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Abstract - In this paper we present a new algo-

rithm to recover a sparse signal from a noisy reg-

ister. The algorithm assumes a new model for the

sparse signal that consists on a mixture of a nar-

row and a broad Gaussian both with zero mean.

A penalty term which favors solutions driven from

this model is added to the usual error cost function

and the resultant global cost function is minimized

with a gradient-type algorithm. In the paper we

propose methods for updating the mixture parame-

ters as well as for choosing the weighting parameter

for the penalty term. Simulation experiments show

that the accuracy of the proposed method is com-

petitive with classical statistical detectors with a

lower computational load. The proposed algorithm

shows also a good performance when applied to a

practical seismic deconvolution problem.

I. INTRODUCTION

The problem of removing the e�ects of noise and im-
pulse response on a sparse signal from a data register has
a wide variety of applications in digital signal processing:
geophysical exploration modeling (seismic deconvolution),
synthetic aperture radar design, ultrasonic analysis, speech
coding (multipulse techniques),etc. The sparse deconvolu-
tion problem is usually referred as follows: given some ob-
servation sequence z = fz1; � � � ; zMg, �nd the sparse (spiky)
signal x = fx1; � � � ; xNg such as

z = Hx+ n (1)

where H is an impulse response matrix, and n models the
noise. The signal x is known to be sparse, i.e., only a few
of its samples have nonzero values.
In L2-norm deconvolution, solution x that minimizes the

squared error E2 = kz �Hxk2 is found, but it is not ap-
propriate, since the ill-conditioned character of the problem
avoids the obtention of the sparse solution we are looking
for. L1-norm deconvolution algorithms, on the other hand,
obtain x by minimizing the error in the L1-norm [1] or by
minimizing a weighted objective function of the error and
the signal (both in the L1-norm) [2], by means of linear pro-
gramming. These approaches are well suited for data driven
from a spiky distribution but the computational cost asso-
ciated with linear programming techniques is high.
On the other hand, theoretical solutions to the corre-

sponding detection plus estimation problem established in

(1) are cumbersome; those available, such as [3], require
a model for the signal x which is not acceptable in many
situations. Moreover, sometimes signal statistics are not
available, so a complete analytical approach is not possible.

Alternative methods have been proposed based on itera-
tive approaches to obtain a minimum square error solution
or Wiener �ltering, forcing sparseness by applying an adap-
tive threshold [4]; these techniques are simple and e�cient,
but they are very sensitive to the selection of the param-
eters involved in the threshold procedure, and sometimes
miss small peaks in the �rst steps of the detection process.

Finally, a simple method to obtain spiky solutions con-
sists on adding an extra term to the error function that will
penalize non sparse solutions

cost = square error + � penalty term (2)

By minimizing this cost function, the solution seeks a
tradeo� between the square error and the penalty term.
The relative importance of these two factors is controlled
by the weighting parameter �, that must be selected to
optimize the performance.

The same approach has been recently proposed to sim-
plify neural networks architectures (pruning), so they gen-
eralize better. The application of pruning terms and algo-
rithms to solve sparse deconvolution problems is straight-
forward: we only need to replace the weights of the neural
network by the estimates of the signal xi. Some pruning
techniques have appeared in the literature [5] di�ering in
the penalty term used to decide which are the negligible
connections. Among them, probably the simplest consists
on taking the sum of the squares of the samples
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penalty term can be viewed as the simplest way to regular-
ize an ill-conditioned problem. Nevertheless, it is not ade-
quate in order to obtain sparse solutions; for this reason, in
the present paper we propose to use a more complex term,
mainly, we will focus on a term, recently proposed by Hin-
ton and Nowlan [6]. This penalty was originally proposed
as a measure of a neural network complexity. In its sim-
plest version this term is a mixture of a narrow and a broad
Gaussian, both centered at zero. This penalty term drives
small samples toward zero without forcing large peaks away
from their true values, so it is well suited for our sparse de-
convolution problem.



