugate-gradient method and
REFERENCES the fast fourier transformJEEE Trans. Antennas Propaga¢ol. 36, pp.
[1] G. Farin,Curves and Surfaces for Computer Aided Geometric Design, ~ 1744-1752, Dec. 1988. _ _
A Practical Guide New York: Academic , 1988. [31] C.W. Chuang, “An asymptotic solution for currents in the penumbra re-
[2] R.F. Harrington,Time-Harmonic Electromagnetic FieldsNew York: gion with discontinuity in curvature [EEE Trans. Antennas Propagat.
McGraw-Hill, 1961. vol. AP-34, pp. 728-732, May 1986.
[3] C. A. Balanis,Advanced Engineering ElectromagneticsNew York:
Wiley, 1989.
[4] J. A. Shifflett, “CADDRAD: A physical optics radar/radome analysis

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. VetterlMg;

(6]

[7] A.C. Ludwig, “Computation of radiation patterns involving numerical

(8]

E]
[10]
(11]
(12]
(23]
[14]
(15]
[16]

(17]

(18]

code for arbitrary 3D geometrieslEEE Antennas Propagatvol. 39,
pp. 73-79, Dec. 1997. Olga M. Conde was born in Cantabria, Spain,
in 1970. She received the Engineering and Ph.D.
degrees in Telecommunications from the University
of Cantabria, Santander, Spain, in 1994 and 1999,
respectively.

In October, 1999, she joined the Photonics Engi-
neering Group, conducting academic and research
on optical communications at the University of

merical Recipes Cambridge, U.K.: Cambridge Univ. Press, 1987.

N. Chako, “Asymptotic expansions of double and multiple integrals oc
curing in diffraction theory,1MA J. Appl. Math., vol. 1, pp. 372-422,
1965.

double integration,IEEE Trans. Antennas Propagatol. AP-16, pp.
767-769, Nov. 1968. Cantabria. From 1994 to 1999, her research focused

L. B. Felsen and N. Marcuvitz,Radiation and Scattering of on the development of numerical methods for the
Waves Englewood Cliffs, NJ: Prentice-Hall, 1973. electromagnetic and optical fields, the analysis of

D. S. Jones and M. Kline, “Asymptotic expansion of multiple integral®n-board antennas and satellite communications systems. Her current research
and the method of stationary phasé,'Math. Phys.vol. 37, pp. 1-28, interests include the development of optical sensors for the detection and mon-
1958. itoring of dangerous gaseous compounds in urban or industrial environments.
M. Born and E. Wolf Principles of Optics London: Pergamon, 1975.

L. Sirovich, Techniques of Asymptotic AnalysisNew York: Springer-

Verlag, 1971.

J. C. Cooke, “Stationary phase in two dimensiomslA J. Appl. Math,

vol. 29, pp. 25-37, 1982. Jesus Pérez Arriagareceived the M.S. and Ph.D. degrees in applied physics
N. Bleistein and R. A. Handelsman, “Uniform asymptotic expansions dfom the University of Cantabria, Cantabria, Spain.

double integrals,J. Math. Anal. Appl.vol. 27, pp. 434—-453, 1969. In 1989 he joined the Radiocommunication and Signal Processing Depart-

——, Asymptotic Expansions of IntegralsNew York: Dover , 1975. ment of the Polytechnic University of Madrid, Spain, as a research assistant.
J. P. McClure and R. Wong, “Two-dimensional stationary phase approkrom 1990 to 1992, he joined the Electronics Department, University of
imation: Stationary point at a corneSIAM J. Math. Anal.vol. 22, pp. Cantabria, also as a research assistant. In 1993 he joined the faculty of the Uni-

500-523, Mar. 1991. versity of Cantabria, as an assistant professor in the Electronic Department. In
G. L. JamesGeometrical Theory of Diffraction for Electromagnetic October 1998, he joined the University of Alcala, Madrid, Spain, as an assistant
Waves Stevenage, U.K.: Peregrinus, 1980. professor. He has participated in more than 20 research projects related to RCS

R. G. Kouyoumijiam and P. H. Pathak, “A uniform geometrical theory o€omputation, performed analysis of on-board antennas and radiopropagation
diffraction for an edge in a perfectly conducting surfaderdc. IEEE  in mobile communications. He is author of 10 journal publications, coauthor
vol. 62, pp. 1448-1461, Nov. 1974. of Cell Planning for Wireless Communicatioh®rwood, MA: Artech House,

W. H. lerley and H. Zucker, “A stationary phase method for the compu999, and more than 25 conference contributions at international symposia. His
tation of the far field of open cassegrain antenn&gl! Syst. Tech. J. research interests include high-frequency methods in electromagnetic radiation
vol. 49, pp. 431-454, Mar. 1970. and scattering and mobile communications.



CONDEget al. SPM APPLICATION FOR ANALYSIS OF RADIATION COMPLEX 3-D CONDUCTING STRUCTURES

Manuel Felipe Cétedra received the M.S. and
Ph.D. degrees in Telecommunications Engineering
from the Polytechnic University of Madrid, Madrid,
Spain, in 1977 and 1982, respectively.

In 1976, he joined the Radiocommunication and
Signal Processing Department, University of Madrid,
as a research and faculty member. In 1989, he joined

J the University of Cantabria, Spain as a professor. In

B 1998, he joined the University of Alcala, Madrid,

. Spain, where he is currently a Professor.

His publishing record includes 35 journal articles,
ten book chapters, and author or coauthor of two bobksCG-FFT Method
Applications of Signal Processing techniques to Electromagnetiosvood,

MA: Artech House, 1995Cell Planning for Wireless Communicatioh&r-

wood, MA: Artech House, 1999, and has nearly 100 presentations in Interna-
tional Symposia. His extensive research includes over 25 projects solving prob-
lems of Electromagnetic Compatibility in Radio and Telecommunication Equip-
ment, Antennas, Microwave Components and Radar Cross Section and Mobile
Communications. He has developed and applied CAD tools for radio-equipment
systems such as Navy-ships, aircraft, helicopters, satellites, the main contrac-
tors being Spanish or European Institutions such as CASA, ALCATEL, DASA,
SAAB, INTA, BAZAN, the Spanish Defence Department and the French com-
pany MATRA. He is working now on projects for Telefonica (the largest Spanish
telecommunication company) to develop computer tools for propagation ana-
lyzes in microcells and indoor cells.

731



