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ABSTRACT
In this paper we introduce a kernel-based recursive least-squares
(KRLS) algorithm that is able to track nonlinear, time-varying rela-
tionships in data. To this purpose we first derive the standard KRLS
equations from a Bayesian perspective (including a principled ap-
proach to pruning) and then take advantage of this framework to in-
corporate forgetting in a consistent way, thus enabling the algorithm
to perform tracking in non-stationary scenarios. In addition to this
tracking ability, the resulting algorithm has a number of appealing
properties: It is online, requires a fixed amount of memory and com-
putation per time step and incorporates regularization in a natural
manner. We include experimental results that support the theory as
well as illustrate the efficiency of the proposed algorithm.

Index Terms— kernel recursive-least squares, tracking, Bayesian
inference, adaptive filtering, forgetting.

1. INTRODUCTION

Kernel methods offer an attractive framework to deal with nonlinear
signal processing problems [1]. By relying on a transformation of
the data into a high-dimensional reproducing kernel Hilbert space,
they are able to solve learning problems that are nonlinear in the in-
put space as linear problems in the transformed space. Using the
“kernel trick” efficient algorithms with algebraically simple expres-
sions are obtained, such as support vector machines or kernel princi-
pal component analysis [1]. However, the functional representation
of classical kernel-based algorithms grows linearly with the num-
ber of processed data, and therefore they are not directly suitable for
online applications, where the complexity of each update must be
limited [2].

The recursive least-squares (RLS) filter [3] is a popular algo-
rithm that is used extensively in many engineering applications
thanks to its good convergence and reasonably low complexity. In
[4], a kernel recursive least-squares (KRLS) algorithm was pro-
posed. To avoid an “evergrowing” functional representation of its
solution, it features an online sparsification technique that allows to
avoid redundancy in the solution’s support. In particular, the support
is reduced to a sparse “dictionary” of bases and a new basis is only
added if it cannot be represented by a combination of other bases
that are already present in the dictionary. A number of different
criteria for online sparsification have since been explored in the
literature [5], including an online pruning criterion [6].

An important difference between linear adaptive filters and their
kernel-based counterparts has to do with their ability to handle non-
stationary data. While most linear adaptive filters allow for tracking
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non-stationary data directly or through some straightforward exten-
sion of their standard form [3], such an extension is more compli-
cated in the case of kernel-based algorithms. Most kernel adaptive
filters are therefore designed to operate on stationary data only, and
they converge approximately to the batch filtering solution [4, 5]. As
a result, tracking is an aspect of kernel adaptive filtering that has not
been satisfactorily addressed yet in the literature.

In order to perform tracking, more weight should be given to
more recent data. A radical approach to this idea is found in sliding-
window algorithms, whose solution depends only on the latest M
observed data [7, 8], while any older data is discarded. This proce-
dure is suboptimal for tracking time-varying data, since the quality
of its solution depends on the bases present in its support, and all
samples are given the same importance. A few attempts have also
been made to allow tracking by extending the standard KRLS set-
ting with a forgetting factor [5] or a simplified state-space model [9].
Nevertheless, while these algorithms theoretically allow for tracking,
they are not capable of limiting dictionary growth at the same time.
Furthermore, they present numerical difficulties that do not allow
their practical implementation on finite-precision machines.

In this paper we explore a more principled approach to track-
ing. We specifically handle the uncertainty about the inferred input-
output relationship, which we consider a latent function, and we
study the problem of how older data should be forgotten. First, we
define a probabilistic framework based on Gaussian processes (GPs)
that offers an intuitive view of KRLS and allows to deal with uncer-
tainty and regularization in a natural manner. Then, we propose a
reasonable model for forgetting, which shifts the probability distri-
bution over the input-output relationship towards the prior belief. In
this manner, the solution converges to the prior belief once all data
are forgotten, which is consistent with the Bayesian framework. The
presented method is closely related to the work of Csató and Opper
in [10], in which a GP perspective is adopted. We aim to bring their
principled approach to the attention of the signal processing com-
munity, provide an (arguably) more intuitive sparse formulation, and
extend it by including forgetting. The resulting KRLS algorithm is
capable of tracking non-stationary data that exhibit nonlinear rela-
tionships. In order to guarantee online operation, we limit its mem-
ory and computational complexity in each step to O(M2), where M
is the number of bases allowed in memory at any given time.

