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Abstract. In this paper, the problem of simultaneously approxi-
mating a function and its derivative is formulated within the Sup-
port Vector Machine (SVM) framework. The problem has been
solved by using the ε-insensitive loss function and introducing new
linear constraints in the approximation of the derivative. The re-
sulting quadratic problem can be solved by Quadratic Program-
ming (QP) techniques. Moreover, a computationally efficient It-
erative Re-Weighted Least Square (IRWLS) procedure has been
derived to solve the problem in large data sets. The performance
of the method has been compared with the conventional SVM for
regression, providing outstanding results.

INTRODUCTION

Regression approximation of a given data set is a very common problem in a
number of applications. In some of these applications, like economy, device
modeling, telemetry, etc, it is necessary to fit not only the underlying char-
acteristic function but also its derivatives, which are often available. Some
methods have been employed to simultaneously approximate a set of samples
of a function and its derivative: splines, neural networks or filter bank-based
methods are some examples (see [1] and references therein).

On the other hand, Support Vector Machines are state-of-the-art tools for
linear and nonlinear input-output knowledge discovery [5, 4]. The Support
Vector Machines, given a labeled dataset ((xi, yi), where xi ∈ Rd for i =
1, . . . , N ) and a function φ(·) that nonlinearly transforms the input vector
xi to a higher dimensional space, solve either classification (yi ∈ {±1}) or
regression (yi ∈ R) problems.



In this paper, we will deal with the regression approximation problem
and we will extend the SVM framework when prior knowledge about the
derivative of the functional relation between x and y is known. We will solve
this problem for one-dimensional problem (d = 1), but it can be readily
extended to multidimensional input and the gradient information, as we will
show herein. We would like to find the functional relation between x and y
giving a labeled data set ((xi, yi, y

′

i), where yi ∈ R and y
′

i ∈ R, which is the
derivative of the function to be approximated at xi).

We will solve it using the ε-insensitive loss function and it will lead to
a solution similar to the SVM in which we have Support Vectors related to
the function value (yi) and Support Vectors related to the derivative value
(y

′

i), and both together form the complete SVM expansion for regression
approximation with information about the derivative of the function.

The solution to the proposed algorithm is obtained using an Iterative Re-
Weighted Least Square (IRWLS) procedure that it is able to easily solve the
SVM. This procedure has been successfully applied to the regular SVM for
classification [2] for regression [3].

The rest of the paper is outlined as follows. The modification of the
SVM for regression approximation to include the derivative information is
presented in Section 2. In Section 3, we deal with the IRWLS procedure for
linear machines. The use of nonlinear kernel and the application of the kernel
trick to the IRWLS procedure is presented in Section 4. The generalization
of the method to higher order input spaces is outlined in Section 5. Experi-
mental results are presented in Section 6. We conclude the paper in Section
7 with some final comments and possible further works.

PROPOSED SVM-BASED APPROACH

As it has been outlined before, the proposed method is an extension of the
Support Vector Machine for Regression (SVM-R) employing the Vapnik’s ε-
insensitive loss function [5]. The SVM-R obtains a linear regressor in the
transformed space (feature space)

f(x) = wT φ(x) + b, (1)

where w and b define the linear regression, which is nonlinear in the input
space (unless φ(x) is linear). Roughly speaking, the SVM-R minimizes the
squared norm of the weight vector w, while linearly penalizes the deviations
greater than ε.

