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ABSTRACT

In this paper we present an algorithm for blind equalization
of single-input multiple-output (SIMO) nonlinear systems, in
which each nonlinear channel is a Wiener system. The pro-
posed method combines ideas from blind linear SIMO iden-
tification with kernel canonical correlation analysis (kernel
CCA) to identify the nonlinearities. It is shown in the paper
that the blind equalization problem can be solved in an itera-
tive manner, alternating between a CCA problem (to estimate
the linear filters) and a kernel CCA problem (to estimate the
memoryless nonlinearities). The resulting algorithm can be
applied to the general case of nonlinear SIMO systems with
P outputs. Simulations are included to demonstrate its effec-
tiveness.

1. INTRODUCTION

In the last decade there has been a great interest in blind iden-
tification and equalization methods. In digital communica-
tions, blind methods permit channel identification or equal-
ization without the need to send known training signals, thus
saving bandwidth. In particular, the problem of blind identifi-
cation of single-input multiple-output (SIMO) linear channels
has received considerable attention [1, 2]. In this case, blind
identification can be accomplished by resorting only to the
second-order statistics (SOS) of the channel output.

While a lot of attention has gone to the analysis of linear
SIMO systems, many real-life systems exhibit nonlinear char-
acteristics. Recently, a growing amount of research has been
conducted on nonlinear system identification [3]. Nonlinear
dynamical system models generally have a high number of
parameters, although many problems can be sufficiently well
approximated by simplified block-based models. The model
consisting of a cascade of a linear dynamic system and a
memoryless nonlinearity is known as the Wiener system, as
illustrated in Fig. 1. Wiener systems are frequently used in
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Fig. 1. A Wiener system with additive noisen[n].

contexts such as digital satellite communications [4], optical
fibre communications [5] and digital magnetic recording.

A number of supervised approaches have been proposed
to identify or equalize these systems, ranging from black-box
approaches using different types of structures and training cri-
teria [6, 7], to approaches that explicitly exploit the system
structure [8, 9, 10]. However, very little work has been done
on blind identification methods. Blind methods generally as-
sume some knowledge on the input signal statistics and/or the
channel model. A few blind methods to identify Wiener sys-
tems can be found in [11, 12]. Blind identification methods
for other nonlinear systems such as Volterra models have also
been presented in [13, 14].

In this paper we present a blind method to identify and
equalize nonlinear SIMO systems that consist of various
Wiener systems, as illustrated in Fig. 2. These systems could
represent a sensor array in which every sensor exhibits a non-
linear behavior, or they could be obtained by oversampling
the output of a nonlinear communications channel [1]. The
presented method combines ideas from the blind linear SIMO
identification method in [1] and from the supervised nonlin-
ear equalization technique discussed in [9]. It performs at
the same time a kernel-based regression to learn the nonlin-
earities and a least-squares (LS) method to retrieve the linear
channels. The assumptions made by our method are that
every nonlinearity in the SIMO Wiener system is invertible,
that the linear channels share no common zeros and, finally,
that the maximum channel order is known.
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Fig. 2. A SIMO system consisting of 2 Wiener systems.

2. PROBLEM SETTING

Consider a nonlinear SIMO system, in which each channel
is modeled as a Wiener system. An example with only two
outputs is shown in Fig. 2. In a general case withP outputs
the system can be modeled as

yi[n] =
L−1
∑

j=0

hi[j]s[n − j] (1)

xi[n] = fi(yi[n]) + ni[n], (2)

wheres[n] represents the input symbol sent at time instant
n, hi[j] is thej-th coefficient of thei-th linear FIR channel
Hi(z), fi(·) is the nonlinearity of channeli andni[n] rep-
resents additive Gaussian noise, fori = 1, . . . , P andn =
0, . . . , N − 1. Without loss of generality,L represents the
maximum channel order (which we assume to be known).

The problem considered in this paper is to recover the
transmitted signals[n] when only the output signalsxi[n] are
observed.

3. BLIND SIMO WIENER SYSTEM EQUALIZATION

The solution we propose to the equalization problem is
mainly based on the linear identification method presented in
[1]. In the following this linear method is explained briefly
for a 1 × 2 linear SIMO system, although the generalization
to more output channels is straightforward.