2. A BAYESIAN PERSPECTIVE OF KRLS

In this section we provide a Bayesian derivation of previous results
for KRLS, obtained within the probabilistic framework of Gaussian
Processes (GPs). This unifying interpretation offers a simpler, more
intuitive view of KRLS, adds specific handling of uncertainty, and
will prove specially useful to operate in non-stationary scenarios.



2.1. Standard KRLS (with evergrowing dictionary)

Assume a set of ordered input-output pairs Dt ≡ {xi, yi}ti=1, where
xi ∈ R

D are D-dimensional input vectors and yi ∈ R are scalar
outputs. Data pairs are made available on a one-at-a-time basis, i.e.,
(xt, yt) is made available at time t. Our objective is to infer the
predictive distribution of a new, unseen output yt+1 given the corre-
sponding input xt+1 and data available up to time t, Dt.

2.1.1. Bayesian model

In a Bayesian setting, we need a model that describes the observa-
tions, and priors on the parameters of such model. Following the
standard setup of GP regression, we can describe observations as the
sum of an unobservable latent function of the inputs plus zero-mean
Gaussian noise

yi = f(xi) + εi. (1)

In order to perform Bayesian inference, we also need a prior over the
latent function, which is taken to be a zero-mean GP with covariance
function k(x,x′). The use of a GP prior has a simple meaning: It
implies that the prior joint distribution of vector f t = [f1, . . . , ft]

�

(where fi = f(xi)) is a zero-mean multivariate Gaussian with co-
variance matrix Kt, with elements [Kt]ij = k(xi,xj). In line with
the previous literature on KRLS, we will refer to k(x,x′) as the ker-
nel function, and to Kt as the kernel matrix (which in this example
would correspond to inputs {x1, . . . ,xt}). For the sake of clarity,
in the following we will omit conditioning on the inputs {xi}ti=1 or
the parameters θ that parameterize the kernel function.

2.1.2. Bayesian recursive update

The adopted setup corresponds to standard GP regression, which is
thoroughly described in [11] for the batch setting. Here we consider
the online setting in which new observations are incorporated se-
quentially. Therefore, a new posterior p(f t|Dt) including the most
recent observation t must be computed at each time instant. We will
compute the joint posterior only at the locations at which data is ob-
served, instead of the full GP posterior. This is because p(f t|Dt)
implicitly defines the posterior full GP distribution p(f(x)|Dt)

p(f(x)|Dt) =

∫
p(f(x)|f t)p(f t|Dt)df t (2)

and therefore, both posterior distributions hold the same information.
Instead of recomputing p(f t|Dt) from scratch at every time in-

stant, we can obtain a simple recursive update as follows:

p(f t+1|Dt+1) = p(f t, ft+1|Dt, yt+1) (3a)

=
p(yt+1|ft+1)p(f t, ft+1|Dt)

p(yt+1|Dt)
(3b)

=
p(yt+1|ft+1)p(ft+1|f t)

p(yt+1|Dt)
× p(f t|Dt). (3c)

Eq. (3b) follows from (3a) by direct application of Bayes rule.
Eq. (3c) includes an additional expansion due to ft+1 being condi-
tionally independent of Dt given f t.

If the posterior at time t is a known Gaussian p(f t|Dt) =
N (f t|μt,Σt), then we can use (3) to update it to include a new
observation (xt+1, yt+1). All the expression in (3) can be easily
inferred from the stated assumptions as follows.

