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Abstract — Robust adaptive beamforming is a chal-
lenging task in wireless communications due to the
strict restrictions in the number of available snapshots,
signal mismatches, or calibration errors. In this pa-
per, we present a new approach to adaptive beamform-
ing that provides increased robustness against the mis-
match problem as well as some control over the sidelobe
level. We modify the conventional Capon cost function
by including a regularization term that penalizes dif-
ferences between the actual and the target (ideal) ar-
ray responses. By using the so-called e-insensitive loss
function as the penalty term, the cost function adopts
the form of a support vector machine for regression.
In particular, the resulting cost function is convex with
a unique global minimum that can be efficiently found
using quadratic programming techniques. Simulation
examples show the performance of the proposed SVM-
based beamformer when it is compared with traditional
and other robust beamforming techniques.

I. INTRODUCTION

Robust array beamforming has received considerable atten-
tion in the past years due to its importance for wireless commu-
nications, radar, medical imaging and other fields. To achieve
high interference suppression and signal of interest (SOI) en-
hancement, an adaptive array must introduce deep nulls in the
directions of arrival (DOA) of strong interferences while keeping
the desired signal distortionless. This design criterion yields the
well-known minimum variance distortionless response (MVDR)
or Capon beamformer [1].

In practice, however, the knowledge of the array response to
the desired signal can be imprecise, which often occurs due to
estimation errors in the DOA of the desired signal or imperfect
array calibration. In these situations, the performance of the
MVDR beamformer is known to degrade substantially. Fur-
thermore, when the number of snapshots used for covariance
matrix estimation is insufficient, the MVDR beamformer can
present unacceptably high sidelobes, which reduces its perfor-
mance in the presence of powerful noise or unexpected inter-
ferences. A number of techniques have been proposed to im-
prove the robustness of the MVDR beamformer for the signal
look mismatch problem [2][3][4][5]. Recently, an approach with
sidelobe control has been presented in [6]: the MVDR beam-
forming problem is modified to incorporate multiple quadratic
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inequality constraints outside the mainlobe beampattern. The
corresponding optimization problem can be written as a second-
order cone (SOC) programming problem. Although using this
approach the sidelobe levels are guaranteed to be under a cer-
tain prescribed value (as long as a feasible solution exists), this
technique does not consider the signal mismatch problem.

In this paper, we consider the application of support vec-
tor machines (SVM’s) [7] [8] to adaptive beamforming. Based
on the principle of structural risk minimization, the theory of
SVM’s was first introduced by Vapnik [7] and has recently found
application in a number of communications problems such as
blind equalization/identification [9][10] or multiuser detection
[11]. Here we reformulate the MVDR beamforming problem by
incorporating additional constraints that penalize sidelobe lev-
els while, at the same time, allow a certain error in the desired
signal direction. The resulting cost function adopts the form of
a support vector machine for regression (SVM-R). The proposed
SVM-based beamformer is a regularized solution which can be
appropriate for rank-deficient scenarios. Unlike [6], which re-
quires a feasible problem, the proposed SVM-based formula-
tion always provides an approximate solution close to the pre-
scribed sidelobe level. We present simulation examples where
the performance of the proposed SVM beamformer is compared
with the conventional Capon beamformer and with other robust
beamforming techniques.

II. BACKGROUND
The output of a narrowband beamformer composed by M sen-
sors is given by
y(k) = w'x(k),

where k is the time index, x(k) = xx = [z1(k),...,zam(k)]T
€ CM*! is the complex vector of array observations, w =
[wi,...,wan]T € CM*! is the complex vector of beamformer
weights, and (.)7 and (.) denote the transpose and Hermitian
transpose, respectively. The observation (snapshot) vector is
given by

x(k) = s(k)+i(k)+n(k)

s(k)a(bs) + i ij(k)a(d;) + n(k),

where s(k), i(k), n(k) are the desired signal, interference and
noise components, respectively. The number of interference sig-

nals is N;. Here, s(k) and i;(k) are the signal and interference
waveforms. 6; and 6;, j = 1,...,N; denote the signal and in-
terference directions of arrival, respectively, with corresponding
steering vectors a(fs) and a(6;).

The classical formulation for the MVDR beamformer is

n&i’nE [ly(k)[?] subject to w'a(fs) =g (1)



whose solution is given by

g*R;a(fs)

aL(t9S)HR;1a(6'S)7 2)

Wo =
where * denotes conjugate. The M x M matrix R, is the theo-
retical covariance matrix of the array output vector. We assume
that R, > 0 is a positive semidefinite matrix that has the fol-
lowing form

N;
R, = o2a(f,)"a(0s) + Z a7a(0;)"a(6;) + Q, 3)

where ¢2 and O'J?, j=1,...,N; are the powers of the uncorre-
lated impinging signals s(k) and i(k), respectively, and Q is the
noise covariance matrix.

