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In this paper, the problem of simultaneously approximating a function and its deriv

formulated within the Support Vector Machine (SVM) framework. First, the pro

solved for a one-dimensional input space by using the e-insensitive loss functi

introducing additional constraints in the approximation of the derivative. Then, we ext

method to multi-dimensional input spaces by a multidimensional regression algori

both cases, to optimize the regression estimation problem, we have derived an itera

weighted least squares (IRWLS) procedure that works fast for moderate-size problem
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proposed method shows that using the information about derivatives significantly improves
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the reconstruction of the function.
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1. Introduction

m in a
device
teristic
rning a
tworks
some
eously
bank-

ols for
given a
�Þ that
either

we will
of the

the �-
. Then,
es, the
e have
to the
e SVM
ives of
erative
lied to
m has
Regression approximation of a given data set is a very common proble
number of applications. In some of these applications, like economy,
modeling, telemetry, etc., it is necessary to fit not only the underlying charac
function but also its derivatives, which are often available. The problem of lea
function and its derivatives has been addressed, for instance, in the neural ne
literature, to analyze the capability of several kinds of networks [2,3], or in
applications [6,7]. Some other methods have been employed to simultan
approximate a set of samples of a function and its derivative: splines, or filter
based methods are some examples (see [4] and references therein).
On the other hand, Support Vector Machines (SVMs) are state-of-the-art to

linear and nonlinear input–output knowledge discovery [13,15]. The SVMs,
labeled data set ðxi; yiÞ, where xi 2 Rd for i ¼ 1; . . . ;N, and a function /ð

nonlinearly transforms the input vector xi to a higher-dimensional space, solve
classification (yi 2 f�1g) or regression (yi 2 R) problems.
In this paper, we will deal with the regression approximation problem and

extend the SVM framework when prior knowledge regarding the derivatives
functional relationship between x and y is known.
First, we will solve the issue in a one-dimensional problem (d ¼ 1) by using

insensitive loss function and introducing a linear constraint for the derivatives
we will extend the method to multidimensional input spaces. In both cas
corresponding method will lead to a solution similar to the SVM in which w
support vectors related to the function value and support vectors related
derivatives values. Together, both kinds of support vectors form the complet
expansion for regression approximation with information about the derivat
the function. The solution to the proposed algorithms is obtained using an it
re-weighted least squares (IRWLS) procedure, which has been successfully app
the regular SVM for classification [12] and for regression [11]. This algorith
been recently proven to converge to the SVM solution [9].
2. Proposed one-dimensional SVM-based approach

ctional
y0

i 2 R

d is an
The one-dimensional problem can be stated as follows: to find the fun
relation between x and y giving a labeled data set, ðxi; yi; y

0
iÞ, where yi 2 R and

is the derivative of the function to be approximated at xi. The proposed metho



extension of the SVM for Regression (SVR) employing Vapnik’s �-insensitive loss
feature

(1)

t space
of the

adds a
nsitive
nsitive
n into

(2)

(3)

(4)

(5)

(6)

(7)

ble for
ivative,
angian
in the

�, and
roblem
entary
ils)

(8)

d with
can be

ARTICLE IN PRESS

tion of a

M. Lázaro et al. / Neurocomputing 69 (2005) 42–6144
function [15]. The SVR obtains a linear regressor in the transformed space (
space)

f ðxÞ ¼ wT/ðxÞ þ b,

where w and b define the linear regression,2 which is nonlinear in the inpu
(unless /ðxÞ ¼ x). Roughly speaking, the SVR minimizes the squared norm
weight vector w, while it linearly penalizes deviations greater than �.
With respect to the conventional SVR cost function, the proposed method

new penalty term: the errors in the derivative that are out of its associated inse
region. In the general case, a different parameter is employed to define the inse
region size for the function (�) and for the derivative (�0). Taking this extensio
account, the proposed approach minimizes

LPðw; b; x; x
�; t; t�Þ ¼

1

2
kwk2 þ C1

XN

i¼1

ðxi þ x�i Þ þ C2

XN

i¼1

ðti þ t�i Þ

subject to

wT/ðxiÞ þ b  yip�þ xi,

yi  w
T/ðxiÞ  bp�þ x�i ,

wT/0
ðxiÞ  y0

ip�0 þ ti,

y0
i  w

T/0
ðxiÞp�0 þ t�i ,

xi; x
�
i ; ti; t�i X0

for i ¼ 1; 2; . . . ;N. The positive slack variables xi, x
�
i , ti and t�i are responsi

penalizing errors greater than � and �0, respectively, in the function and der
and /0

ðxÞ denotes the derivative of /ðxÞ. To solve this problem, a Lagr
functional is used to introduce the previous linear constraints, as usual
classical SVM framework [13].
The Lagrangian has to be minimized with respect to w, b, x, x�, t and t

maximized with respect to the Lagrange multipliers. The solution to this p
can be obtained considering the Karush–Kuhn–Tucker (KKT) complem
conditions, which lead to a weight vector w taking the form (see [5] for deta

w ¼
XN

i¼1

ða�i  aiÞfðxiÞ þ
XN

i¼1

ðl�i  liÞf
0
ðxiÞ,

where ai, a�i , li and l�i are, respectively, the Lagrange multipliers associate
constraints (3)–(6). Therefore, the regression estimation for a new sample x