First, introducing the new quantities Qt = K−1
t , qt+1 =

Qtkt+1 and γ2
t+1 = kt+1 − k�

t+1Qtkt+1, where [kt+1]i =
k(xi, xt+1) and kt+1 = k(xt+1, xt+1), we can express the density

of the latent function at the new input given its value at previous
inputs as

p(ft+1|f t) = N (ft+1|q�
t+1f t, γ

2
t+1). (4)

This result follows directly from the known prior probability
p(ft+1, f t) and conditioning on f t. The inverse of the kernel matrix,
Qt, has been defined because we will be computing and storing it
instead of Kt, which will never be directly used.

Then, the denominator of Eq. (3), which corresponds to the
marginal likelihood (also known as evidence), provides the predic-
tive distribution of a new observation yt+1 given past data, and can
be computed by integration of the numerator

p(yt+1|Dt) =

∫
p(yt+1|ft+1)p(ft+1|f t)p(f t|Dt)df tdft+1

= N (yt+1|ŷt+1, σ̂
2
yt+1) (5)

with the mean and the variance of this Gaussian being

ŷt+1 = q�
t+1μt and σ̂2

yt+1 = σ2
n + σ̂2

ft+1,

respectively. We have also introduced the predictive variance of the
latent function at the new input

σ̂2
ft+1 = kt+1 + k�

t+1(QtΣtQt −Qt)kt+1 = γ2
t+1 + q�

t+1ht+1

with ht+1 = Σtqt+1.
Finally, the likelihood follows from the model definition (1):

p(yt+1|ft+1) = N (yt+1|ft+1, σ
2
n). (6)

Thus, all involved distributions (4) and (5), (6) are univariate
normal with simple, known expressions. Using those, (3) can be
evaluated and the posterior updates emerge

p(f t+1|Dt+1) = N (f t+1|μt+1,Σt+1) (7a)

μt+1 =

[
μt

ŷt+1

]
+

yt+1 − ŷt+1

σ̂2
yt+1

[
ht+1

σ̂2
ft+1

]
(7b)

Σt+1 =

[
Σt ht+1

h�
t+1 σ̂2

ft+1

]
− 1

σ̂2
yt+1

[
ht+1

σ̂2
ft+1

][
ht+1

σ̂2
ft+1

]�

.

(7c)

The inverse of the kernel matrix including the new input can also
be easily computed using the corresponding low-rank update

K−1
t+1 = Qt+1 =

[
Qt 0

0� 0

]
+

1

γ2
t+1

[
qt+1

−1

] [
qt+1

−1

]�
. (8)

This illustrates both how probabilistic predictions for new obser-
vations can be made (using Eq. (5), which does not require knowl-
edge of yt+1), and how these new observations can be included in
the posterior once they are available. All computations for a given
update can be made in O(t2) time, as is obvious from the update
formulas. Only μt+1, Σt+1 and Qt+1 will be reused in the next
iteration, and the remaining quantities will be computed on demand.

The recursion updates can be initialized by setting

μ1 =
y1k(x1,x1)

σ2
n + k(x1,x1)

(9)

Σ1 = k(x1,x1)− k(x1,x1)
2

σ2
n + k(x1,x1)

(10)

Q1 =
1

k(x1,x1)
, (11)



which corresponds to inference according to the proposed model for
a single data point.

Since the model is exactly that of GP regression and all pro-
vided formulas are exact, probabilistic predictions made at time t
for observation t+ 1 are exactly the same as those obtained using a
standard GP in the batch setting. Using the batch formulation from
[11], we can equivalently express the predictive mean and variance
from (5) as

ŷt+1 = k�
t+1(Kt + σ2

nI)
−1yt (12a)

σ̂2
yt+1 = kt+1 − k�

t+1(Kt + σ2
nI)

−1kt+1. (12b)

Direct application of (12a) and (12b) involves a higher, O(t3) cost,
so the recursive procedure of the previous section is preferred. How-
ever, these equations are useful to illustrate the form of the predictive
distribution after several iterations, which is somewhat obscured in
the recursive formulation.