II. THE PROPOSED ALGORITHM

A. Presenting the algorithm

Basically, the proposed algorithm assumes that the prior
distribution of our sparse signal can be approximated with
a mixture of a narrow (subscript n) and a broad (subscript
b) Gaussian both with zero mean. The narrow Gaussian
models the smaller peaks (ideally nonexistents), whereas
the broad one models the true peaks:

p(x) =
�np
2��n

e
� x2

2�2
n +

�bp
2��b

e

� x2

2�2
b (3)

where �n and �b are the mixing proportions of the two
Gaussians and are therefore constrained to sum 1. Consid-
ering that the samples of the sparse signal were driven from
such a mixture, the probability that a particular sample xi,
was generated by a particular Gaussian j (posterior proba-
bility) is called by Hinton and Nowlan responsibility of that
Gaussian for the sample, and is given by

rj(xi) =
�jpj(xi)P
k
�kpk(xi)

(4)

where pj(xi) is the probability density of xi under Gaussian
j. For a given signal x, the narrow Gaussian gets most of
the responsibility for small samples. Consequently, we can
de�ne the following global cost objective

�(x) = kz�Hxk2 � �

NX
i=1

log
X
j

�jpj(xi) (5)

where � controls the tradeo� between the squared error
and the penalty term, and pj(xi) is the probability density
function of each Gaussian. The minimization of (5) can be
accomplished by means of a gradient-type algorithm

xk+1 = xk + �H
T (z�Hxk)� �� (xk) (6)

where the superscript T denotes transpose, and  (xk) is a
Nx1 column vector de�ned by

 (xk) = col( (x1;k); � � � ;  (xN;k)) (7)

where

 (xi;k) =
X
j

rj(xi;k)
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In (7) and (8), xi;k is sample i in iteration k.

Since we do not know the variances and mixing propor-
tions in advance, in the next subsection we present a method
to update these parameters in each iteration. In this way, it
is possible to use the proposed algorithm without any statis-
tical information about the collected data and noise. Subse-
quently, we will discuss alternatives to choose the weighting
parameter �.

B. A method for updating the Gaussian mixture parame-

ters

The most obvious procedure consists on �xing the mix-
ture parameters according to some a priori knowledge of
the problem; for instance, in a seismic deconvolution prob-
lem, we usually know in advance that the solution can be
modeled by a Bernoulli-Gaussian distribution, for which the
signal follows a Gaussian distribution with variance �2x with
probability � and its value is zero with probability 1-�. If
estimates of these parameters are available, we could choose
the mixture parameters in the following way: �n = 1 � �,
�b = �, �2b = �

2
x, and a small value for �2n. This proce-

dure achieves good results if we dispose of an appropriate
statistical knowledge of the problem.
A more elaborate approach is proposed in [6], where all

the parameters (x; �j ; �j) are updated simultaneously using
a conjugate descent procedure. In this way, the rate of
change for both the mixture parameters and the signal is
the same.
In this paper we propose another alternative to force a

slow change in �j and �j which consists on updating these
parameters using the following iterations

�
2
j;k+1 = 
�

2
j;k + (1� 
)

P
i
x
2
i;krj(xi;k)P
i
rj(xi;k)

(9)

�j;k+1 = 
�j;k + (1� 
)
1

N

X
i

rj(xi;k) (10)


 being a constant near to 1. The second terms in (9)
and (10) are the values that minimize the cost function (5)
after recomputing the responsibility factors rj(xi;k) in each
iteration. This last approach is simpler than a gradient
descent procedure and it also achieves good results, so we
choose to use this method in our simulations.

