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Abstract

In this paper we use a generalized radial basis function (GRBF) network to model the
intermodulation properties of microwave GaAs MESFET transistors under dynamic opera-
tion. The proposed model receives as input the bias voltages of the transistor and provides as
output the derivatives of the drain-to-source current, which are responsible for the inter-
modulation properties. The GRBF network is a generalization of the RBF network, which
allows di!erent variances for each dimension of the input space. This modi"cation allows to
take advantage of the soft nonlinear dependence of the output derivatives with the drain-to-
source bias voltage. The learning algorithm chooses the GRBF centers one by one in order to
minimize the output error. After selecting each new center from the training set, the centers and
variances of the global network are optimized by applying gradient descent techniques. Finally,
the amplitudes are obtained by solving a least-squares problem. The e!ectiveness of the
proposed GRBF model is validated through load-pull intermodulation prediction based on the
experimental nonlinear characterization of an NE72084 MESFET device. ( 1999 Elsevier
Science B.V. All rights reserved.

Keywords: Generalized radial basis function (GRBF); Radial basis function (RBF); Nonlinear
modeling; MESFET modeling; Gradient descent learning

1. Introduction

The design of microwave and millimeter-wave circuits requires accurate modeling
of the nonlinear behavior of active devices such as a metal semiconductor "eld e!ect
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transistor (MESFET). Speci"cally, in multiple carrier systems the MESFETs non-
linear behavior causes intermodulation distortion. The prediction and modeling of the
intermodulation e!ects is an important issue for the performance of broadband
communication systems.

As it is shown in [3], to predict the MESFETs intermodulation behavior, it is
necessary to approximate not only its current/voltage (I/<) nonlinear characteristic,
but also its derivatives. However, the conventional nonlinear techniques applied to
model the MESFETs characteristics, such as the widely employed analytical functions
[4,9], the canonical piecewise-linear model [2], or the use of look-up tables [14], fail
to "t simultaneously the input}output nonlinear function and its higher-order
derivatives.

Recently, some attempts have been made to model the nonlinear behavior of active
devices and circuits by using neural networks [15,16,18]. Neural networks have the
capability of approximating any nonlinear function and the ability to learn from
experimental data. These characteristics make neural networks a good alternative to
overcome some of the drawbacks of the traditional modeling techniques. However,
practically all of these neural approaches only consider the use of the multilayer
perceptron (MLP), and most of them do not have the capability to cope with
intermodulation e!ects.

In this paper, we propose to use a generalized radial basis function (GRBF) network
to model the derivatives of the I/< nonlinear characteristic of a MESFET. This
network receives as input the bias voltages and produces at its output the coe$cients
of a truncated two-dimensional Taylor series. These parameters can be used to model
the nonlinear drain current of the MESFET in small-signal regime.

The GRBF network is a generalization of the RBF network, which allows di!erent
variances for each dimension of the input space. By replacing the radial Gaussian
kernels with elliptical basis functions we take advantage of the soft nonlinear depend-
ence of the network's output with the drain-to-source bias voltage. A GRBF neuron
responds to a larger region of the input space than a conventional "xed-variance RBF
neuron. Therefore, when compared to the RBF network, the GRBF network reduces
drastically the number of units required to obtain an accurate model.

The rest of the paper is organized as follows. Section 2 reviews some aspects of
nonlinear MESFET modeling with special emphasis on the intermodulation behav-
ior. Section 3 describes the GRBF network and discusses its advantages for this
particular problem. In Section 4, we describe the learning algorithm for the network
parameters: centers, variances and amplitudes. Simulation results using experimental
data are presented in Section 5 to demonstrate the e!ectiveness of the proposed
approach. Finally, in Section 6 the main conclusions are summarized.

2. Nonlinear behavior of the MESFET

Fig. 1 represents the most widely accepted equivalent nonlinear circuit of a MESFET
in its saturated region. The predominant nonlinear element is the drain-to-source
current I

$4
, which depends on both the drain-to-source, <

$4
, and gate-to-source, <

'4
,
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Fig. 1. Nonlinear equivalent circuit of a MESFET.

bias voltages: this dependence is denoted as the I/< characteristic. As it is shown in
[8], the nth-order intermodulation output power varies fundamentally as the square
of the nth derivative of the I/< characteristic. Usually, for mixers and ampli"ers it is
necessary to model up to the third intermodulation product; therefore, our model
must accurately "t up to the third derivative of the mentioned nonlinearity in the
operating region of our concern.