2All vectors will be column-vectors. We will denote the scalar product as a matrix multiplica
row-vector by a column-vector, and T denotes transpose.
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f ðxÞ ¼
XN

i¼1

ða�i  aiÞ/
T
ðxiÞ/ðxÞ þ

XN

i¼1

ðl�i  liÞ/
0T
ðxiÞ/ðxÞ þ b.

In the SVM framework, the nonlinear transformation /ðxÞ is not needed
explicitly known and it can be replaced by the kernel of the no
transformation. In this case, /T

ðxiÞ/ðxjÞ is substituted by Kðxi;xjÞ, a
satisfying the Mercer theorem [13]. From this definition for the kernel, it is
demonstrate that

/0T
ðxiÞ/ðxjÞ ¼

qKðxi;xjÞ

qxi

9K 0ðxi; xjÞ,

/T
ðxiÞ/

0
ðxjÞ ¼

qKðxi; xjÞ

qxj

9Gðxi;xjÞ

and

/0T
ðxiÞ/

0
ðxjÞ ¼

q2Kðxi;xjÞ

qxiqxj

9 Jðxi;xjÞ.

Although Kð�; �Þ must be a Mercer Kernel, its derivatives do not necessarily h
be so. Therefore, using a valid kernel Kð�; �Þ, once the Lagrange multipliers hav
obtained, the regression estimate takes the form

f ðxÞ ¼
XN

i¼1

ða�i  aiÞKðxi;xÞ þ
XN

i¼1

ðl�i  liÞK
0ðxi;xÞ þ b,

where we have only used the kernel of the transformation without ex
computing the nonlinear transformation. We will show, in the following subs
that the resolution of the minimization problem can also be done using kern
one does not need to know the nonlinear transformation, as in the regula
framework.
2.1. IRWLS algorithm

rive at
on the
niques.
ecially
roblem
cedure
osed in
ensible
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The problem can be solved following the classical SVM method [13]: to ar
Wolfe’s dual problem, which gives a quadratic functional depending only
Lagrange multipliers that can be solved by Quadratic Programming (QP) tech
However, the QP solution of the system can be computationally expensive, esp
when a large number of samples are employed, which can make the p
unaffordable. In order to reduce the computational burden, an IRWLS pro
has been developed. This IRWLS algorithm follows the same basic idea prop
[11], but we are going to develop it following [9], which is much more compreh
and from which the convergence naturally follows. We will first state it



unconstrained optimization problem
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LPðw; bÞ ¼
1

2
kwk2 þ C1

XN

i¼1

ðLðeiÞ þ Lðe�i ÞÞ þ C2

XN

i¼1

ðLðdiÞ þ Lðd�
i ÞÞ,

where

ei ¼ wT/ðxiÞ þ b  yi  �,

e�i ¼ yi  w
T/ðxiÞ  b  �,

di ¼ wT/0
ðxiÞ  y0

i  �0,

d�
i ¼ y0

i  w
T/0

ðxiÞ  �0

and LðuÞ ¼ maxðu; 0Þ. The proof of convergence in [9] uses a differe
approximation to this nondifferentiable function

LðuÞ ¼

0; uo0;

Ku2=2; 0puo1=K ;

u  1=ð2KÞ; uX1=K

8><
>:

to ensure the converge of the algorithm, which tends to maxðu; 0Þ as K te
infinity. But it also shows that K can be made arbitrarily large.
Optimization problems are solved using iterative procedures that rely o

iteration in the previous solution (wk and bk, in our case) to obtain the followin
until the optimal solution has been reached. To construct the IRWLS proced
modify (14) using a first-order Taylor expansion of LðuÞ over the previous so
leading to

L0
Pðw; bÞ ¼

1

2
kwk2 þ C1

XN

i¼1

Lðek
i Þ þ

dLðuÞ

du

����
ek

i

½ei  ek
i �

 !

þ C1

XN

i¼1

Lðe�i
k
Þ þ

dLðuÞ

du

����
e�

i
k

½e�i  e�i
k
�

 !

þ C2

XN

i¼1

Lðdk
i Þ þ

dLðuÞ

du

����
dk

i

½di  dk
i �

 !

þ C2

XN

i¼1

Lðd�
i

k
Þ þ

dLðuÞ

du

����
d�

i
k

½d�
i  d�

i
k
�

 !
,

where ek
i ¼ wkT/ðxiÞ þ bk

 yi  � (the others follow the same defin
L0
Pðw

k; bk
Þ ¼ LPðw

k; bk
Þ and rL0

Pðw
k; bk

Þ ¼ rLPðw
k; bk

Þ. Now, we const
quadratic approximation imposing that L00

Pðw
k; bk

Þ ¼ LPðw
k; bk

Þ
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L00
Pðw; bÞ ¼

1

2
kwk2 þ C1

XN

i¼1

Lðek
i Þ þ

dLðuÞ

du

����
ek

i

ðeiÞ
2
 ðek

i Þ
2

2ek
i

 !