C. A Method for Choosing the Weighting Parameter �

A complete application of the proposed algorithm re-
quires a method for choosing the weighting parameter �,
which establishes a tradeo� between the quadratic error and
the penalty term. In general, optimum � depends on the
noise variance �2, as well as on matrix H and on solution
x itself; among them, usually the most important is �2.
Without an estimate of �2, the only procedure is to �x �

heuristically. This can be done in the practice because the
obtained solutions are not usually critical with respect to
�. On the other hand, if an estimate of �2 is available, we
can use this knowledge to adaptively obtain the optimum
weighting parameter. In particular, the method that we
propose starts selecting a maximum value for the weight-
ing parameter, �max, which produces a solution with few
peaks and a variance of the associated residual higher than
the estimated variance of the noise; then, the weighting
parameter is reduced iteratively in �xed steps �� until a
value �opt is reached for which the obtained solution (after
iteration k) ful�lls a constraint of the form

kz�Hxkk2 = �
2 � " (11)

The use of " is prompted by statistical considerations.



This approach achieves better results than considering a
�xed weighting parameter, but obviously the computational
cost is also higher, since we must obtain a solution for each
evaluated �. This last overload can be reduced if, for each
new �, we initialize the iteration (6) with the obtained so-
lution for the previous �.

D. The Overall Algorithm

The proposed algorithm can be summarized in the fol-
lowing steps:

1 Initialize the mixture parameters �n;o; �n;o; �b;o; �b;o,
the weighting parameter � = �max, and x0 = ONx1.

2 for k=0 to niter1

2.1 xk+1 = xk + �HT (z�Hxk)
3 for k=niter+1 to niter2

3.1 xk+1 = xk + �HT (z�Hxk)� �� (xk)
3.2 recompute rj(xi;k) for i=1,...,N.

3.3 update �2j;k+1 and �j;k+1 according to (9) and (10)

4 if �2 � " � kz�Hxkk2 � �
2 + " then end

else
4.1 � = ����
4.2 go to 1

Let us expose some comments about the presented al-
gorithm. First, we have introduced a minor modi�cation
consisting on using iteration (6) without penalty term, i.e.,
� = 0, for a small number of steps niter1.This is because to
apply (6) on a nonzero signal seems to improve the results
in all the simulations; in addition, the �nal solution is very
robust with respect to this parameter.
Second, we need to consider the issue of initializing the

mixture parameters. A reasonable mixture initialization
could be �n = �b = 0:5 and �

2
b > �

2
n with �

2
n being a

small fraction of the observations variance �2z . As long as
the algorithm proceeds, the broad Gaussian becomes even
broader, i.e., �2b increases, and �

2
n becomes smaller. On the

other hand, �b and �n drive toward the mean number of
samples modeled by each Gaussian.
When �2n approaches 0 too closely, the algorithm may be-

come unstable. In [6] this problem is solved working with a
set of auxiliary variables of the form: �2j = e


j , where the

value of 
j is unrestricted. In this way, �2n is not allowed to
approach 0. Nevertheless, our sparse deconvolution prob-
lem has some particularities that make it di�erent from a
neural network pruning problem: here, we are interested
in decreasing �2n as much as possible, because in this way
the useless samples approach zero. For this reason, we have
chosen to work directly with �

2
n (instead of 
j)in the fol-

lowing way: iteration (6) is carried out until a maximum
number of iterations niter2 is reached or a constraint of the
form �

2
n < � is satis�ed, where � is an empirical constant

close to zero which prevent us from arriving to unstability.
It may seem that the proposed algorithm involves a wide
number of parameters, but indeed none of them is critical
or hard to adjust for a particular problem.

III. SIMULATION EXPERIMENTS

We have selected two computer experiments with di�er-
ent sparse signals: the �rst uses randomly generated sparse
signals according to a preestablished model: speci�cally, we

generate sparse signals with Gaussian or uniform amplitude
distributions. The second experiment consists on an appli-
cation to real seismic data. For the two examples we have
used a mixture of a narrow and a broad Gaussian, both
centered at zero.

