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Application of Physical Optics to the RCS 
Computation of Bodies Modeled with 

NURBS Surfaces 
J. Perez, Student Member, IEEE, and M. F. Chtedra, Member, IEEE 

Abstract-This paper presents a method for the computa- 
tion of the monostatic radar cross section (RCS) of electrically 
large conducting objects modeled by nonuniform rational B- 
spline (NURBS) surfaces using physical optic (PO) technique. 
The NURBS surfaces are expanded in terms of rational Bezier 
patches by applying the Cox-De Boor transform algorithm. This 
transformation is justified because Bezier patches are numerically 
more stable than NURBS surfaces. The PO integral is evaluated 
over the parametric space of the Bezier surfaces using asymptotic 
integration. The scattering field contribution of each Bezier patch 
is expressed in terms of its geometric parameters. Excellent 
agreement with PO predictions is obtained. The method is quite 
efficient because it makes use of a small number of patches to 
model complex bodies, so it requires very little memory and 
computing time. 

I. INTRODUCTION 

HE radar cross section (RCS) predictions of complex T targets need a realistic modeling of the objects geom- 
etry. At this moment, the most popular technique for target 
description uses flat facets [l], [2]. One alternative is the 
nonuniform rational B-spline (NURBS) surfaces [3]-[6]. This 
technique is currently used in the aeronautic, automobile, 
ship, and other industries because it provides great advantages 
in complex objects’ geometrical representation. The NURBS 
scheme is able to manipulate both free-form surfaces and 
primitive quadric surfaces (cylinders, spheres, cones, etc.) with 
a low number of patches, and therefore with a small amount of 
information. For instance, a primitive quadric like a cylinder 
can be modeled perfectly as only one NURBS surface; a 
complex body, such as a complete aircraft, can be described 
with nearly all its details, and a precision of 1 mm, by only 
a few hundred NURBS patches (see Fig. 1). Today, many 
of the available computer-aided geometric design (CAGD) 
tools provide descriptions of the designed objects in terms 
of NURBS curves and surfaces. 

Apart from the above features, the use of NURBS patches 
provides important advantages in the description of bodies for 
RCS computation with regard to plane facets: 

1) Artificial edges are not introduced. 

3) The number of patches is much lower. 
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(b) 
2) Plane facets are a particular case of NURBS surfaces. Fig. 1. Aircraft stabilizer models using (a) flat plates and (b) NURBS 

surfaces. 

4) A better fit to the object geometry is provided. 
5) Geometrical parameters of the body surface (normal 

vectors, curvatures, principal directions, etc.) are easy 
to obtain from the surfaces’ description. 
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Fig. 2. NURBS surface geometric description. 

The NURBS surfaces for the description of objects is 
starting to be used in RCS computation. One example is 
the GRECO code [7]. This code makes use of the NURBS 
technique for modeling the object geometry and, after this, a 
graphical-processing approach to an image of the target on the 
computer screen is used to obtain the unit normal at each point 
of the visible surfaces. With this information a high-frequency 
approximation to the RCS prediction is computed. 

The method proposed in this paper works directly with the 
NURBS surfaces’ parameters and provides expressions of the 
scattering field in terms of these parameters. The advantages 
with respect to the graphical-processing method is that it 
handles the real NURBS surfaces; on the other hand, the 
graphical-processing method works with a discretization of 
the surfaces (pixels). 

A NURBS surface is a rational piecewise polynomial para- 
metric surface. The coefficients of the polynomials depend on 
just a few control points (with associated weights) and two 
knot vectors (see Fig. 2). NURBS surfaces are quite useful 
for geometric designing for several reasons: They are invariant 
under affine transformations (rotation, scaling, translation, etc.) 
of the control points [3]. Another reason is the “local control” 
property [3]-[5]. This means that altering the position of 
a single data point causes only changes in a part of the 
surface. NURBS surfaces can be written like a combination 
of rational Bezier patches [3]-[5]. A rational Bezier patch 
is also a parametric surface defined in terms of a linear 
combination of Berstein polynomials [3], [5]. Bezier surfaces 
do not satisfy the local control property but are more suitable 
for the numerical computation of parameters associated with 
its geometry (curvatures, derivatives, integrations, etc.) thanks 
to the characteristics of the Berstein basis. 

The transformation of NURBS into rational Bezier surfaces 
is straightforward by applying the Cox-De Boor algorithm 
[8]. Here, as in other applications of computational geometry, 
NURBS formats are used for the design and storage of the 
body’s shape and the Bezier format for the surface interroga- 
tion of parameters such as point coordinates and parametric 
derivatives. 