When we apply a small-signal RF input around a bias point, the drain current
I
$4

depends on the bias point (<
$4
,<

'4
) and the instantaneous small-signal voltages

(v
$4
,v
'4
). In this case, I

$4
can be represented in a small interval around the bias point by

the following two-dimensional truncated Taylor series expansion:
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where I
$40

is the dc drain current, v
$4

and v
'4

are the incremental drain-to-source and
gate-to-source voltages, respectively; and (G

.
,2,G

$3
) are coe$cients related to the

nth-order derivatives of the I/< characteristic evaluated at the bias point. For
instance, G

.$2
is given by
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The parameters (G
.
,2,G

$3
) can be determined for a number of bias voltages from

intermodulation power measurements for two tones excitation [12]: they are the
output targets of our neural network model. On the other hand, the input patterns are
the drain-to-source and gate-to-source bias voltages.
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After obtaining a set of real measurements using the procedure described in [12],
our modeling problem can be stated as the approximation of a multidimensional
function. Given a set of input}output patterns, we have to obtain a function (model)
G :R2PR10 that approximates the nonlinear mapping from the input space of bias
voltages V"(<

$4
,<

'4
), to the output space of model parameters G(V)"(I

$40
,G

.
,G

$
,

G
.2

,G
.$

,G
$2

,G
.3

,G
.2$

, G
.$2

,G
$3

).
Once the neural network is trained, it provides, for each input bias point, a set of 10

parameters which can be used to reconstruct a small-signal bias-dependent MESFET
model by using the truncated Taylor series expansion given by Eq. (1). In this way we
assure an accurate prediction of intermodulation e!ects around the bias point.

3. Generalized radial basis function network

The nonlinear input}output mapping between the bias voltages and the model
parameters can be approximated using conventional feedforward layered networks
such as the radial basis function (RBF) network or the multilayer perceptron (MLP).
The MLP and the RBF network are both universal approximators, as shown in
[5,11]. However, these two networks di!er from each other in two important respects:
"rst, an RBF unit using a Gaussian kernel performs a local approximation, while an
MLP constructs a global approximation to the input}output mapping; this leads to
larger size RBF networks (this fact becomes a serious drawback in high dimensional
input spaces). On the other hand, the linear characteristic of the output layer of the
RBF networks leads to a faster training.

In this paper, we concentrate on the application of RBF networks. Speci"cally, we
consider an extension of the RBF network which allows a di!erent variance for each
input dimension. The relaxation of the radial constraint transforms the standard
Gaussian kernels with circular symmetry into elliptic basis kernels, which can reduce
the dimensionality of the input space. This scheme is denoted as generalized radial
basis function (GRBF) network [7].

The idea of constructing hyperellipses around the centers of the basis functions was
considered in [13] in the context of regularization theory. A generalization of the
elliptic kernel denoted as `Gaussian bara unit was proposed in [6] to improve the
performance of the RBF network in the presence of irrelevant inputs. This generaliz-
ation sums the weighted Gaussian responses along each input dimension, while the
conventional RBF and the GRBF obtains a nonweighted product.

In order to understand the rationale for using an GRBF network, Fig. 2a and
b show the measured coe$cients G

.$
and G

.3
as a function of the bias point

V"(<
$4
,<

'4
), respectively. The shape of G

.$
and G

.3
along the <

'4
axis suggests that

they could be approximated by a combination of Gaussians (a single Gaussian in the
case of G

.$
). However, they have a quasi-linear dependence with <

$4
. In order to

adjust a neural model with a minimum number of parameters, the activation functions
in the hidden layer should respond to a localized region along <

'4
and to a non-

localized region along <
$4
. By allowing a di!erent variance for each input dimension,

the GRBF network attains this kind of semilocal behavior. On the other hand, by
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Fig. 2. (a) Measured G
.$

coe$cient, (b) G
.3

and (c) G
$4
, as a function of the bias voltage (<

$4
,<

'4
).
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broadening the variance along both directions, an GRBF unit is able to respond to
a large region of the input space: this is appropriate to approximate some parameters
of the model that do not have a Gaussian shape along the <

'4
axis, such as G

$4
, (see

Fig. 2c). Therefore, the GRBF lies somewhere between the highly local RBF and the
global MLP.