In the standard KRLS setting, the predictive mean is often ex-
pressed as ŷt+1 = k�

t+1αt, where αt weights each kernel. When
the batch formulation is used, these weights can be obtained as αt =
(Kt +σ2

nI)
−1yt, whereas in our recursive formulation the same re-

sult can be obtained at each step t by computing αt = K−1
t μt =

Qtμt. Observe the resemblance between the batch and recursive
formulations: In the batch formulation we are using noisy observa-
tions yt, so the kernel matrix includes a regularization term σ2

nI.
In the recursive formulation we use μt, which are the values of the
noiseless function evaluated at the inputs, so no noise term is added.
Obviously, the same value for αt is obtained with both formulations.

2.2. Fixed-budget KRLS

The set of locations at which the joint posterior is stored is usually
referred to as set of bases or dictionary. The recursive procedure
grows this dictionary unboundedly. A simple strategy to limit re-
source usage is to remove one basis from the dictionary whenever
it grows larger than a predefined budget M . In order to accomplish
this, we need to know how to remove a basis from the dictionary,
and a criterion to select which basis should be removed. Both are
described in the following. Note that though we have been using
f t = [f1, . . . , ft]

� so far, as we start adding and pruning bases f t
no longer maintains that structure.

2.2.1. How to optimally remove a basis

After the inclusion of several observations, we are left with a poste-
rior of the form p(f t, ft+1|Dt+1) = N (f t+1|μt+1,Σt+1). With-
out lack of generality we will assume that we want to remove
the basis corresponding to ft+1. To this end we can approximate
p(f t, ft+1|Dt+1) with the product of p(ft+1|f t) (independent of
data) times some distribution q(f t) which does not depend on the
removed basis. The optimal form of q(f t) is then derived by mini-
mizing the Kullback-Leibler (KL) divergence between the exact and
approximate posteriors KL(p(f t+1|Dt+1)||p(ft+1|f t)q(f t)), which
yields q(f t) = p(f t|Dt+1). Unsurprisingly, the optimal way to
remove a basis from the posterior within this Bayesian framework is
simply to marginalize it out.

Marginalizing out a variable in a joint Gaussian distribution
implies removing the corresponding row and column from its mean
vector and covariance matrix, so the removal equations become
μt+1 ← [μt+1]−i and Σt+1 ← [Σt+1]−i,−i, where the notation
[·]−i refers to a vector in which the i-th row has been removed,
and [·]−i,−i to matrix in which the i-th row and column have been

removed. Following this notation, we will use [·]−i,i to refer to the
i-th column of a matrix, excluding the element in the i-th row.

The i-th basis can be removed from Qt+1 using

Qt+1 ← [Qt+1]−i,−i − [Qt+1]−i,i[Qt+1]
�
−i,i

[Qt+1]i,i
. (13)

Additionally, it can be proved that whenever γ2
t+1 is (numeri-

cally) zero, the above KL divergence is also zero, i.e., discarding the
last basis produces no information loss. In such cases, after updating
the posterior with Eq. (7), we can immediately prune the last row
and column without incurring any information loss. This is some-
times known in the literature as reduced update and is specially use-
ful since update (8), which would be ill-defined, is avoided.

2.2.2. Selecting which basis should be removed

We will now address the selection of a basis for removal. Probably,
the most sensible option would be to remove the basis i that mini-
mizes the KL divergence between the exact and approximate posteri-
ors KL(p(f t+1|Dt+1)||p([f t+1]i|[f t+1]−i)p([f t+1]−i|Dt+1)), i.e.,
a measure of the information loss due to basis removal. This is ex-
actly the same cost function used in the previous section. Unfor-
tunately, this is computationally too expensive. A more practical
option is to minimize the squared error (SE) induced by the approx-
imation in the mean of the approximate posterior. In our experi-
ments, this simpler cost function delivered almost identical perfor-
mance compared to the KL-based criterion.