þ C1

XN

i¼1

Lðe�i
k
Þ þ

dLðuÞ

du

����
e�

i
k

ðe�i Þ
2
 ðe�i

kÞ
2

2e�i
k

 !

þ C2

XN

i¼1

Lðdk
i Þ þ

dLðuÞ

du

����
dk

i

ðdiÞ
2
 ðdk

i Þ
2

2dk
i

 !

þ C2

XN

i¼1

Lðd�
i

k
Þ þ

dLðuÞ

du

����
d�

i
k

ðd�
i Þ
2
 ðd�

i
k
Þ
2

2d�
i

k

 !

¼
1

2
kwk2 þ

1

2

XN

i¼1

aie
2
i þ a�

i e�i
2
þ sid

2
i þ s�i d�

i
2
þ CT,

where

ai ¼
C1

ek
i

dLðuÞ

du

����
ek

i

a�
i ¼

C1

e�i
k

dLðuÞ

du

�����
e�

i
k

si ¼
C2

dk
i

dLðuÞ

du

�����
dk

i

s�i ¼
C2

d�
i

k

dLðuÞ

du

and CT are constant terms that depend neither on w nor b.
The value of ai can be computed as follows:

ai ¼
C1

ek
i

dLðuÞ

du

����
ek

i

¼

0; ek
i o0;

KC1; 0pek
i o1=K ;

C1=ek
i ; ek

i X1=K :

8><
>:

This definition can be readily extended to a�
i , si and s�i .

From the definition of ei and e�i , we can infer that either one of them is pos
both are negative, but they cannot both be positive at the same time. This pr
means that either ai or a�

i are nonzero or both are zero, but they cannot b
nonzero at the same time. The samples that present ai ¼ a�

i ¼ 0 do not need
considered in the resolution of the functional in (20), as they will not be s
vectors and will not contribute to the value of w. Therefore, the sum in (20)
only run for those samples in which either ai or a�

i are nonzero. In the deriva
the algorithm, we will suppose that all of the samples present either a nonzer
a�

i . So, we can work with a simple notation and we do not need to introduce
index indicating which samples present either a nonzero ai or a�

i . But
implementing the procedure, we will only consider those samples that can be s
vectors; basically in each iteration we can assume that the training samp
limited to those samples with a nonzero ai or a�

i , leaving aside the rest of the sa
After each iteration we will compute ei or e�i for all the samples, so if any
previous samples with ai ¼ a�

i ¼ 0 now presents a positive ei or e�i , it
recovered for the following iteration. This discussion on the values of ai or a�

i



relevant as it will allow us to solve the problem with a reduced set of samples in each
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, si and
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iteration, but we will obtain the SVM solution, when the algorithm stops, as
recover samples that at some stage presented ai ¼ a�

i ¼ 0. Finally, this argum
be made for di and d�

i and si and s�i , as well.
The IRWLS procedure consists in minimizing (20), then recomputing ai, a�

i

s�i with the obtained solution, and continuing until the solution is reached
iteration can be seen as being similar to least squares SVM [14], but the I
preserves the sparseness property of the SVM because of the insensitivity regi
solve (20), we take a derivative with respect to w and b, and equate to zer
giving the following result:

UTDaþa�U þ U0TDsþs�U
0 þ I UTðaþ a�Þ

ðaþ a�ÞTU ðaþ a�ÞT1

" #
w

b

" #

¼
UT½Daþa�yþ ða a�Þ�� þ U0T½Dsþs�y

0 þ ðs s�Þ�0�

ðaþ a�ÞTyþ ða a�ÞT1�

" #
,

where a, a�, s and s� are the column vectors containing the N corresponding w
in (20), Da denotes a diagonal matrix (Daij

¼ aidði  jÞ), and

U ¼ ½/ðx1Þ;/ðx2Þ; . . . ;/ðxN Þ�
T,

U0 ¼ ½/0
ðx1Þ;/

0
ðx2Þ; . . . ;/

0
ðxN Þ�

T.
2.2. IRWLS with kernels

infinite
r fairly
linear

(23)

a and
he first
ain the

ð24Þ
System (21) can be solved, as well, using kernels, when /ð�Þ is unknown or
dimensional. We can make use of the Representer theorem [13] that, unde
general conditions, states that the best solution can be expressed as a
combination of the training samples in the feature space

w ¼ ½UT U0T�
b

c

" #
.