A. Experiment 1

In this example we evaluate the performance of our al-
gorithm using synthetic signals according to the following
model: x(k)=r(k)q(k), where q(k) is a Bernoulli process for
which q(k)=1 with probability � and q(k)=0 with proba-
bility 1-�; r(k) is a white random process with zero mean,
variance �2r and whose amplitudes �t a Gaussian or uni-
form distribution (in particular, the Gaussian distribution
is often used fo seismic deconvolution cases). Registers of
�ve hundred samples were generated according to the above
models (with � = 0:05 and �2r = 10), and then convolved
with the �rst 20 points of an ARMA �lter having a zero at
z=0.6 and two poles at z=0.8exp(�j5�/12). Finally, a zero
mean Gaussian noise was added to the result to produce a
SNR=4 dB.
For this example the simulations compare the perfor-

mance of the algorithms corresponding to:
A1) a mixture of two Gaussians with an optimum weight-

ing parameter chosen to ful�ll (11).
A2) a one-shot threshold detector.
A3) a Single Most Likely Replacement detector.
The last two algorithms are classical statistical detectors

based on the Bernoulli-Gaussian model assumption. For a
complete description of these two algorithms see [3].
For the �rst algorithm we initialize the mixture param-

eters with the following values: �n;0=�b;0=0.5, �
2
b;0=2�

2
z

and �2n;0=�
2
z/2, where �

2
z is the observations variance. We

use iteration (6) without penalty term until x10, and we
ensure convergence selecting �=0.1. The parameters of the
mixture are updated according to (9) and (10).
Table 1(a) shows the averaged results of 25 simulations

when there is a Gaussian amplitude distribution for the
three detectors. The �rst column shows the average de-
tection percentage, and the second the percentage of false
peaks detected. Table 1(b) shows the same kind of results
for a uniform amplitude distribution of the spiky signal.
Somehow surprisingly, the three algorithms give better

results for a uniform amplitude distribution of the sparse
signal, however, this can be easily explained since for a
�xed variance, data driven from a Gaussian distribution
are near zero (and, therefore, are more di�cult to detect)
with higher probability than if they were driven from a uni-
form distribution. The proposed method gives intermediate
results between the one-shot detector and the more elabo-
rated SMLR detector, but with a smaller computational
load: between 25 and 75 iterations of (6) were enough for
all the simulations performed, while the statistical detectors
require at least the inversion of an N by N matrix, where N
is the register length.

B. Experiment 2

In the last example we apply the proposed algorithm to a
section of real seismic data. The source wavelet used in this
example is shown in Fig.1. The initial mixture parameters



a) A1 A2 A3

correct 64.7 56.6 73.1
detections (%)

false 0.8 0.7 1.1
detections (%)

b) A1 A2 A3

correct 70.3 64.0 75.32
detections (%)

false 0.8 0.4 1.1
detections (%)

Table 1. Averaged results of 25 simulations for the three de-
tectors. The �rst column shows the average detection percent-
age, and the second the percentage of false peaks detected.
(a) Gaussian amplitude distribution and (b) Uniform amplitude
distribution.

are �b=�n = 0:5, �b = 5 and �n = 0:2, and we use a �xed
� = 0:3 and � = 0:01 for all the traces. Fig. 2 shows
the real data section, which consists on 25 traces, and Fig.
3 the corresponding estimated re
ectivity sequences using
the proposed algorithm. These re
ectivity sequences, when
convolved with the wavelet shown in Fig. 2, �t quite well the
original seismic data, thus indicating a reasonable behavior
of the algorithm.
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Fig. 1. Wavelet used in example 2
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Fig. 2. A section of 25 traces of real seismic data
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Fig. 3. The corresponding estimated re
ectivity sequences
using the proposed algorithm

IV. CONCLUSIONS

A penalty term that favors solutions driven from a mix-
ture of a narrow and a broad Gaussian has been proposed
to recover a sparse signal from a noisy register. The narrow
gaussian drives small samples toward zero, while the broad
one models the true spikes. Also, we present a method
to adaptively obtain the optimum weighting parameter be-
tween the quadratic error and the penalty term. Simu-
lations show a good performance of the proposed method
when applied to a wide variety of examples, as well as for
a real seismic deconvolution case; besides, the speed of the
proposed method is much faster than that of existing sta-
tistical detectors.
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