The SE can be computed by subtracting the means of the exact
and approximate distributions after removing the i-th basis, which
is [0, . . . , [Qt+1μt+1]i/[Qt+1]i,i, . . . , 0]

�; and then computing the
Euclidean norm of this vector. Observe that only the posterior mean
corresponding to the removed basis is distorted. With this result,
we can easily check the SE of all basis in O(M2) time and flag for
removal the basis that incurs in the least error. This is a well-known
pruning criterion, used for instance in [10, 12].

Thus, flagging a basis for removal and then effectively removing
it from the posterior are operations that have the same cost as includ-
ing new bases, rendering each complete KRLS iteration O(M2).

3. THE KRLS TRACKER

In the previous section we offered a Bayesian interpretation of fixed-
budget KRLS. Data was assumed to be stationary, i.e., f(x) did
not change over time. However, in a time-varying scenario, only
recent samples have relevant information, whereas the information
contained in older samples is actually misleading. In such a case, we
would be interested in having a KRLS tracker that is able to forget
past information and track changes in the target latent function.

In this section we are interested in developing a forgetting strat-
egy and assess its effect throughout the whole input space, so we
will work with complete GPs. We briefly remind the reader the GP
notation: GPs are stochastic processes that are defined through a
mean function m(x) and a covariance function c(x,x′). To denote
that f(x) is a stochastic function drawn from a GP, we will use the
notation f(x) ∼ GP(m(x), c(x,x′)). Loosely speaking, one can
think of a GP as a Gaussian distribution over an infinite set of points
(evaluating f(x) at every possible x and thus building an infinitely
long vector), with a corresponding infinitely long mean (given by
the evaluation of m(x) at every possible point) and an infinitely big
covariance matrix (given by evaluating c(x,x′) at each possible pair
of points). A complete background on GPs can be found in [11].



3.1. A general forgetting setup

After several inclusion-deletion steps, all information available up to
time t has (approximately) been stored in the posterior density over
the dictionary bases f t|Dt ∼ N (f t|μt,Σt). Inserting this p(f t|Dt)
in Eq. (2) and solving the integral, we can obtain the implied poste-
rior GP over the whole input space,

f(x)|Dt ∼ GP(kt(x)
�Qtμt, k(x,x

′)+ (14)

kt(x)
�Qt(Σt −Kt)Qtkt(x

′)),

where kt(x) is the vector of covariances between x and all the bases
in the dictionary at time t. Observe that (14) has the same form as
the prediction equation (5), but extended to the whole input space.

In order to make KRLS able to adapt to non-stationary environ-
ments, we should make it able to “forget” past samples, i.e., to in-
tentionally force the posterior p(f(x)|Dt) to lose some information.
A very general approach to this is to linearly combine f(x)|Dt with
another independent GP n(x) that holds no information about data.
Since this new posterior after forgetting will be a linear combination
of two GPs, it will also be a GP, and we will denote it as

f̆(x)|Dt = αf(x)|Dt + βn(x), (15)

where α, β > 0 are used to control the trade-off between the infor-
mative GP f(x)|Dt and the uninformative “forgetting noise” n(x).

The posterior GP after forgetting, p(f̆(x)|Dt), should be ex-
pressible in terms of a distribution over the latent points in the dic-
tionary (to avoid a budget increase). We will refer to this distribution

as N (μ̆t, Σ̆t). Using Eq. (2) again, the posterior after forgetting in

terms of μ̆t and Σ̆t is

f̆(x)|Dt ∼ GP(kt(x)
�Qtμ̆t, k(x,x

′)+ (16)

kt(x)
�Qt(Σ̆t −Kt)Qtkt(x

′)).

Different definitions for α, β and n(x) will result in different
types of forgetting. One reasonable approach is discussed next.