From (8), we can notice that once the solution has been reached b ¼ a� 

c ¼ k�  k. We will use (23) to replace w in (21). But, first, we have rewritten t
set of equations, moving b to the second term, so it will be simpler to obt
kernel representation

½UT U0T�
Daþa� 0

0 Dsþs�

" #
U

U0

" #
þ I

 !
w

¼ ½UT U0T�
Daþa� ðy 1bÞ þ ða a�Þ�

Dsþs�y
0 þ ðs s�Þ�0

" #
.



Now we pre-multiply both sides by the pseudo-inverse ½UT U0T�T and using the

(25)
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he first
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definition of w in (23), we obtain

Daþa� 0

0 Dsþs�

" #
Hþ I

" #
b

c

" #
¼

Daþa� 0

0 Dsþs�

" # y 1bþ
a a�

aþ a�
�

y0 þ
s s�

sþ s�
�0

2
664

3
775,

where ða a�Þ=ðaþ a�Þ and ðs s�Þ=ðsþ s�Þ denote, respectively, a column
containing ðai  a�

i Þ=ðai þ a�
i Þ and ðsi  s�i Þ=ðsi þ s�i Þ in the ith row, and

H ¼
UUT UU0T

U0UT U0U0T

" #
¼

K G

K0 J

� �
,

where ðKÞij ¼ Kðxi;xjÞ, ðK0Þij ¼ K 0ðxi; xjÞ, ðGÞij ¼ Gðxi;xjÞ and ðJÞij ¼ J

Multiplying by the inverse of the diagonal matrix and moving b back to t
term, the equation can be simplified to

KþD1
aþa� G 1

K0 JþD1
sþs� 0

1T 0T 0

2
64

3
75

b

c

b

2
64
3
75 ¼

yþ
a a�

aþ a�
�

y0 þ
s s�

sþ s�
�0

0

2
66664

3
77775.

Finally, instead of using the last equation in (21), we have made use of a s
constraint:

PN
i¼1ðai  a�i Þ ¼ 0, which is obtained equating qLP=qb to zero, and

the relationship between b and a and a� introduced at the beginning
subsection. We show an algorithmic implementation of the IRWLS proced
Table 1.
We have completed the definition of the algorithm and we can now recov

argument that the procedure only needs to work with the samples that pr
nonzero ai or a�

i . In this case the matrix Daþa� will be full-rank and very
inverted as it is a diagonal matrix. The vector ða a�Þ=ðaþ a�Þ can be
computed as it will contain either a 1 in the ith position, if ai is nonzero, or a
Table 1

IRWLS algorithm pseudo-code for a one-dimensional input space

(1) Initialization:

� Compute H (from K, K0, G and J)

� ai ¼ C1, si ¼ C2 for odd i; a�i ¼ C1, s�i ¼ C2 for even i.

(2) Solve (27)

(3) Evaluate
e ¼ KTb þK0Tc þ 1b  y 1�; e� ¼ y KTb  K0Tc  1b 1�

d ¼ GTb þ JTc  y0  1�0; d� ¼ y0 GTb  JTc  1�0

(4) Recalculateai, a�i , s�i and s�i .

(5) Go to Step 2 until convergence is achieved.



the ith position, if a�
i is nonzero. Finally, the matrix D1

aþa� can be defined as

t as K
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ðD1
aþa� Þii ¼

1=KC1; 0pek
i o1=K ;

ek
i =C1; ek

i X1=K

(

if ai is nonzero (a definition identical to e�i , if a�
i is nonzero). We can see tha

tends to infinity ðD1
aþa� Þii ¼ ek

i =C1 and we will not have any problems w
nonlinearity in the definition of LðuÞ when solving the procedure with k
Finally, we can repeat this argument for si and s�i with identical results.
3. Extension to d-dimensional input spaces

and to
d one-
onding
but in

(28)

tipliers
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lem of

NÞ in a
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r each

nd /ð�Þ

l space
The proposed method can be easily extended to d-dimensional input spaces
consider up to kth-order derivatives following the simple idea of the propose
dimensional method. It is only necessary to incorporate the corresp
constraints. Because of space constraints we have omitted the development,
this case the solution takes the form

w ¼
XN

i¼1

Xk

j1¼0

� � �
Xk

jd¼0

ðl�ij1���jd
 lij1���jd

Þ
qðj1þ���þjd ÞfðxiÞ

qx
j1
1 ; . . . ;x

jd

d

,

where xi ¼ ½xi1; xi2; . . . ; xid �
T and l�ij1���jd

and lij1���jd
are the Lagrange mul

associated to the constraint in the ith sample of

qðj1þ���þjd Þf ðxÞ

qx
j1
1 ; . . . ; x

jd

d

.

However, the number of constraints grows linearly with the input dimensio
exponentially with the number of derivatives considered, which will ma
formulation very difficult to solve for standard problems. Anyhow, this probl
be cast as a multidimensional regression estimation in which we will have a
constraint per sample, as in the regular SVM.