This paper presents a general method for the monostatic 
RCS computation of electrically large perfectly conducting 
objects modeled with NURBS surfaces. The PO approx- 

imation [9]-[12] is used, so it is implicity assumed that 
the radar frequency is high enough that the corresponding 
wavelength is small compared to the physical dimensions of 
the scattering body. Thus the scattering calculations are in the 
high-frequency region. 

The PO integral is calculated as a sum of the individual 
contributions due to each Bezier surface. The patches are 
classified in four types according to its geometry: polygonal 
planes, planes with curved boundaries, singly curved surfaces, 
and double curved surfaces. When the patches are planes, 
the integral can be evaluated exactly. In the case of curved 
surfaces, the integrals are calculated over the parametric space 
of the corresponding Bezier surface by applying the stationary 
phase method [13]-[15]. It is straightforward to apply this 
technique to Bezier geometries. In a previous work [16], the 
authors presented a method for PO integral computation on 
curved surfaces. The stationary phase method was used, but 
only the main term of the integral asymptotic expansion was 
used. Therefore, the result was totally equal to the geometrical 
optics (GO) predictions [lo]. In this paper, different order 
terms in the asymptotic expansion of the PO integral are taken 
into account, so the results are meaningfully improved. Finally, 
the individual contributions of all the Bezier patches are added 
in order to obtain the total scattering field. 

In short, the method follows four steps: 
1) Transformations of NURBS patches into rational Bezier 

2) Classification of the Bezier patches, 
3) Computation of the backscattered field due to each 

Bezier surface by applying the stationary phase integra- 
tion method, and 

4) Sum of the backscattered fields of the individual patches; 
RCS computation. 

This paper is organized as follows. Section I1 presents a 
brief introduction to the rational Bezier surfaces. Section I11 
develops the method for the geometric classification of the 
Bezier surfaces. The technique used in order to calculate the 
backscattering field of each surface is introduced in Section 
IV. Sections V and VI present the expressions obtained by the 
application of the stationary phase method to the PO integral 
for the different kinds of curved patches. In Section VII, some 
RCS results obtained with this approach are presented and 
compared with PO predictions. Finally, the conclusions are 
outlined in Section VIII. 

surfaces, 

11. RATIONAL BEZIER PATCHES 

The application of the Cox-De Boor algorithm to a NURBS 
surface provides a set of rational Bezier patches. The union of 
these patches makes up the primitive surface. The continuity 
between adjacent Bezier patches is determined by the knot 
vectors of the primitive NURBS surface [3]. 

The mathematical treatment of Bezier surfaces is simple. 
They are polynomial parametric surfaces normalized with a 
weight function. A Bezier patch is defined by two degrees 
(one for each parametric coordinate), a mesh of control points 
and a set of associated weights [3]-[5]. The coordinates of the 
surface points and their parametric derivatives functions are 
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Fig. 3. 
curved surface, and (d) double curved surface. 

(a) Polygonal plate, (b) plane patch with curved boundaries, (c) singly 

given in terms of linear combinations of Berstein polynomials 
that can be easily computed and are numerically stable [3]. 
The surface points of a rational Bezier surface are given by 

+ 
where bij  are the control points, wij are the control points 
weights, m and n are the surface degrees, and By(u)  and 
Bjn(v) are the Berstein polynomials: 

The number of Bezier patches obtained from a NURBS 
depends on its knot vectors [3], [5], [SI. Important features of 
the rational Bezier surfaces are as follows: 

Convex hull property [3]-[6]. The surface points lie 
completely within the convex hull of the mesh of control 
points. 
The boundary curves are rational Bezier curves [3]-[4]. 
Their control points are given by the boundary control 
points of the net. In particular, the four comers of the 
control net lie on the patch. 
The parametric coordinates take values between 0 and 1. 
Therefore, the parametric space of the Bezier patches is 
a square with a side length of one. 
The parametric derivatives can be calculated easily 
[3]-[4], using the Berstein polynomials properties. 

111. CLASSIFICATIONS OF RATIONAL BEZIER SURFACES 

The method used to compute the PO integral on a Bezier 
patch depends on the geometry of the Bezier surface. The 
patches are classified into four types (see Fig. 3). 