In practice, the exact covariance matrix is not available and
is replaced by the sampled covariance matrix R,

) 1 X .
R, =+ I;lx(k)x(k) , (4)

where N is the number of observed snapshots.

III. MVDR BEAMFORMING WITH SIDELOBE CONTROL
USING SVMSs

In this section we modify the basic MVDR beamforming prob-
lem by incorporating additional constraints in order to control
the sidelobe level. The basic idea is similar to that proposed in
[6], but here we use the constraints as a regularization term of
the array output power. In this way, we end up with a quadratic
programming (QP) problem, which is equivalent to that ob-
tained for a support vector machine for regression (SVM-R),
whereas in [6] a convex conic optimization problem is obtained.
Unlike [6], which guarantees the prescribed sidelobe levels if the
problem is feasible, the SVM technique is able to relax the side-
lobe constraints but always provide an approximate solution.
We feel this is an advantage of the proposed technique in com-
parison to [6]. Moreover, later we show that our procedure can
be generalized to account for errors in the look direction.

Let us consider a grid of directions of arrival 8;,i=1,--- , P;
which sample the beampattern in [-90°, 90°]. Without loss of
generality we assume that 0p is the direction of the desired sig-
nal. Based on the theory of SVMs [7], we consider the following
regularized MVDR problem

P
R - H
min - Sw sz+C’Z\di —wa(b;)le, (5)

i=1
where

\d; — wa(6;)]. = max {o, \d; — wa(0;)] - e} . (6)

is the so-called Vapnik’s e-insensitive loss function and d; is the
desired beamformer output

0
d; = o
{ gr + 391,

The regularized cost function (5) establishes a trade-off be-
tween the array output power and a term that penalizes mis-
matches larger than ¢ between the actual and desired array
responses for the given angle grid. The parameter e defines
the maximum gain level outside the mainlobe beampattern and

i=1,---P—1,
i=P. (7)

therefore acts as a sidelobe control parameter. Note also that,
unlike the conventional MVDR formulation and the method in
[6], with the proposed formulation errors smaller that ¢ are al-
lowed in the array response for the assumed signal arrival angle.

In order to apply the standard methodology for support vec-
tor regression the first term in (5) must be written as a com-
plexity term for the SVM structure. Also, the overall problem
must be rewritten in terms of real variables. To this end we use
the eigenvalue decomposition of the sampled covariance matrix,
Rx = UmeUf; then, the power at the beamformer output
can be written as

wiR,w = w'w = w'w, (8)

where w € CM*! and w € R*™*! are given by
w = D/*Ul'w, (9)
' = [wk wl]. (10)

On the other hand, the beamformer output for each DOA,
wHa(6;), can be written as

w'a(0;) = w'D;*U a(0;) = wa(6;)

(11)

where the new set of transformed steering vectors a(6;) € CM*!
is defined as

a(6;) = D;2Ua(0,). (12)
Likewise, it can be shown that
wa(0;,) = w'a0:) + jw’a'(6;) (13)
where a(6;) and a'(6;) € R**! are given by
a)" = [ak(6:) a7 (6))]
a:)" = [a](6:) —ak(6))]. (14)

Clearly, the regression problem can be expressed indepen-
dently for the real and imaginary terms, as

w'a(0;)) = Re(d,),
w'a'(0;) = Im(d),
for i = 1,--- , P, where d; is the desired array response, which

is given by (7).
For notational simplicity, we define the following compact

variable a € R?M*2P

al) = { 26, ),

With these transformations, the initial complex formulation
(5) can be written in terms of real variables as

i=1,---P,

i=P+1,---2P. (15)

2P
1, T
J(w) =5 W] +C > lyi — W ai)le

i=1

(16)

where the real variable y; = Re(d;) for i =1,--- , P, and y; =
Im(d;) for i = P+1,--- ,2P, represents the desired output for
each product w”a(i).

Introducing a set of slack positive variables £ and 5 , the cost
function (16) can be written as the following optimisation prob-
lem with constraints [7]: minimize

2P
L(%,6,8) = 5 |W]F +C D2 (6 +) (a7)
i=1



subject to

wla(i)—y < e+&, (18)
yi—w'a(i) < e+é, (19)
&,6 >0 (20

fori=1,---,2P.