3.1. Multidimensional regression formulation

Without lack of generality, in the following we will formulate the prob
estimating f ðxÞ from its first-order derivatives, given N data points ðx1; . . . ; x
d-dimensional space xi 2 Rd . The extension to include higher-order derivatives
function itself is straightforward, as we will show in Section 3.3. In this case, fo
input vector a d-dimensional label vector yi 2 Rd will be available, where

yi ¼
qf ðxÞ

qxi1

����
xi

;
qf ðxÞ

qxi2

����
xi

; . . . ;
qf ðxÞ

qxid

����
xi

" #
¼ rx f ðxiÞ.

We define the estimated function f̂ ðxÞ ¼ wT/ðxÞ, where w is a weight vector a
is a nonlinear transformation of the input vector x to a higher-dimensiona



(the feature space, /ðxÞ 2 H). We need to solve a multidimensional regression
vatives

,

ecently
lve our
r /ðxÞ

and a
slightly
avoid

(29)

imizes

(30)
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problem for finding w, in which we need to reduce the error between the deri
of the estimated function and the yi vector

ei ¼ yi  rx f f̂ ðxiÞ ¼ ½yi1  w
T/0

1ðxiÞ; yi2  w
T/0

2ðxiÞ; . . . ; yid  wT/0
dðxiÞ�

where we have defined

/0
jðxiÞ ¼

q/ðxÞ
qxij

����
xi

.

A Multidimensional Support Vector Regressor (M-SVR) has been r
proposed in [10]. This multidimensional problem needs to be modified to so
particular function approximation problem. First, instead of having a vecto
and a matrixW to construct the error vector, we have a unique weight vector w
matrix that contains the derivatives of /ðxÞ. The second modification
changes the quadratic cost function to make its derivative continuous to
numerical instabilities

LðuÞ ¼
0; uo�;

u2  2u�þ �2; uX�:

(

To summarize, the problem at hand is reduced to find the vector w that min
the following unconstrained functional:

LPðwÞ ¼
1

2
kwk2 þ C

Xn

i¼1

LðuiÞ,

where

ui ¼ keik ¼

ffiffiffiffiffiffiffiffi
eTi ei

q
; ei ¼ yi  Uiw; Ui ¼ ½/0

1ðxiÞ; . . . ;/
0
dðxiÞ�

T.
3.2. Resolution of the Multidimensional Support Vector Regressor

we are

of LðuÞ

(31)
To optimize the proposed multidimensional regression estimation problem,
again going to follow an (IRWLS) procedure.
To construct this procedure, we first obtain a first-order Taylor expansion

over the previous step solution uk
i , leading to the minimization of

L0
PðwÞ ¼

1

2
kwk2 þ C

XN

i¼1

Lðuk
i Þ þ

dLðuÞ

du

����
uk

i

½ui  uk
i �

 !
,



where uk
i ¼ kek

i k and e
k
i ¼ yi  Uiw

k. Then, the following quadratic approximation is

ð32Þ

(33)

larized
revious
tion is

resents
¼ wk.

here ws

search
sing a

pðw
kÞ,

erved.
:

(34)

ments,

(35)

d � d

n Nd-

m [13]
of the
sion in
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constructed:

L00
PðwÞ ¼

1

2
kwk2 þ C

XN

i¼1

Lðuk
i Þ þ

dLðuÞ

du

����
uk

i

ðuiÞ
2
 ðuk

i Þ
2

2uk
i

 !

¼
1

2
kwk2 þ

1

2

XN

i¼1

aiðe
T
i eiÞ þ CT,

where

ai ¼
C

uk
i

dLðuÞ

du

����
uk

i

¼

0; uk
i o�;

2Cðuk
i  �Þ

uk
i

; uk
i X�

8><
>:

and CT comprises constant terms that do not depend on w. This is a regu
weighted least-squares problem in which the weight ai depends on the p
solution. This dependence implies to iterate the process until a fixed point solu
reached.
The functional L00

PðwÞ is a quadratic approximation to LPðwÞ in (30) that p
the same value L00

Pðw
kÞ ¼ LPðw

kÞ and gradient rwL00
Pðw

kÞ ¼ rwLPðw
kÞ for w

Therefore, we can define pk ¼ ws  wk as a descending direction for LPðwÞ, w
is the least-squares solution to (32), and we can use it to construct a line
method [8], i.e. wkþ1 ¼ wk þ Zkpk. The value of Zk can be computed u
backtracking line search [8], in which Zk is initially set to 1 and if LPðw

kþ1ÞXL

it is iteratively reduced until a strict decrease in the functional in (30) is obs
To obtain ws, the solution to L00

PðwÞ in (32), its gradient is equated to zero

rwL00
PðwÞ ¼ w

XN

i¼1

UT
i eiai ¼ 0,

an equation that can be written down as

wþ
XN

i¼1

UT
i Dai

Uiw ¼
XN

i¼1

UT
i Dai

yi.