Polygonal plane patches: Taking account the convex hull 
property, a Bezier patch is plane if all its control points are 
in the same plane. According to property 2, to be a polygonal 
patch the control points that define each boundary curve of the 
surface must be collinears. In the event that both degrees of 
the patch are equal to one, the previous condition is satisfied 
automatically because the mesh of control points is reduced 

to a polygonal facet with four vertices. In this case, if two 
control points coincide the patch will be a triangular facet. 

Plane patches with curved boundaries: All the controls 
points are in the same plane, but the control points of at 
least one boundary of the net are not collinear. This implies 
that at least one of the surface degrees must be higher than 
one. A typical example is a disk. 

Singly curved patches (ruled surfaces): These are gener- 
ated by a family of straight lines [3]. In a optimized design 
these straight lines are isoparametrics. Typical examples are 
the cylindrical and conical surfaces. 

In a optimized design, the singly curved Bezier patches 
verify one of the following two sets of conditions: 

or 

m = l  

w i j  = woj, j = 1 , 2 , .  . . , n. (4) 

In the first case, the surface is linear with the coordinate U 

and (1) can be written in the following form: 

where 

Fo(u) = 

?I(.) = 

Consequently, the second-order derivative with respect to U 

is zero in any point. 
If the conditions of (4) are satisfied, the surface is linear 

with the coordinate U and the expression (1) can be written as 

where 

(9) 

In this case, the second-order derivative with respect to U 

is zero in any point. 
Doubly curved patches (without restrictions): In general, 

the second parametric derivatives and the principal curvatures 
are distinctly zero. 
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Iv. BAKSCATTERING FIELD OF A RATIONAL BEZIER SURFACE 

Given an incident monochromatic plane wave, under the 
far field approximation, the backscattering field of an arbitrary 
conducting body predicted by PO [9]-[ 111 is given by 

S 

where S is the body surfac_e, X is the wavelength, 2 0  is 
the incident electric field, K is the wave vector, K is the 
normalized wave vector, f is the surface point corresponding 
to ds', and f i , is the unit normal vector at this point. Notice that 
the incident field and the predicted PO scattering field have the 
same polarization, and also that the monostatic RCS prediction 
will be independent of the incident wave polarization. 

If the Bezier surface is plane, f iS(?)  is constant and (12) can 
be calculated using Gordon's method [17]. However, if S is a; 
arbitrary curved Bezier surface, is not possible to calculate I 
analytically, and therefore the stationary phase method is used. 

The integral can be expressed on the parametric coordinates 
of the Bezier patch writing the normal vector function and 
the surface element in terms of the parametric derivatives of 
?(U, w)(Fu and Fu): 

The integration is made in the parametric domain. It is 
a rectangle of comers (0, 0), (0, l), (1, 0), (1, 1). In this 
domain the application of the stationary phase method is very 
easy. In the following sections the results of the asymptotic 
integration of (15) for the two kinds of curved Bezier surfaces 
are presented. All the asymptotic contributions are written in 
terms of ?(U, U) and its parametric derivatives. 

V. DOUBLY CURVED BEZIER SURFACES 

The stationary phase method in double integrals [ 131, [ 151 
shows that contributions come only from regions in the vicinity 
of certain critical points of the integral domain, and that 
different types of critical points give rise to different powers 
of K in the leading terms of their respective contributions. 
There are three types of critical points, as explained below. 

A. Stationary Phase Points (Critical Points of the First Kind) 

These are points within the domain of integrations on which 
(see Fig. 4) 

v 4  

Fig. 4. Stationary phase point. 

They are the so-called specular points. The contribution to 
f is proportional to K-l and is given by 

where c is equal to j, -j, or 1, depending on whether 
( U O ,  WO) is a local minimum, local maximum, or saddlepoint, 
respectively, of the function I? . ?(U, U ) .  

There may be more than one stationary point within the 
surface domain, and provided these points are well separated 
[14], the asymptotic evaluation of the integral is given by the 
sum of the individual contributions as in (17). If the points are 
close, the previous expression is not valid; it will be necessary 
to consider the coupling effect between the points. This cannot 
happen if the surfaces are smooth, and therefore it is not treated 
here. 

These are the first-order contributions of the asymptotic 
integration of double curved surfaces, and they are exactly 
equal to the GO predictions [lo]. 

B. Boundary Critical Points (Second Kind Points) 
These are the points of the curve bounding the domain 

of integration on which one of the following expressions is 
verified (see Fig. 5): 

I? . Fu(U = 0,  U0) = 0;  Ei . f U ( U  = 1, U 0 )  = 0, 

I?. FU(u0.'u = 0 )  = 0; Z .  F U ( u 0 , v  = 1) = 0. (18) 

Their contributions are proportional to KP3I2 and are given 
by 

where a is U and ,b' is U in the first and second cases; and cr 
is U and ,O is U in the third and fourth cases. 