With respect to the conventional SVM-R cost function, the proposed
method adds a new penalty term: the errors in the derivative that are out of
its associated insensitive region. In the general case, a different parameter is
employed to define the insensitive region size for the function (ε) and for the
derivative (ε′). Taking this extension into account, the proposed approach
minimizes



J(w, ξ, ξ∗, τ , τ ∗) =
1
2
||w||2 + C1

N∑
i=1

(ξi + ξ∗i ) + C2

N∑
i=1

(τi + τ∗i ), (2)

subject to
wT φ(xi) + b− yi ≤ ε + ξi, (3)

yi −wT φ(xi)− b ≤ ε + ξ∗i , (4)

wT φ′(xi)− y′i ≤ ε′ + τi, (5)

y′i −wT φ′(xi) ≤ ε′ + τ∗i , (6)

ξi, ξ
∗
i , τi, τ

∗
i ≥ 0. (7)

The positive slack variables ξ, ξ∗, τ and τ∗ are responsible for penalizing
errors greater than ε and ε′, respectively, in the function and derivative, and
φ′(x) denotes the derivative of φ(x). To solve this problem, the following La-
grangian functional is employed, introducing the previous linear constraints

L(w, ξ, ξ∗, τ , τ ∗,α,α∗,λ,λ∗) =
1
2
||w||2 +C1

N∑
i=1

(ξi + ξ∗i )+C2

N∑
i=1

(τi + τ∗i )

−
N∑

i=1

αi[ε + ξi − (wT φ(xi) + b− yi)]−
N∑

i=1

α∗
i [ε + ξ∗i − (yi −wT φ(xi)− b)]

−
N∑

i=1

λi[ε′ + τi − (wT φ′(xi)− y′i)]−
N∑

i=1

λ∗
i [ε

′ + τ∗i − (y′i −wT φ′(xi))]

−
N∑

i=1

(µiξi + µ∗
i ξ

∗
i + θiτi + θ∗i τ∗i ). (8)

This functional has to be minimized with respect to w, b, ξ, ξ∗, τ and τ∗,
and maximized with respect to the Lagrange multipliers. The solution to
this problem can be obtained considering the Karush-Kuhn-Tucker (KKT)
complementary conditions, which for this specific problem are

∂L

∂w
= w +

N∑
i=1

αiφ(xi)−
N∑

i=1

α∗
i φ(xi) +

N∑
i=1

λiφ
′(xi)−

N∑
i=1

λ∗
i φ

′(xi) = 0, (9)

∂L

∂b
=

N∑
i=1

(αi − α∗
i ) = 0, (10)

∂L

∂ξi
= C1 − αi − µi = 0,

∂L

∂ξ∗i
= C1 − α∗

i − µ∗
i = 0, (11)



∂L

∂τi
= C2 − λi − θi = 0,

∂L

∂τ∗i
= C2 − λ∗

i − θ∗i = 0, (12)

αi[ε + ξi − (wT φ(xi) + b− yi)] = 0, (13)

α∗
i [ε + ξ∗i − (yi −wT φ(xi)− b)] = 0, (14)

λi[ε′ + τi − (wT φ′(xi)− y′i)] = 0, (15)

λ∗
i [ε

′ + τ∗i − (y′i −wT φ′(xi))] = 0, (16)

and
µiξi = 0, µ∗

i ξ
∗
i = 0, θiτi = 0, θ∗i τ∗i = 0. (17)

From (9), the weight vector w takes the form

w =
N∑

i=1

(α∗
i − αi)φ(xi) +

N∑
i=1

(λ∗
i − λi)φ′(xi), (18)

which means that the regression is

f(x) =
N∑

i=1

(α∗
i − αi) < φ(xi), φ(x) > +

N∑
i=1

(λ∗
i − λi) < φ′(xi), φ(x) > +b.

(19)
Substituting (18) into (8), rearranging terms and taking into account (10)-
(12), one thus arrives to the Wolfe’s dual problem needing to maximize

W (α,α∗,λ,λ∗) = −1
2

N∑
i,j=1

(α∗
i − αi)(α∗

j − αj) < φ(xi), φ(xj) >

− 1
2

N∑
i,j=1

(λ∗
i − λi)(λ∗

j − λj) < φ′(xi), φ′(xj) >

− 1
2

N∑
i,j=1

(α∗
i − αi)(λ∗

j − λj) < φ(xi), φ′(xj) >

− 1
2

N∑
i,j=1

(λ∗
i − λi)(α∗

j − αj) < φ′(xi), φ(xj) >

−
N∑

i=1

[(αi + α∗
i )ε + (λi + λ∗

i )ε
′] +

N∑
i=1

[(α∗
i − αi)yi + (λ∗

i − λi)y′i] , (20)

subject to
0 ≤ αi, α

∗
i ≤ C1, (21)