3.1. Blind identification of a linear SIMO system

Taking a block ofN observations, define the matrix

Xi =







xi[n + L − 1] · · · xi[n]
...

. . .
...

xi[n + N − 1] · · · xi[n + N − L]






, (3)

for i = 1, 2. Denoting the estimate of the channel impulse
response vectors as

ĥi =
[

ĥi[0], . . . , ĥi[L − 1]
]T

, (4)
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Fig. 3. A blind identification scheme for a linear SIMO model
without noise.

it can be easily verified that in a noiseless case the solution
should satisfy

X1ĥ2 = X2ĥ1, (5)

as illustrated in Fig. 3.
In order to avoid the trivial solution̂hi = 0, a restriction

must be applied to the solution. Typical restrictions in com-
munications are either to fix the norm of the filtersĥi, or to
fix the norm of the output signalXiĥj .

A restriction on the filter norm was used in [1] to develop
the LS method, also referred to as cross-relation. This prob-
lem consists of minimizing the cost function

JLS =
1

2

∥

∥

∥
X1ĥ2 − X2ĥ1

∥

∥

∥

2

s.t.‖ĥ1‖
2+‖ĥ2‖

2 = 1, (6)

which is equivalent to the following eigenvalue problem

[

X
T
1 X1 −X

T
1 X2

−X
T
2
X1 X

T
2
X2

]

ĥ = βĥ. (7)

The solutionĥ = [ĥT
2
, ĥT

1
]T is found as the eigenvector cor-

responding to the smallest eigenvalue.
If, instead, the constraint is applied to the norm of output

signals as in [2], the cost function to minimize turns out to be

JCCA =
1

2

∥

∥

∥
X1ĥ2 − X2ĥ1

∥

∥

∥

2

s.t.‖X1ĥ2‖
2+‖X2ĥ1‖

2 = 1.

(8)
This is a canonical correlation analysis (CCA) problem, and
its solution is given by the principal eigenvector of the follow-
ing generalized eigenvalue problem (GEV)

[

X
T
1 X1 X

T
1 X2

X
T
2 X1 X

T
2 X2

]

ĥ = β

[

X
T
1 X1 0

0 X
T
2 X2

]

ĥ. (9)

Once the channelŝh1 andĥ2 have been estimated, they can
be used to obtain an equalizer by applying the zero-forcing
(ZF) or the minimum mean square error (MMSE) approach.
Note that both the LS algorithm and the CCA-based algorithm
require knowledge of the maximum channel orderL, and they
assume the linear channels share no common zeroes.

When we consider that each channel of the system is re-
placed by a Wiener system, the scheme of Fig. 4 can be used
for blind identification, where the influence of the nonlinear-
ities fi(·) is removed first, by estimating the inverse nonlin-
earitiesgi(·) = f̂−1

i (·).
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Fig. 4. The identification diagram for a SIMO system consisting of 2Wiener subsystems, in whichgi(·) = f̂−1

i (·).

To estimate the inverse nonlinearitiesgi(·), we will ap-
ply a nonparametric identification approach based on kernel
methods. Nonparametric approaches do not assume that the
nonlinearity corresponds to a given model, but rather let the
training data decide which characteristic fits them best.

3.2. Nonlinear regression with kernel methods

Kernel methods [15] are based on a nonlinear transformation
Φ of the data from the input space to a high-dimensionalfea-
ture spaceH, where it is more likely that a problem can be
solved in a linear manner,

Φ : R
m → H

Φ(x) = x̃.

Scalar products in feature space can be calculated without the
explicit knowledge of the nonlinear transformationΦ, by ap-
plying the correspondingkernel functionκ(·, ·) on pairs of
data points in the input space,

κ(xi,xj) := 〈x̃i, x̃j〉 = 〈Φ(xi), Φ(xj)〉. (10)

This property, which is known as the “kernel trick”, allows
to perform any scalar product-based algorithm in the feature
space by solely replacing the scalar products with the kernel
function in the input space.