As in the case of stationary points, the problem of close 
boundary points is not taken into account because the surface 
is considered smooth enough. 

When a second kind point approaches a stationary phase 
point it is necessary to consider the coupling effect between 
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effect between them. In this event the previous expressions 
for stationary and boundary poin_ts are vzlid, but (23) must 
be modified. Then, the term [ ( K  . Fu)(K . Fv)]-' must be 
replaced by 

-112 

4 sign ( 2 . ~ ~ )  sign ( ~ . F ~ ) [ ~ ~ . F ~ ~ ~ ~ ~ . F ~ ~ ~ ]  T,T, 
(24) 

where 

(25) 
(26) 

. 2  
T, = jse-3sv* Fs(w,) 

+ 
s = sign ( K  . Fa,) 

U 

Fig. 5. Boundary critical point. 

Fig. 6. Vertex points. 

them. In this case, the term [2l? . 7,I-l of (19) must be 
substituted by 

1 / 2  

sign ( 2 .  ~ , ) e - j s v ; ~ , ( w , )  (20) 
1 

where 

s = sign (2 . faa) 

As in the case of the boundary critical points, if there is 
continuity in the first parametric derivatives in the connection 
between adjacent patches, this contribution vanishes when the 
scattering field of these patches is added. 

VI. SINGLY CURVED BEZIER SURFACES 

If a Bezier patch is single curved, the phase term of integral 
(15) is linear and the second derivative of ?(U, w) is equal 
to zero for one parametric coordinate (see ( 5 )  and (8)). In 
this case, the integration along the linear coordinate can be 
calculated analytically and the stationary phase method for 
single integrals is applied to evaluate the integral along the 
other coordinate. 

For example, if the surface verifies (3), the integral along 
the coordinate u is calculated first using asymptotic integration 
and then the result obtained is integrated along the coordinate 
w analytically. 

The PO integral can be written in this form: 

Jv=o 

and function F is the Fresnel integral. 
If there is continuity in the first and second parametric 

derivatives in the connection between adjacent patches, these 
contributions vanish when the scattering field of these patches 
is added. 

C. Vertex Points (Critical Points of the Third Kind) 

In general, these are defined as the comer points of the 
curve bounding the domain of integration, that is, points at 
which the slope of the curve can be discontinuous [13], [15]. 
In the case of the Bezier patch domain the vertex points are 
the four comers: (0, 0), (0, l), (1, 0), (1, 1) (see Fig. 6). Their 
contributions are proportional to and are given by 

When a vertex point is close to a stationary phase point or a 
critical boundary point, it is necessary to consider the coupling 

where the integral over the U coordinate, 
(21) 

(22) du (28) 
u = l  

is approximated by the contributions to two types of critical 
values of the U coordinate, i.e., stationary phase and boundary 
values. These fixed values define two types of isoparametric 
curves on the surface. Because of the linearity of ?(U, w) with 
the coordinate w, the isoparametric curves of U constant are 
segments on the surface. Then, the asymptotic contributions 
to PO integral in single curved patches are due to two types 
of critical segments on the patches: stationary phase segments 
and boundary segments. 

A. Stationary Phase Segments 

These are defined by the stationary phase p:ints of the 
integral (28). The points of the segments verify Fu(us, w) = 0 
(see Fig. 7), and their contributions are given by 

(29) 
K . Fuu 
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where 
N is the number of terms considered, and 

is the kth term of the amplitude Taylor's series, 

u = l  

A ,  = unejv fwdv  

I J " I 

0 20 40 80 80 100 120 140 160 180 
Phi (deg) 

-This approach 0 PO -GO 

RCS of a cylindrically curved plate along the B = 90' cut Fig. 9. 

Fig. 8. Boundary segments. 

B. Boundary Segments 

These are defined by the boundary domain segments, with 
uo = 0 or uo = 1 (see Fig. 8). Both contributions are given 
by the following expression: 

When a stationary phase segment is close to a boundary 
segment, (30) is not valid. It is necessary to consider the 
coupling effect between the segments [14], so in this case 
the boundary segments' contributions are given by 

where 

If the boundary segment is isolated from the stationary phase 

All the segments contributions have the form 
segments, (31) tends to (30). 