3.2. Back-to-the-prior forgetting

First, we select the form of the GP n(x) which acts as noise. This
GP holds no information about the data and it is independent of
f(x)|Dt. Assume for a moment that we want to forget all past data.
In this case we must set α = 0 to completely remove the informative
GP. Then, our posterior GP would be βn(x). The distribution of the
posterior when no data has been observed, should, by definition, be
equal to the prior. Therefore n(x) must be a scaled version of the GP
prior. Without lack of generality, we can choose this scale to be 1,
so that the noise GP becomes n(x) ∼ GP(0, k(x,x′)). Obviously,
with this choice, setting α = 0 should imply β = 1, which as we
will see later, is the case. Observe that n(x) corresponds to colored
noise, using the same coloring as the prior.

Once n(x) has been defined, the distribution of f̆(x)|Dt can be
obtained from its definition (15). Since both GPs are independent,
their linear combination is distributed as

f̆(x)|Dt ∼ GP(αkt(x)
�Qtμt, (α

2 + β2)k(x,x′)+ (17)

kt(x)
�Qt(α

2Σt − α2Kt)Qtkt(x
′)).

Comparing (16) and (17) and identifying terms, we obtain

μ̆t = αμt; Σ̆t = α2Σt + (1− α2)Kt; α2 + β2 = 1

which provides the relationship between the posterior distribution
before and after forgetting occurs. Forgetting depends on a sin-
gle positive parameter, α, and one can find the corresponding β =√
1− α2. This latter equation implies that α cannot be bigger than

1. Its values are therefore in the range from 0 (all past data is forgot-
ten and we arrive back at the prior) to 1 (no forgetting occurs and we
are left with the original, unmodified posterior). Reparameterizing
α2 = λ for convenience, the forgetting updates are finally:

Σt ← λΣt + (1− λ)Kt (18a)

μt ←
√
λμt (18b)

where we denote λ ∈ (0, 1] as the forgetting factor. The smaller the
value of λ, the faster the algorithm can track changes (and the less
it is able to learn, since information is quickly discarded). Usually,
only values in the [0.95, 1] range are sensible. We call this technique
“back-to-the-prior” forgetting.

3.3. The KRLS-T algorithm

The KRLS Tracker (KRLS-T) algorithm is summarized in Algo-
rithm 1. A Matlab implementation of KRLS-T can be obtained at
http://www.tsc.uc3m.es/~miguel

Algorithm 1 Kernel Recursive Least-Squares Tracker

Parameters: Forgetting factor λ, regularization σ2
n, kernel func-

tion k(x,x′), including its parameters θ, budget M .
Observe (x1, y1).
Initialize μ1, Σ1, Q1 as per Eq. (11).
Add x1 to the dictionary.
for time instant t = 1, 2, . . . do

Forget using (18).
Observe new input xt+1.
Compute kt+1 (the kernel between xt+1 and dictionary bases),
kt+1 = k(xt+1,xt+1), qt+1 = Qtkt+1, ht+1 = Σtqt+1.

Compute projection uncertainty γ2
t+1 = kt+1 − k�

t+1qt+1.

Compute noiseless pred. var. σ̂2
ft+1 = γ2

t+1 + q�
t+1ht+1.

Output predictive mean ŷt+1 = q�
t+1μt.

Output predictive variance σ̂2
yt+1 = σ2

n + σ̂2
ft+1.

Observe actual output yt+1.
Compute μt+1, Σt+1 as per Eq. (7).

if γ2
t+1 < ε (for some ε > 0 close to machine precision) then

Remove basis t+ 1 (introduces no error):
μt+1 ← [μt+1]−(t+1),Σt+1 ← [Σt+1]−(t+1),−(t+1).

else
Compute Qt+1 as per Eq. (8).
Add basis xt+1 to the dictionary.
if Number of bases in the dictionary > M then

Compute squared errors ([Qt+1μt+1]i/[Qt+1]i,i)
2.

Remove basis i that introduces minimum error:
μt+1 ← [μt+1]−i,Σt+1 ← [Σt+1]−i,−i.
Remove basis i from Qt+1 as per Eq. (13).
Remove basis xi from the dictionary.

end if
end if

end for
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Fig. 1. NMSE performance of KRLS algorithms on the KIN40K
regression problem, each using a dictionary of M = 500 bases.