IV. SVM-BASED SOLUTION

The solution of the optimization problem with constraints is a
saddle point of the Lagrange functional [7][8]

2P

L(W,6,6,0,8,7,7) = 5 HW|| +CZ &+é)-Y (%éz +%€i)

iai(yi ( +e+§z) Zal(w a(i yz+e+€l)

(21)

minimum with respect to the primal variables W, & and éi;
and maximum with respect to the Lagrange multipliers a; > 0,
Qi 20, Yi 20andﬁq ZO,fOI"L'Il,--- ,QP.

Differentiating the above Lagrangian with respect to w, &
and ¢; yields to

2P
W= > (&—a)a(i), (22)
=1
vi = C—ay i=1,---,2P, (23)
7% = C—ay, i=1,---,2P. (24)

Similarly to other SVM-based problems, here the optimal
beamformer can be expanded in term of a set of steering vectors
(those corresponding to &; — a; # 0), which are the support
vectors for the problem. Substituting (22), (23) and (24) into
(21), the Lagrange multipliers a;, &; are the coefficients which
maximize the following quadratic functional

*Z

=1
-

— Za’_‘—al —|—Z -—Ozz Yi, (25)
=1

subject to 0 < ai,&; < C; where (x,y) = x”y denotes inner
product.

W (e, &) i — o) ((a(i), a(y))

'_az

Once «; and &; are computed by using quadratic program-
ming techniques [12], the coefficients W can be calculated with
(22). Then, we construct w by means of the inverse trans-
formation of (10), i.e., each complex coefficient is formed as
w(i) = w(i) + jw(i + M), for i = 1,..., M. Finally, in order to
derive the beamformer weights, the coefficients w are mapped
into the original base
2.

w="U,D; (26)

V. ROBUST ARRAY BEAMFORMING

It is well known that the MVDR beamformer suffers a severe
performance degradation when the array response vector for the
desired signal is not known exactly [3]-[5]. This degradation is
especially noticeable at high SNR’s or when a scarce number of
snapshots is available to estimate the signal covariance matrix.

Many approaches has been proposed to improve the robust-
ness of the MVDR beamformer (for a good review, see [1]). In
[5], a Bayesian approach is derived where 65 is assumed to be
a random variable with a known a priori pdf that character-
izes the level of uncertainty. The solution is a weighted sum
of MVDR beamformers pointed at a set of candidates DOA’s,
whose relative contribution is determined from the a posteriori
pdf of the DOA conditioned on observed data [5]. Diagonal
loading methods and its extended versions [2][3][4] impose ad-
ditional quadratic constraints either on the Euclidean norm of
the weights vector or in its difference from a desired weight vec-
tor. In [2], the actual steering vector ranges between a given
uncertainty set of the source steering vector, such as spherical
or flat ellipsoidal.

In the previous section, exact knowledge of the desired DOA
was assumed in the regression procedure. Obviously, the pro-
posed technique can easily be extended to deal with source
steering vector mismatches. Instead of a single steering vec-
tor corresponding to the assumed signal arrival angle, we can
consider now a number of #;’s around the assumed source DOA,
for which the desired beamformer output is g # 0. In this way,
we increase the mainlobe beampattern area to account for a
possible mismatch error. Specifically, the desired output for the
beamforming problem is defined now as

0 if i — 0. > A,
Yi = g

if |6; — 05| < A,
where /A denotes the angular mainlobe beamwidth centered at
0s. The choice of /A depends on the accuracy of the desired
DOA measure. Any a priori information about the reasonable
range of the source DOA error can be utilized to optimize the
approach with similar principles as in [5].

(27)

VI. SIMULATION RESULTS

Some computer simulations are carried out to demonstrate
the performance of the proposed beamforming technique. In all
the simulations we assume a uniform linear array with M = 10
sensors and half-wavelength sensor spacing.

Example 1

In the first simulation we consider the ideal scenario where
the source steering vector is exactly known. All signal wave-
forms are i.i.d. QPSK. We assume a spatially white Gaussian
noise whose covariance matrix is given by Q = ¢21. The power
of SOI is 02 = 10 dB, and the power of the interferences is
032- = 30 dB, Vj. We assume that the SOI direction of arrival is
0s = 0°, and that the DOAs of the interferences are #; = —30°,
02 =30° and 03 =70°. In order to compute Ry, N = 50 snap-
shots are used.