Here, Dai
denotes the d � d diagonal matrix with ai as its diagonal ele

ðDai
Þlk ¼ aidðl  kÞ (Dai

¼ aiI). In matrix notation (34) becomes

½UTDaU þ I�w ¼ UTDaY,

where U ¼ ½UT
1 ; . . . ;U

T
N �

T, Da is an Nd � Nd diagonal matrix where each
submatrix is defined as ðDaÞij ¼ Dai

dði  jÞ and Y ¼ ½yT1 ; . . . ; y
T
N �

T is a
dimensional column vector.
The system in (35) can be solved using kernels. The Representer theore

states that the optimal solution can be constructed as a linear combination
training samples in the feature space, i.e. w ¼ UTb. By replacing this expres



(35) we obtain

(36)

Da, we

(37)

find a
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Table 2

IRWLS algorithm pseudocode for multidimensional input spaces

(1) Initialization: set b0 ¼ 0, ui ¼ kyik and compute ai from (33).

(2) Compute bs ¼ ½HþD1
a �1Y and set Zk ¼ 1.

(3) Set bkþ1 ¼ bk þ Zk½bs  bk� if Lðbkþ1ÞoLðbkÞ go to Step 5.

(4) Set Zk ¼ rZk with 0oro1 and go to Step 3.

(5) Recompute ui and ai, set k ¼ k þ 1 and go to Step 2 until convergence.
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½UTDaU þ I�UTb ¼ UTDaY.

Now, pre-multiplying (36) by U, we obtain

½HDaHþH�b ¼ HDaY,

where H ¼ UUT. Cancelling out H and pre-multiplying by the inverse of
arrive at:

½HþD1
a �b ¼ Y,

The IRWLS procedure for solving the multidimensional regression problem to
function from its derivatives is summarized in Table 2.
3.3. Extensions

on and
and ei

ections
lowing

he one

of the
ui, i.e.

eights

m, this
 k�ck.
The extension of the proposed method to include samples from the functi
from higher order derivatives is straightforward. In this case, the vectors yi

will be constructed with all the available information and the procedure in S
3.1 and 3.2 can be easily replicated. To illustrate this point, we propose the fol
example, where yi and ei are, respectively,

yi ¼ f ðxiÞ;
qf ðxÞ

qxi1

����
xi

;
qf ðxÞ

qxi2

����
xi

;
q2f ðxÞ
qxi1qxi2

����
xi

" #
,

ei ¼ ½yi1  w
T/ðxiÞ; yi1  w

T/0
1ðxiÞ; yi2  w

T/0
2ðxiÞ; yi3  w

T/00
1;2ðxiÞ�.

It must be noted that the one-dimensional resulting method is different from t
presented in Section 2.
Finally, when some data are more reliable or less noisy, or the range

derivatives is clearly different, a weighted norm is more convenient for

ui ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ
j¼1cje

2
ij

q
, where Q is the dimension of yi and cj are the corresponding w

with each dimension of yi. It is straightforward to find out that, in the algorith
just means to include the weights in the diagonal matrix Da as ðDai

Þlk ¼ aid½l



4. Results

hod in
roach.
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In this section, some experimental results show the advantages of this met
the reconstruction of the derivative with respect to the conventional SVR app
4.1. One-dimensional input space

ally, in
litudes,
ample,
e SVR
(in this
ative).
f total
). This
of the
. One-
e ratio
eters C

signal-
tive (b)
sidered
ve (the
of the

t more
results
, using
As test functions, we have selected a set of band-limited functions: specific
each experiment a linear combination of 100 sinusoids with random amp
frequencies (between 0 and 1Hz) and phases has been generated. In the first ex
100 equally spaced sampling points in the range 0–5 have been employed by th
(100 samples of the function) and by the proposed method, labeled SVM-D
case 200 total samples: 100 samples of the function þ100 samples of the deriv
Moreover, we have tested the proposed method using the same number o
samples, which means to subsample (we will label this option by SVM-Ds

method uses 50 sampling points (50 samples of the function þ50 samples
derivative). In this way, the number of total available data is the same
thousand independent experiments have been considered, with a signal-to-nois
(SNR) of 20 dB in the samples of both the function and the derivative. Param
and s have been selected by cross-validation. Fig. 1 plots the mean values of
to-error ratio (SER) in the reconstruction of the function (a) and of the deriva
as a function of the insensitivity parameter �. In this case, �0 ¼ p� has been con
to take into account the different amplitude range of a function and a derivati
mean amplitude of the derivative is p times higher than the mean amplitude
function).
It can be seen that the proposed method, using twice the data (SVM-D), bu

interestingly, even using the same amount of data (SVM-Ds), provides better
than the SVR, especially in the reconstruction of the derivative. Obviously
twice the data, the improvement is larger.
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Fig. 1. SER in the reconstruction of (a) a function and (b) a derivative.



Moreover, when the same amount of data are used (SVM-Ds), a similar number of
(in the
related
unt of
ber of

ussian
on of s
sed by

ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80



...................................................................................................................................................................................................................................................................