For notation simplicity, let us decompose the global mapping performed by the
GRBF network (G :RJPRM) into a set of single-output networks as follows:

G(V)"(g
1
(V),2,g

M
(V)), (3)

each scalar output is given by

g
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, k"1,2,M, (4)

where i indexes the GRBF units, j the input dimensions and k the output dimensions.
The GRBF can be viewed as an RBF for which the Euclidean norm is replaced by

a weighted norm. Speci"cally, Eq. (4) can be rewritten as
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In its more general form, the GRBF network considers a nondiagonal norm
weighting matrix W

i
[7]; this results in elliptic basis kernels which have adjustable

orientations. In this paper, however, we consider a simpli"ed version of the GRBF
network which uses a diagonal weighting matrix W

i
: i.e., we allow the variances to

vary along each input dimension, but we do not allow the elliptic kernels to rotate.
For comparison purposes, the `Gaussian bara activation function proposed in [6]

is given by

g
k
(V)"+

i

+
j

j
ijk

exp!
(<

j
!k

ij
)2

2p2
ij

, k"1,2,M. (8)

By adding the weighted Gaussian responses along each input direction as in Eq. (8),
we can get an additional improvement at the expense of an increase in the number of
parameters: the number of amplitudes of the output layer is multiplied by the
dimension of the input space. In our simulations, however, for a given number of
model parameters the GRBF network outperforms the `Gaussian bara network. For
the particular application considered in this paper, where the objective is to obtain an
accurate model with as few parameters as possible, we have observed that most of the
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improvement comes from using a di!erent variance along each direction, while the use
of a di!erent amplitude along each direction does not result in an additional (notice-
able) improvement.

4. Network optimization

For RBF networks, the simplest learning strategy consists of "xing the centers and
the variances de"ning the nonlinearities in the hidden layer; and then obtaining the
amplitudes of the output layer by solving a linear least-squares problem. The centers
can be selected at random, by applying vector quantization algorithms to the input
data set [10], or by applying more e$cient strategies such as the orthogonal least-
squares (OLS) method [1]. On the other hand, the variance is "xed for all the units
and is selected according to the spread of the centers.

For the particular case of GRBF networks some modi"cations of the learning
strategy are required in order to obtain an e$cient and parsimonious model. First, the
variances along each direction and the centers are obtained by applying a gradient
descent algorithm. The error function is given by
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))2 (9)

and the gradient equations for the variances and centers are
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where p indexes the input patterns, k the output dimensions, V
p

is the pth
input pattern, y

k
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p
) is the desired (measured) output, g
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p
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The second modi"cation consists of selecting the GRBF units one by one until the
squared error decreases below some threshold or a maximum number of units is
reached. Looking again at Fig. 2a we can understand the bene"ts of the proposed
procedure: the G

.$
parameter can be approximated by placing a single GRBF unit

and broadening its variance along the drain-to-source input voltage direction. There-
fore, the selection of the GRBF units one by one allows to take full advantage of their
semilocal approximation capabilities.
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At each step, the new GRBF center is selected from the input training set in order to
get a maximum decrease in the squared output error. If the number of input data
patterns is small, an exhaustive search can be applied; otherwise an `ad hoca
technique should be applied to reduce the computational burden associated to the
search. For instance, a suitable procedure is to search only in a neighborhood around
the point of maximum error.

After determining the initial parameters of the new GRBF unit, the centers and
variances of the global GRBF network are updated according to Eqs. (10) and (11)
and, "nally, the amplitudes of the global network are reestimated by solving the
following linear least-squares problem:
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where o
i
(V

p
) was de"ned in Eq. (12), Y(V

p
)"(y

1
(V

p
),2,y

M
(V

p
)) is the pth target

output, and j
ik

is the amplitude connecting the ith GRBF unit in the hidden layer to
the kth unit in the output layer.

Finally, the proposed algorithm can be summarized in the following steps:

1. Initialize the learning parameters for the variances and the centers g
7
, g

#
, respec-

tively; the "nal number of neurons N, and the variance of the GRBF units
according to the input data spread.

2. Initialize the output of the model G0(V
p
)"(0,2,0), for p"1,2,P; where G t(V

p
)

denotes the output of the network after adding the tth neuron.
3. For t"1}N

3.1. Obtain the output error for the model with t!1 neurons

Et(V
p
)"Y(V

p
)!Gt~1(V

p
), p"1,2,P.