Fig.(1) shows the beampatterns, for signal-to-noise ration
SNR = 5 and 30 dB, of the proposed SVM approach compared
to the Capon beamformer and the robust array beamformer
with spherical constraint proposed in [2] with control parameter
€ = 4.5 (in the following denoted as SpheRCB). In [2] is proven
that the SpheRCB beamformer and the SOC method proposed
in [4] provide the same solution. In our SVM approach, an uni-
form grid with P = 11 and A =0° is used to obtain the angles
0; (i=1,..., P) between the range [-90°,90°], including 6s. The
support vector regression parameters are C' = 1 and € = 0.001
for both SNR cases. The vertical lines in the figure indicate the
DOAs of the SOI as well as the interferences. Note that the
beampatterns have been scaled in order to achieve unity gain in
the SOI direction.
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Fig. 1: No-mismatch case: SVM (solid line) with A = 0°, P = 11, C = 1 and ¢ = 0.001; SpheRCB (dotted line) with ¢ = 4.5, and Capon

(dash-dotted line). (a) SNR = 5 dB, (b) SNR = 30 dB.
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Fig. 2: No-mismatch case: SINR versus SNR, assuming three
interferences with 30 dB of power at -30°, -70° and 30°.

From Fig.(1) we see that, when the signal steering vector is
exactly known, all the beampatterns have nulls at the DOAs of
the interferences. On the other hand, at high SNR’s the side-
lobe level increases considerably for the Capon beampattern:
this can result in deep degradations in case of unexpected in-
terferences. Although the SVM beamformer does not present
deeper nulls than the rest, it has a lower sidelobe level, partic-
ularly for low SNR’s.

The performance of the proposed SVM beamformer depends
on the prescribed angular mainlobe beamwidth A or, equiv-
alently, on the number of regression points defined inside the
mainlobe P; and outside the mainlobe P,. To illustrate this
point, Fig.(2) depicts the average (from 200 Montecarlo simula-
tions) signal-to-interference-noise ratio (SINR) versus the SNR
for the beamforming methods under comparison. For the SVM
method with A =0° we choose P, = 1 and P> = 10, (i.e., the to-
tal number of 0; is P = 11), whereas for A =2°, we use Py = 20
and P, = 40. As can be seen, since we are considering a no-
mismatch scenario, similar results are achieved with A =0° and
A =2°. On the other hand, both SVM procedures obtain better
results than the Capon and SpheRCB approaches.

Example 2

In this example a scenario with some error in the SOI steer-
ing vector is considered. We assume that both the presumed
and actual desired DOAs are 6, =2° and 6, =0°, respectively.
The rest of parameters are equal to those of the previous exam-
ple. Fig.(3) shows a single realization of the beampatterns. As
can be seen, the SOI is considered to be an interference by the
Capon beamformer. On the other hand, the SOI is preserved
by the SVM and the SpheRCB approaches. However, note that
the SVM beampattern also has a lower sidelobe level than the
SpheRCB solution.

Fig.(4.a) shows the averaged SINR versus SNR for this exam-
ple: the SVM method behaves similar to the SpheRCB beam-
former in the low SNR region, but the former achieves better
results for high SNR. In Fig. (4.b), we vary the number of inter-
ferences from N; = 1 to N; = 9 with a fixed SNR of 10 dB. The
power of the SOI is 02 = 10 dB, and the interference powers
are 02 = ... = o2 = 30 dB. The SOI and interference DOAs
are 93 :OO, 01 :—750, 02 :600, 93 :—450, 04 :300, 95 :—100,
0 = —25°, 67 =35° 0s=-50° and 6y =70°. From Fig.(4.b)
we see that the SVM-based beamformer provides better results
than the SpheRCB regardless of the number of interferences.

VII. CONCLUSIONS

In this paper, robust adaptive beamforming was reformu-
lated as a support vector regression problem. The proposed
approach modifies the traditional Capon beamformer with the
goals of: a) increasing the beamformer robustness against errors
in the desired signal array response and b) providing some addi-
tional control over the sidelobe level. By using the e-insensitive
loss function in the regression problem we end up with a convex
function that can be efficiently minimized. The satisfactory per-
formance of the proposed SVM beamformer was demonstrated
through computer simulations, both in no-mismatch and mis-
match situations. The proposed method was shown to provide
suitable results, specially for high SNR scenarios and when the
number of available snapshots is scarce. Future work should
be directed to optimize the selection of the SVM parameters
(loss function, C and €), as well as to reduce the complexity of
the QP optimization (for instance using the IRWLS procedure
described in [13]) of the proposed beamforming approach.
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Fig. 4: Look direction mismatch of 2°: (a) SINR versus SNR, assuming three interferences with 30 dB of power at -30°, 30° and 70°. (b)

SINR versus number of interferences with SNR = 10 dB.
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