The phase term of (33) is linear with the coordinate w Jsee 
(3)), so in order to evaluate (27) the amplitude term G(w) 
is developed in Taylor's series around the value w = 0.5. 
Therefore, (27) is transformed in a sum of integrals that can 
be calculated analytically. The result is 

(36) 
(37) 

Analogous expressions are obtained when the patch is linear 
with the parametric coordinate U .  

VII. RESULTS 

Numerical results of RCS for different geometries are 
presented below. 

A. Cylindrically Curved Plate 

Results with this geometry are presented in Fig. 9, where 
a sketch of the plate is shown. The height of the plate in the 
Z direction is h = 12.8 cm, the cylinder radius is a = 16.3 
cm, the angle a = 40°, and the frequency of the incident field 
9.375 GHz. The target is modeled with one singly curved 
Bezier surface of degrees 1 x 2. Results from our approach 
are compared with values obtained from [18], which uses a 
numerical implementation of PO. The values are normalized 
with respect to h2. 

B. Spherically Curved Plate 

This object is modeled with only one doubly curved Bezier 
surface of degrees equal to 2. A sketch of the plate is shown 
in Fig. 10. The plate extends over a beam of 90" for the 0 and 
q5 angles. The sphere radius is a = 1 m. Fig. 10 shows results 
for different values of frequency. The spherical coordinates of 
the incident wave directions are q5 = 45" and 8 = 90". Fig. 11 
presents results for different incident wave directions in a 
4 = 45" cut and a frequency of 3 GHz. In both cases the results 
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Fig. 1 1 .  RCS of a spherically curved plate along the d = 45O cut. 

are compared with GO and PO predictions. The PO values 
were obtained by the authors using numerical integration. 

C. Conical Curved Plate 

Figs. 12 and 13, show RCS results for the conical curved 
plate indicated in the figures. The plate has been modeled with 
one singly curved Bezier surface. In both cases the frequency 
is 1.2 GHz. The radii are a = 1 m and b = 0.5 m, the height 
is h = 1 m, and the angle a = 90". The plate is symmetry 
relative to the Y axis. The PO values were obtained by the 
authors using numerical integration. 

D. Conesphere 

This object has been modeled with four singly curved and 
four double curved Bezier surfaces and is sketched in Fig. 14. 
The sphere radius is a = 0.974 m, and the cone height 
is h = 4.2892 m. In Fig. 14 our result are compared with 
PO predictions for an angular sweep of incident waves of 
frequency 0.3 GHz. The PO values are obtained from [19], 
which uses a numerical implementation of PO. 

-401 , , , , , , , 1 
0 20 40 SO 80 100 120 140 

Thet8 (deg) 

-TThlr approach * PO 

Fig. 13. RCS of a conical curved plate along the 6 = 90' cut. 
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RCS of a cone sphere, with K a  = 6.12 for a @ = cre cut. Fig. 14. 

VIII. CONCLUSION 

A physical optic approach for the RCS computation of 
complex three-dimensional conducting bodies has been pre- 
sented. This approach uses directly a description of the target 
in terms of NURBS surfaces that can be generated by the 
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most common CAGD tools. This allows us to employ for [8] W. Boehm, “Generating the Bezier points of b-spline curves and 
surfaces,” Computer Aided Design, vol. 13, no. 16, pp. 365-366, 1981. RCS the Same 

[9] E. F. Knott, “A progression of high-frequency RCS prediction tech- 
in the definition and mechanical construction of an object niques,” Proc. IEEE, vol. 73, no. 2, pp. 252-264, Feb. 1985. 
in an industrial environment. In curved surfaces, asymptotic 

Cross Section Handbook. 
techniques are for the On the [11] R. G. Kouyoumjian, “Asymptotic high-frequency methods,” Proc. IEEE, 
parametric domain. The approach is efficient because it makes vol. 53, pp. 864-876, Aug. 1965. 
use of a small number of patches to model complex bodies [I21 E. F. Knott and T. B. A. Senior, “Comparison of the high-frequency 

diffraction techniques,” Proc. IEEE, vol. 62, no. 11, pp. 1468-1474, 
accurately. Nov. 1974. 

that are 

[lo] G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar 
New York Plenum, 1970, Chapter 2. 

The PO method fails when there are wedges on the targets 
surface. In this case it is necessary to take into account the 
Physical Theory of Diffraction (PTD) [12] correction. The 
authors are currently considering this and other high-frequency 
scattering mechanisms to analyze conducting bodies modeled 
by these kinds of surfaces. 

NURBS and Bezier patches have been used in other works 
[20] to make electromagnetic analysis using the moment 
method. 
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