0 ≤ λi, λ
∗
i ≤ C2, (22)

and
N∑

i=1

(αi − α∗
i ) = 0. (23)



It can be seen that (20) is a quadratic functional that only depends on
the Lagrange multipliers αi, α∗

i , λi and λ∗
i . This problem can be solved by

Quadratic Programming (QP) techniques. Moreover, in the SVM framework,
the nonlinear transformation φ(x) is not needed to be explicitly known and it
can be replaced by its kernels. In this case, < φ(xi), φ(xj) > is substituted by
K(xi, xj), a kernel satisfiying the Mercer Theorem [4]. From this definition
for the kernel, it is easy to demonstrate that,

< φ′(xi), φ(xj) >=
∂K(xi, xj)

∂xi
, K ′(xi, xj), (24)

< φ(xi), φ′(xj) >=
∂K(xi, xj)

∂xj
, G(xi, xj), (25)

and

< φ′(xi), φ′(xj) >=
∂2K(xi, xj)

∂xi∂xj
, J(xi, xj). (26)

Though K must be a Mercer Kernel, its derivatives do not have to. There-
fore, using a valid kernel K(xi, xj), once the Lagrange multipliers have been
obtained, the regression estimate takes the form

f(x) =
N∑

i=1

(α∗
i − αi)K(xi, x) +

N∑
i=1

(λ∗
i − λi)K ′(xi, x) + b. (27)

IRWLS ALGORITHM

The QP solution of the system can be computationally expensive, especially
when a large number of samples is employed. In this case the computational
burden can make the problem unaffordable. In order to reduce the compu-
tational burden, an Iterative Re-Weighted Least Square (IRWLS) procedure
has been developed. This IRWLS algorithm follows the same basic idea pro-
posed in [3]. First at all, the Lagrangian (8) is rearranged to group the term
depending on ξi, ξ∗i , τi and τ∗i . Taking into account (11)-(12), these terms
can be eliminated. Therefore, (8) can be written as

L =
1
2
||w||2 −

N∑
i=1

αi[ε + yi −wT φ(xi)− b]−
N∑

i=1

α∗
i [ε + wT φ(xi) + b− yi]

−
N∑

i=1

λi[ε′ + y′i −wT φ′(xi)]−
N∑

i=1

λ∗
i [ε

′ + wT φ′(xi)− y′i]. (28)

This functional can be rewritten as

L =
1
2
||w||2 +

1
2

N∑
i=1

(aie
2
i + a∗i (e

∗
i )

2) +
1
2

N∑
i=1

(sid
2
i + s∗i (d

∗
i )

2), (29)



where

ei = wT φ(xi) + b− yi − ε, ai =
2αi

ei

(30)

e∗i = yi −wT φ(xi)− b− ε, a∗i =
2α∗

i

e∗i
(31)

di = wT φ′(xi)− y′i − ε′, si =
2λi

di

(32)

d∗i = y′i −wT φ′(xi)− ε′, s∗i =
2λ∗

i

d∗i
(33)

This functional can be seen as a weighted least square one, where ei, and
e∗i are the prediction error over the function, di and d∗i are the prediction
error over the derivative, and ai, a∗i , si and s∗i are the corresponding weights.
It is necessary to iterate because ai = ai(ei), a∗i = a∗i (e

∗
i ), si = si(di) and

s∗i = s∗i (d
∗
i ). The goal at each iteration is to minimize (28) with respect to w

and b, supposing that ai, a∗i , si and s∗i are fixed. Taking the derivative with
respect to both variables, the following two equations are obtained:[