3.2. Obtain the new GRBF unit which most reduces the error function Et.
3.3. Update the variances and centers of all the neurons by applying a gradient

descent algorithm

p(s`1)
ij

"p(s)
ij
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7
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ij

for i"1,2,t,

k(s`1)
ij

"k(s)
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for i"1,2,t,

where s denotes iteration.
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3.4. Estimate the amplitudes of the global GRBF network according to Eq. (13).
3.5. Obtain the new output of the GRBF network with t neurons:

G t(V
p
) for p"1,2,P

end.

Let us remark that, in Step 3.3, we minimize the global error function given by
Eq. (9), therefore we use the gradients (10) and (11). Moreover, we update the centers
and variances of all the neurons and not only the new neuron located at time t.
Finally, the iterations at this step are carried out until the error decreases below some
threshold or until a maximum number of iterations is reached.

5. Simulation results

The proposed GRBF network was used to model a microwave NE72084 MESFET.
The model outputs (I

$40
,G

.
,G

$
,G

.2
,G

.$
,G

$2
,G

.3
,G

.2$
, G

.$2
,G

$3
) were measured at

di!erent bias voltages. Speci"cally,<
$4

was swept from 3 to 6 V in steps of 0.25V, and
<

'4
from !2 to 0V in steps of 0.05 V; thus giving a total of 533 input}output training

patterns.
In our experience, the partitioning of this particular data set into a training set

and a testing set does not improve necessarily the network's generalization
performance. This could be due to the fact that we have a small number of input
measurements and, moreover, these measurements have a low level of noise (for most
of the parameters). Therefore, we choose to use the whole measurement data set for
training.

In this section we compare the performance of three di!erent neural network
models: the RBF network, the MLP and the proposed GRBF network. The objective
is to obtain an accurate model with a small number of parameters (parsimonious). For
this particular application, in order to implement the nonlinear mapping
G :R2PR10, an GRBF network with N neurons in the hidden layer (denoted as
GRBF(N)) requires 14N parameters. For each new GRBF neuron we have to specify
its center (2 parameters), its variance (2 parameters) and 10 amplitudes connecting the
hidden layer with the output. On the other hand, an MLP(N) with one hidden layer
and an RBF(N) require 14N and 13N parameters, respectively.

The accuracy of each model was measured in terms of the SNR for each scalar
output. For instance, for G

.3
the SNR is evaluated as

SNR"10 log
10A

+
p
G2

.3,p
+

p
(G

.3,p
!GK

.3,p
)2B, (14)

where p indexes the training patterns, G2
.3,p

is the desired (real measurement) output
and GK 2

.3,p
is the output estimated by the network.

A signi"cant e!ort was made to optimize the algorithm parameter settings (learning
rates, variances for the RBF network, etc). In particular, we used the following
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parameters:

f MLP(N): MLP with N neurons in the hidden layer trained with a backpropagation
algorithm using an adaptive learning rate (initial learning rate g"0.0001). Number
of training epochs"5000.

f RBF(N): RBF network with N units. The RBF centers are selected using the OLS
algorithm [1]. We used a "xed variance p2"0.125.

f GRBF(N): GRBF network with N units. We used the algorithm described in
Section 4 with the following parameters: g

7
"2e!4, g

#
"1e!3; maximum num-

ber of iterations for updating the variances and centers"500; initial variance
p2"(0.025,0.1).

Figs. 3}5 show the output of an RBF(10), an MLP(8) and the proposed GRBF(8)
model, for the output parameters G

.$
, G

.3
and G

$4
, respectively. These "gures should

be compared with the measured ones depicted in Fig. 2. The MLP and the GRBF
model seem to capture the nonlinear behavior of these parameters. On the other hand,
for the same number of model parameters, the highly local nature of the RBF network
results in an excessively hilly output function. The values provided in Table 1 allow
a more detailed comparison of the three models. We can point out the following
conclusions: "rst, for a small number of model parameters the GRBF network
provides the best results; secondly, to achieve a similar performance the MLP requires
approximately twice as many parameters as the GRBF; "nally, an RBF network
requires the largest number of parameters.