Su
pp

or
t V

ec
to

rs

SVM-Ds

..................... SVR

�

Fig. 2. Number of total support vectors as a function of �.

Fig. 3. SER as a function of the kernel size: (a) function and (b) derivative.
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support vectors has been observed for both methods in all simulations
proposed method: support vectors related to the functionþ support vectors
to the derivative). Therefore, the proposed method, when using the same amo
data, does not increment the storage requirements of the model. The num
support vectors, as a function of �, is plotted in Fig. 2.
This method also reduces the sensitivity to the selection of s for the Ga

kernels. Fig. 3 shows the SER in the reconstruction of the function as a functi
for � ¼ 0:5. It can be seen that the s range to obtain high SER values is increa
using the proposed method.



Finally, in all the above experiments we have used �0 ¼ p� to consider the
sily be
ion of
ing 50
und p�

ivative
have a
can be
etween

ARTICLE IN PRESS

Fig. 4. SER as a function of �0 using 50 sampling points and � ¼ 0:5 and s ¼ 0:4: (a) function and (b)

derivative.

Table 3

Two-dimensional test functions (y ¼ f ðx1; x2Þ)

Name Function Domain

Fun 1 y ¼ sinðx1x2Þ [2,2]

Fun 2 y ¼ expðx1 sinðpx2ÞÞ [1,1]

Fun 3
y ¼

40 � expð8ððx1  0:5Þ2 þ ðx2  0:5Þ2ÞÞ

expð8ððx1  0:2Þ2 þ ðx2  0:7Þ2ÞÞ þ expð8ððx1  0:7Þ2 þ ðx2  0:2Þ2ÞÞ

[0,1]

Fun 4 y ¼ ð1þ sinð2x1 þ 3x2ÞÞ=ð3:5þ sinðx1  x2ÞÞ [2,2]

Fun 5 y ¼ 42:659ð0:1þ x1ð0:05þ x4
1  10x2

1x2
2 þ 5x4

2ÞÞ [0.5,0.5]

Fun 6 y ¼ 1:3356½expð3ðx2  0:5ÞÞ sinð4pðx2  0:9Þ2Þ

þ1:5ð1 x1Þ þ expð2x1  1Þ sinð3pðx1  0:6Þ2Þ� [0,1]

Fun 7 y ¼ 1:9½1:35þ expðx1Þ sinð13ðx1  0:6Þ2Þ

þ expð3ðx2  0:5ÞÞ sinð4pðx2  0:9Þ2Þ� [0,1]

Fun 8
y ¼ sin 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

2

q� �
[1,1]
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amplitude of the function/amplitude of the derivative ratio (which can ea
estimated from data samples). Fig. 4 plots the results in the reconstruct
function and derivative, using s ¼ 0:4 and � ¼ 0:5, as a function of �0, us
sampling points. It can be seen that the optimal value for parameter �0 is aro
(�0 � p=2 in this case).
This simple approach of selecting �0 to consider the relative function/der

amplitude has shown good results when samples of function and derivative
similar SNR. For noisier derivative samples (if this information is available or
estimated), this parameter has to be increased proportionally to the ratio b
SNRs.



4.2. Two-dimensional input space
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The performance of the proposed multidimensional method has been tested
8 functions, proposed in [1], sampled from a two-dimensional input spac
analytical expression of each function is provided in Table 3.
We wish to show the benefits of using the samples of the derivatives

reconstruction of the derivatives themselves as well as in the reconstruction
function. On the one hand, we will show the advantage of adding samples
derivatives to the set of samples of the function. On the other hand, the advan
replacing some of the samples of the function by samples of the derivatives, w
more interesting, will also be shown.
The following methods will be compared. The conventional SVR will b

when only the samples of the function are used. When the samples of the fu
and the first-order derivatives are used together, the proposed method (labele
SVR’’ in the following) is employed. Finally, when only the samples of the tw
order derivatives are used, again the proposed method (labeled ‘‘M-SVRd’’
case) is applied. In all cases, Gaussian kernels are employed. The SER, expre
dB, between the true function/derivatives and its corresponding reconstructi
been used as a figure of merit.
It must be noted that using the same sampling points the M-SVRd is using t

many samples as SVR and the M-SVR three times the samples than SVR, a
can be helpful in improving the results in a noisy environment. Therefore, w
wish to compare the results when the three methods use a similar amount o
i.e., samples of the derivatives are replacing (instead of being added to) sam
the function. Conventional SVR, as well as M-SVR and M-SVRd have been
using a uniform grid of 19� 19 sampling points (361 samples for SVR, 722 s
for M-SVRd and 1083 samples for M-SVR). Moreover, M-SVRd has been
with 13� 14 sampling points (this option, labeled M-SVRds, uses 363 sample
M-SVR with 11� 11 sampling points (this option, labeled M-SVRs, us
samples). Noisy samples with SNR ¼ 10 dB are considered. The para
of the algorithms (C, s and �) have been selected by cross-validation,
weighted norm has been used for the methods using the derivatives. The w
have been selected to compensate the different variances of function and deri
(which are estimated from the samples). Table 4 compares the performance
methods.
The methods including the samples of the derivatives outperform the SVR