4. NUMERICAL EXPERIMENTS

We proceed to demonstrate the performance of the KRLS-T algo-
rithm, first on a stationary benchmark and then on a tracking prob-
lem with non-stationary data. We include several other relevant al-
gorithms in the comparison, in particular Approximate Linear De-
pendency KRLS (ALD-KRLS) and Sliding-Window KRLS (SW-
KRLS). The ALD-KRLS algorithm iteratively constructs the solu-
tion to a stationary batch regression problem, and hence it is not
suitable for tracking. To slow down dictionary growth it uses an ap-
proximate linear dependency criterion (see [4] for details). A notable
characteristic of ALD-KRLS is that it does not intrinsically handle
forgetting or regularization, but rather achieves its regularization by
constructing a sparse basis. The SW-KRLS algorithm [7, 13] is, to
the best of our knowledge, the only relevant KRLS algorithm capa-
ble of tracking, apart from the proposed algorithm. Some additional
algorithms will be mentioned briefly throughout the experiments.

4.1. Online regression on stationary data

In the first experiment we apply the algorithms to perform online
regression of the KIN40K data set1. This set contains 40, 000 exam-
ples, each consisting of an 8-dimensional input vector and a scalar
output, representing the forward kinematics of an 8-link all-revolute
robot arm. We randomly selected 10, 000 data points for training
and used the remaining 30, 000 points for testing the regression.

An anisotropic Gaussian kernel was used, in which the hyper-
parameters were determined off-line by standard GP regression. In
particular, the noise-to-signal ratio (regularization) was σ2

n/σ
2
0 =

0.0021. The first algorithm was SW-KRLS with a window of 500
data points. The second algorithm was ALD-KRLS with sensitivity
ν = 0.45. For this parameter value, the final dictionary contained
exactly 500 bases. We also ran ALD-KRLS with ν = 0 and stopped
its dictionary expansion once it contained 500 bases. While after this
point the dictionary is left unchanged, ALD-KRLS continues adap-
tation by performing reduced updates of its other parameters. The
last algorithm is the proposed KRLS-T algorithm, with a dictionary
size of 500 bases and λ = 1. To prune the dictionary, we used the

1From the DELVE archive
http://www.cs.toronto.edu/~delve/data/datasets.html
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Fig. 2. MSE performance of different tracking algorithms on a com-
munications channel that shows an abrupt change at iteration 500.

slower criterion that minimizes KL-divergence (“fullKL”) in one test
and the simpler MSE-based criterion in another test.

Each algorithm performed a single run over the data. The per-
formance was measured by calculating the normalized mean-square
error (NMSE) on the test set, at different points throughout the train-
ing run. The results are displayed in Fig. 1. During the first 500
iterations, four of the algorithms show identical performance, since
they accept every observed data point into their dictionaries. The
fifth algorithm, ALD-KRLS with ν = 0.45, has a slower dictionary
growth and an initially larger error. From iteration 501 onwards,
SW-KRLS maintains its performance, since it performs regression
only on the 500 most recent samples. ALD-KRLS selects the most
relevant bases (as a growing set), and therefore it converges to a bet-
ter NMSE. While its sensitivity level ν = 0.45 results in a slower
convergence, it achieves similar results as ν = 0. The KRLS-T al-
gorithm outperforms all others, since it is able to properly weight all
samples and to trade weaker bases in the dictionary for more rele-
vant ones during the entire training process. Interestingly, it obtains
similar results with the simple MSE-based pruning criterion and the
computationally more expensive KL-based criterion.

4.2. Adaptive identification of a time-varying channel

We now evaluate the tracking capabilities of the different algo-
rithms. For this experiment we use the setup described in [7].
Specifically, we consider the problem of online identification of
a communication channel in which an abrupt change (switch)
is triggered at some point. Here, a signal xt ∈ N (0, 1) is fed
into a nonlinear channel that consists of a linear finite impulse re-
sponse (FIR) channel followed by the nonlinearity y = tanh(z),
where z is the output of the linear channel. During the first 500
iterations the impulse response of the linear channel is chosen
as h1 = [1, 0.0668,−0.4764, 0.8070], and at iteration 501 it is
switched to h2 = [1,−0.4326,−0.6656, 0.7153]. Finally, 20dB of
Gaussian white noise is added to the channel output.