ΦT Da+a∗Φ + Φ′T Ds+s∗Φ′ + I ΦT Da+a∗1
(a + a∗)T Φ (a + a∗)T 1

] [
w
b

]
=[

ΦT [Da+a∗y + Da−a∗1ε] + Φ′T [Ds+s∗y′ + Ds−s∗1ε′]
(a + a∗)T y + (a− a∗)T 1ε

]
, (34)

where a, a∗, s and s∗ are the vectors containing the N corresponding weights
in (29), Da denotes the diagonal matrix with vector a in the diagonal, and

Φ = [φ(x1), φ(x2), · · · , φ(xN )]T

Φ′ = [φ′(x1), φ′(x2), · · · , φ′(xN )]T . (35)

IRWLS WITH KERNELS

The system (34) can be used when φ(x) is known. When working with
kernels, it is necessary to obtain the Lagrange multipliers to provide the
regression (27). In this case, it must be taken into account that the weight
vector can be written as

w = [ΦT ,Φ′T ]
[

β
γ

]
, (36)

where β = α∗ − α and γ = λ∗ − λ. Now (36) will be used to replace w in
(34). The first equation can be written as

[ΦT Da+a∗Φ+Φ′T Ds+s∗Φ′+I]w = [ΦT ,Φ′T ]
[

Da+a∗(y − 1b) + Da−a∗1ε
Ds+s∗y′ + Ds−s∗1ε′

]
.

(37)



Substituting w by (36), multiplying in both sides by

([ΦT ,Φ′T ]T )+ =
([

Φ
Φ′

]
[ΦT ,Φ′T ]

)−1 [
Φ
Φ′

]
, (38)

making mathematical arrangements and taking into account that we have
two sets of decoupled equations, this equation can be written down as

H−1

{
H

[
Da+a∗ 0

0 Ds+s∗

]
H + H

} [
β
γ

]
=[

Da+a∗(y − 1b) + Da−a∗1ε
Ds+s∗y′ + Ds−s∗1ε′

]
. (39)

H can be easily computed from the definition of K(xi, xj) and (24)-(26)

H =
[

ΦΦT ΦΦ′T

Φ′ΦT Φ′Φ′T

]
=

[
K G
K′ J

]
, (40)

where K|ij = K(xi, xj), K′|ij = K ′(xi, xj), G|ij = G(xi, xj) and J|ij =
J(xi, xj). Canceling H−1H, multiplying by the inverse of the diagonal matrix
in (39) and moving b to the first term, the equation can be simplified. Finally,
instead of using the second equation in (34), the simpler constraint (10) can
be used, leading to the following whole system H +

[
Da+a∗ 0

0 Ds+s∗

]−1 [
1
0

]
[
1T ,0T

]
0

 β
γ
b

 =

 y + a−a∗

a+a∗ ε

y′ + s−s∗

s+s∗ ε′

0

 , (41)

where a−a∗

a+a∗ denotes the vector containing (ai − a∗i )/(ai + a∗i ) in the i-th row.

Recalculating the weights

After each iteration, the new values for the weights ai, a∗i , si and s∗i have to
be calculated. It is simple to demonstrate, looking at the KKT conditions,
that the corresponding values are given by

ai =


0, ei < 0

2C1

ei
, ei > 0

, a∗i =


0, e∗i < 0

2C1

e∗i
, e∗i > 0

(42)

si =


0, di < 0

2C2

di
, di > 0

, s∗i =


0, d∗i < 0

2C2

d∗i
, d∗i > 0

(43)

It must be noted that in (41) the inverse of these weights is used. In any case,
when the estimated errors are null or very low, a maximum limit has to be
imposed to the weight constants. This has the effect of adding a small number
in the diagonal of the system in this case. This guarantees the matrix system
is invertible. With this numerical trick to ensure convergence, the IRWLS
algorithm can be summarized in Table 1.



1. Initialization:

• Compute H (from K, K′, G and J)

• ai = C1, si = C2 for odd i; a∗i = C1, s∗i = C2 for even i.