Finally, in order to verify the validity of the proposed network to model the device
nonlinear distortion behavior due to the drain current source, some output power and
carrier to intermodulation (C/I) calculations were made using both the experimentally
extracted derivatives and the GRBF network. As it is shown in [12,17], most of the
existing models fail to reproduce the C/I behavior with varying load condition, and
consequently the existence of optimum load values for low distortion designs. This
shortcoming is due to their incapacity of "tting not only the predominant third
derivative, G

.3
, but also the cross third-order terms.

We made a typical two tones analysis with frequencies of 10 and 10.01GHz and
power levels slightly below the 1 dB compression point, assuring the small signal
regime where the nonlinear distortion behavior is generally poorly predicted. We
selected a commonly employed bias point for Class A ampli"er applications,
<

'4
"!0.2V and <

$4
"3V. Fig. 6a and b show on a Smith chart the load-pull

contours for the output power of the 10GHz signal using the measured and the
modeled (GRBF network) derivatives, respectively. The almost perfect agreement
veri"es the good network "tting of the "rst-order coe$cients, G

.1
and G

$4
.

In Fig. 7a and b we show the contours for the C/I ratio indicating the power level
di!erences between one of the referred signals ( f

1
or f

2
) and the undesired adjacent

intermodulation products (2f
1
!f

2
or 2f

2
!f

1
). The prediction is signi"cantly accu-

rate, supporting a reliable reproduction of the second- and third-order coe$cients not
previously reported with the traditional techniques.

10 I. SantamarnHa/Neurocomputing 25 (1999) 1}18



Fig. 3. (a) G
.$

estimate obtained by an RBF(10) network, (b) an MLP(8) and (c) an GRBF(8).
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Fig. 4. (a) G
.3

estimate obtained by an RBF(10) network, (b) an MLP(8) and (c) an GRBF(8).
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Fig. 5. (a) G
$4

estimate obtained by an RBF(10) network, (b) an MLP(8) and (c) an GRBF(8).
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Table 1
Comparison of the results obtained by the following neural models: GRBF(8), RBF(10), RBF(35), MLP(8),
MLP(16). The "rst column indicates the number of parameters for each model, the following 10 columns
show the SNR in dB for each output of the model

N
1!3

I
$4

G
$2

G
$3

G
$4

G
.1

G
.2

G
.2$

G
.3

G
.$

G
.$2

GRBF(8) 112 22.8 19.1 15.7 25.4 27.2 17.0 18.0 18.5 17.9 16.1
RBF(10) 130 12.0 10.7 9.5 12.3 12.0 6.4 3.5 2.3 6.3 3.6
RBF(35) 455 21.5 18.6 16.7 23.3 23.0 17.3 11.4 10.4 17.3 12.2
MLP(8) 112 18.7 13.5 14.0 24.6 30.0 13.5 9.9 8.9 13.6 10.7
MLP(16) 224 20.0 14.4 16.7 29.1 31.7 16.3 15.4 14.3 16.3 14.2

Fig. 6. Output power level of the NE72084 MESFET (a) using the measured parameters, (b) using the
GRBF(8) network model.
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Fig. 7. Contours for the C/I ratio of the NE72084 MESFET (a) using the measured parameters, (b) using
the GRBF(8) network model.

6. Conclusions

This paper has presented a new nonlinear MESFET model for intermodulation
analysis using a generalized radial basis function (GRBF) network. By relaxing the
radial constraint imposed by conventional RBF Gaussian kernels, the GRBF network
yields a parsimonious and accurate model which can be used to simulate the small-
signal bias-dependent MESFETs behavior.

An alternative learning procedure has been developed for the GRBF network: at
each step, a new GRBF center is selected from the input training set in order to
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get a maximum decrease in the squared output error. This suitable selection of the
GRBF units one by one, combined with gradient descent techniques for updating the
centers and variances, allows to take full advantage of their semilocal approximation
capabilities.

When compared to the RBF network, the GRBF network reduces drastically the
number of units required to obtain an accurate model. Moreover, using experimental
measurements of an NE72084 MESFET, it has been shown that an MLP requires
a higher number of parameters than the GRBF network to achieve a similar perfor-
mance. The predicted load-pull behavior in output power and C/I ratio con"rms the
accuracy of the proposed GRBF network.

However, for some derivatives of the I/< characteristic, which have a nonlocalized
support along the <

'4
axis, the MLP provides a better extrapolation than the GRBF

network. For this reason, the combination of a global approximator such as the MLP
with the proposed GRBF network seems a promising line for further research.
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