We perform an online identification experiment, in which the
algorithms are given one input datum (with a time-embedding of
4 taps) and one output sample at each time instant. At each step,
the MSE performance is measured on a set of 100 data points that
are generated with the current channel model. In this comparison
we include results for Naive Online Rreg Minimization Algorithm
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Fig. 3. MSE performance of KRLS-T and ALD-KRLS on a com-
munications channel that shows an abrupt change at iteration 500.

(NORMA), which is a kernel-based implementation of leaky LMS
[2], and extended KRLS (EX-KRLS) from [9], which is a straight-
forward kernelized version of classic extended RLS [3].

An RBF kernel k(x,x′) = exp(−||x− x′||2/2
) is used in
all algorithms, with a length-scale 
 = 1. The regularization is set
to match the true value of the noise-to-signal ratio, 0.01. Regarding
memory, SW-KRLS and KRLS-T are given a dictionary size of M =
50. NORMA and EX-KRLS are not imposed any memory limit (i.e.
M = 1500), given that the former would perform very weakly with
only 50 bases (being LMS-based), and the latter can only be applied
with an evergrowing dictionary when tracking. The adaptation rates
are chosen as follows: NORMA uses learning rate η = 0.1; EX-
KRLS has parameters α = 0.999, q = 0.1 and forgetting factor
λ = 0.99; and KRLS-T uses λ = 0.999. Note that the same value
of λ does not necessarily correspond to the same convergence rate in
different algorithms.

The identification results, averaged out over 25 simulations, can
be found in Fig. 2. EX-KRLS initially obtains acceptable tracking
results, but later starts to diverge due to numerical problems. SW-
KRLS obtains very reasonable results, but, since it gives the same
importance to all samples in its window, its speed of convergence
is limited by its window size M . The best performance, both in
terms of convergence rate and final MSE, is obtained by the proposed
KRLS-T algorithm, which gives more importance to more recent
data. The influence of its forgetting factor is illustrated in Fig. 3. In
the limiting case λ = 1, KRLS-T does not perform tracking, and
then it is fair to compare its performance to ALD-KRLS (which is
not a tracker). We applied ALD-KRLS with ν = 0.003, which leads
to a final dictionary of M = 50 bases (while we verified also that
the performance was hardly affected by changing ν). Similar to the
previous example, KRLS-T obtains superior results.

5. CONCLUSIONS

In this paper we have introduced a Bayesian framework that unifies
existing KRLS theory and provides additional insight by explicitly
handling uncertainty. This approach allows to define the concept of
“forgetting” in a natural manner in KRLS, and it rigorously intro-
duces regularization into KRLS. Finally, we have combined these
ideas into a concrete algorithm, the KRLS Tracker, which works
with fixed memory and computational requirements per time step,
and allows for simple, practical implementation and usage.

We included different numerical experiments that show how the

proposed algorithm outperforms existing online kernel methods not
only in the non-stationary scenarios for which it was designed, but
also in stationary scenarios (by setting its forgetting factor to λ = 1)
due to its more rigorous approach to regularization.

The described Bayesian framework opens the door to many in-
teresting future research lines: New forgetting strategies can be de-
veloped using the general setup of Section 3.1. These strategies can
be combined with a linear kernel to produce new linear adaptive fil-
tering algorithms and to gain insight into existing ones. For instance,
the KRLS Tracker with forgetting updates Σt ← Σt/λ, μt ← μt

yields exactly the exponentially weighted RLS when a linear ker-
nel is used. Furthermore, it would be interesting to study how the
proposed KRLS tracker algorithm can be extended to a full kernel
Kalman filter.
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