2. To solve (41)

3. To evaluate

e = KT β + K′T γ + 1b− y − 1ε, e∗ = y −KT β −K′T γ − 1b− 1ε
d = GT β + JT γ − y′ − 1ε′, d∗ = y′ −GT β − JT γ − 1ε′

4. Recalculate ai, a∗i , s∗i and s∗i by (42) and (43) (with a maximum limit)

5. Go to step 2 until convergence is achieved

Table 1: IRWLS algorithm pseudocode

EXTENSION OF THE METHOD

The proposed method can be easily extended to d-dimensional input spaces
and to consider up to k-th order derivatives. It is only necessary to incorpo-
rate the corresponding constraints. Because of the space limitation we have
omitted the development, but in this case the solution takes the form

w =
N∑

i=1

k∑
j1=0

· · ·
k∑

jd=0

(λ∗
ij1···jd

− λij1···jd
)
∂(j1+···+jd)φ(xi)
∂xj1

1 , · · · , xjd

d

, (44)

where xi = [xi1, xi2, · · · , xid]T and λ∗
ij1···jd

and λij1···jd
are the Lagrange

multipliers associated to the constraint in the i-th sample of

∂(j1+···+jd)f(x)
∂xj1

1 , · · · , xjd

d

.

RESULTS

In this section, some experimental results show the advantages of this method
in the reconstruction of the derivative with respect to the conventional SVM-
R approach. As test functions, we have selected a set of bandlimited func-
tions: specifically, in each experiment a linear combination of 100 sinusoids
with random amplitudes, frequencies (between 0 and 1 Hz) and phases has
been generated. In the first example, 100 equally spaced sampling points in
the range 0-5 have been employed by the SVM-R (100 samples of the func-
tion), And 50 points by the proposed approach (50 samples of the function +
50 samples of the derivative). In this way, the number of total available data
is the same. 1000 experiments have been considered, with a signal to noise
ratio (SNR) of 20 dB in the samples of both the function and the derivative.



Figure 1 plots the mean values of signal to error ratio (SER) in the recon-
struction of the function (a) and of the derivative (b) as a function of the
insensitivity parameter ε. In this case, ε′ = πε has been considered to take
into account the different amplitude range of function and derivative (the
mean amplitude of the derivative is π times higher than the mean amplitude
of the function).
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Figure 1: SER in the reconstruction of function and derivative

It can be seen that the proposed method (labeled SVM-D) provides better
results than the SVM-R, specially in the reconstruction of the derivative.
Moreover, a similar number of support vectors has been observed for both
methods in all simulations (in the proposed method: support vectors related
to the function + support vectors related to the derivative). Therefore, the
proposed method does not increment the storage requirements of the model.
The number of support vectors, as a function of ε, is ploted in Figure 2.
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Figure 2: Number ot total support vectors as a function of ε

Finally, this method reduces the sensitivity of the method to the selection
of σ for the Gaussian kernels. Figure 3 shows the SER in the reconstruction
of the function as a function of σ for ε = 0.5. It can be seen that the σ range
to obtain high SER values is increased by using the proposed method.
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Figure 3: SER as a function of the Kernel size

CONCLUSIONS

A new SVM-based method for the simultaneous reconstruction of a function
and its derivative has been presented. A computationally efficient IRWLS
algorithm has been derived to allow the application of the method to large
data sets. This method provides better results than the conventional SVM-R
approach in the reconstruction of function and derivative even when the same
number of labeled data is employed in both methods. In this case, the pro-
posed method needs a similar number of support vectors than conventional
SVM-R. Moreover, the inclusion of the information of the derivatives reduces
the dependence on the kernel size for Gaussian kernels. Expression have been
presented for a one-dimensional input space and only the first derivative, but
the extension of the method to higher order input spaces and derivative orders
is straightforward by adding the corresponding constraints to the regression.
Further work in necessary to simplify the parameter selection similarly to the
ν-SVM [4].
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