reconstruction of the derivatives and also in the reconstruction of the functio
best performance is obtained by M-SVR, which outperforms SVR by almost
the reconstruction of the function and by more than 8 dB in the reconstruction
derivatives. The advantage is reasonable if it is taken into account that M-SVR
method using the largest amount of data, and that also M-SVRd uses mor
than SVR. However, the advantage holds when a similar number of total sam
used by all methods. In this case, the M-SVRds provides better results
reconstruction of the derivatives while the M-SVRs is better for the reconstruc
the function.
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Fig. 5. SER (dB) in the reconstruction of (a) Function 1 and its (b) derivatives as a function of the SNR in

the samples of the derivatives for an SNR ¼ 10 dB in the samples of the function.

Table 4

SER (dB) for the reconstruction of the function and first-order derivatives

Fun 1 Fun 2 Fun 3 Fun 4 Fun 5 Fun 6 Fun 7 Fun 8 Mean

Approximation of the function

SVR 19.1 27.0 24.0 21.9 29.3 25.6 26.8 16.3 23.8

M-SVRd 23.6 31.8 30.5 23.2 31.7 29.2 29.9 18.3 27.3

M-SVR 26.2 34.8 33.0 27.7 35.3 32.1 33.3 21.9 30.5

M-SVRds 21.0 29.0 27.1 20.1 27.7 26.2 27.2 16.4 24.3

M-SVRs 21.5 29.9 27.7 23.1 29.6 27.3 28.5 16.7 25.5

Approximation of the first-order derivatives (mean value)

SVR 12.3 11.3 11.2 14.9 12.1 12.2 11.4 11.6 12.1

M-SVRd 20.5 20.6 21.3 20.6 19.2 19.9 18.8 16.4 19.7

M-SVR 21.1 21.0 21.7 22.1 20.3 20.6 19.5 17.1 20.4

M-SVRds 17.8 18.0 18.7 17.9 16.1 17.3 16.3 14.6 17.1

M-SVRs 17.0 17.0 17.9 18.2 15.6 16.5 15.5 13.3 16.4
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SNR. We also wish to show that the benefit of including the samples
derivatives holds when they are noisier than the samples of the function, w
usual in a real application. Fig. 5 compares the performance of SVR and M-SV
the same sampling conditions as the previous experiment) as a function of inc
SNR (dB) in the samples of the derivatives with respect to the SNR in the sam
the function. This example corresponds to the reconstruction of Function
SNR ¼ 10 dB.
The reconstruction of the function is improved even when the samples

derivatives are around 4 dB noisier than the samples of the function. F



derivatives, even a higher margin (around 6 dB) is obtained. Moreover, if the samples
this is
results
NR in
n and
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Table 5

Margin (dB) in the SNR of the samples of the derivatives to improve the reconstruction of the function

and of the derivatives

Fun 1 Fun 2 Fun 3 Fun 4 Fun 5 Fun 6 Fun 7 Fun 8 Mean

Function 3.9 4.3 3.4 2.3 0.7 2.9 3.3 1 2.7

Derivatives 6.4 7.4 7.7 4.4 6 6.5 7 4 6.2
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of the derivatives are more accurate than the samples of the function (although
not usual in real applications) the reconstruction is clearly improved. Similar
have been obtained for all functions. Table 5 shows the margin of dB in the S
the samples of the derivative to improve in the reconstruction of functio
derivatives.
5. Conclusions
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Two variants of a new SVM-based method for the simultaneous reconstruc
a function and its derivatives have been presented: one for a one-dimensiona
space and the other for a multidimensional input space. Computationally e
IRWLS algorithms have been derived to allow the application of both vari
large data sets. This method provides better results than the conventiona
approach in the reconstruction of function and derivatives even when th
number of labeled data are employed in both methods, or when the samples
derivatives are noisier than the samples of the function. The proposed method
a similar number of support vectors as those of conventional SVR. Moreov
inclusion of the information of the derivatives reduces the dependence on the
size for Gaussian kernels.
It is necessary to mention that the multidimensional model is also valid fo

dimensional input spaces. However, it provides a slightly different solution th
one-dimensional proposed method since the loss function is different: linear
quadratic. Anyway, the performance and accuracy are very similar for both m
in a one-dimensional input space.
Results obtained using this method show that the introduction of infor

regarding the derivatives is mandatory to obtain an accurate estimate
derivatives of the function, which is necessary in a number of applic
Moreover, even when the approximation of the derivatives is not mandato
information can be useful in the reconstruction of the function without hav
increase the total number of data and even when the samples of the derivati
slightly noisier than the samples of the function. This can be clearly us
applications where the available sampling rate is limited.



Finally, the method possesses one of the limitations of the traditional kernel
ly for
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method, since the computational burden allows its implementation on
moderate-size problems.
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