Most kernel algorithms use akernel matrixKi, which is
constructed by applying the kernel function on pairs of points:
ki(m, n) = κ(xi[m], xi[n]), with m, n = 1, . . . , N . An often
used kernel function is the Gaussian kernel with widthσ

κ(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

,

which implies an infinite dimensional feature space [15].
Nonlinear regression with kernels is possible by repre-

senting the nonlinearity as akernel expansion

ŷi[n] = gi(xi[n]) =

M
∑

m=1

α̂i[m]κ(xi[n], xs
i [m]), (11)

wherexs
i [m] are called thesupport vectorsof the nonlin-

ear representation. In the following we will use the variable

ks
i (n, m) = κ(xi[n], xs

i [m]) to simplify the notation. In a
first approach, all available pointsxi[n] will be used as sup-
port vectors, i.e.,M = N .

At this point it should be clear that once the inverse non-
linearitiesgi(·) have been estimated, retrieval of the linear
FIR channelŝhi is straightforward through a linear SIMO
identification technique such as the CCA- or LS-based algo-
rithms. Given only the outputsxi[n] of the system, direct
estimation of these nonlinearities is difficult, however, since
no information on the input signals[n] is available.

Therefore, since separate estimation of the linear and non-
linear parts of this system is difficult, we will design an algo-
rithm that allows us to obtain both the linear filters and the
nonlinearities simultaneously, through a single cost function.

3.3. Proposed cost function

First, we will treat the case where the observed system has
only two outputs. Given the representation of the nonlinear-
ity gi(·) as in (11), the output of the proposed identification
scheme can be written as

z12[n] =

L−1
∑

i=0

M
∑

m=1

ĥ2[i]k
s
1
(n − i, m)α̂1[m]. (12)

In matrix notation, this becomes

z12[n] = ĥ
T
2
K1[n]α̂1, (13)

where thel-th row of K1[n] contains the elements from
ks
1(n + l − 1, 1) till ks

1(n + l − 1, M). The expression for
z21[n] is found in the same manner. CombiningN output
samples of each channel into the vectorsz12 and z21, we
obtain the following cost function to minimize:

J2 = ‖z12 − z21‖
2 s.t.‖z12‖

2 + ‖z21‖
2 = 1. (14)

3.4. Proposed iterative solution

The minimization problem (14) has no direct analytical so-
lution. However, ifα̂1 and α̂2 were available, it would be
possible to obtain the corresponding optimal filtersĥ2 andĥ1



by applying linear CCA. Moreover, since we are represent-
ing the nonlinearitiesg1(·) andg2(·) as linear combinations
of support vectors, a similar operation can be carried out to
estimate these: if̂h2 andĥ1 are given, (14) can be solved to
find the optimal coefficients of the kernel expansionsα̂1 and
α̂2. This suggests an iterative scheme that alternates between
updating the linear channelŝhi and the memoryless nonlin-
earitiesα̂i. Convergence is guaranteed because each update
may either decrease or maintain the cost.

3.4.1. Iteration 1: given̂αi, obtainĥi

If estimates of̂α1 andα̂2 are given, Eq. (12) shows that the
outputz12[n] of the identification scheme can be obtained as

z12[n] =
L−1
∑

i=0

ĥ2[i]ŷ1[n − i], (15)

whereŷ1[n − i] is calculated with (11). In matrix form this
can be written asz12 = Ŷ1ĥ2, wheren-th row of the matrix
Ŷ1 contains the elements from̂y1[n] until ŷ1[n+L− 1]. The
minimization problem (14) can be rewritten as minimizing

Jh = ‖Ŷ1ĥ2 − Ŷ2ĥ1‖
2 s.t.‖Ŷ1ĥ2‖

2 + ‖Ŷ2ĥ1‖
2 = 1,

(16)
which can be solved by standard linear CCA.

3.4.2. Iteration 2: given̂hi, obtainα̂i

If estimates of̂h1 andĥ2 are given, Eq. (12) shows that the
outputz12[n] of the identification scheme can be obtained as

z12[n] =

M
∑

m=1

w1[n, m]α̂1[m], (17)

where the variablew1[n, m] =
∑L−1

i=0
ĥ2[i]k1(n− i, m) is in-

troduced. In matrix form this can be written asz12 = W1α̂1,
where then-th row of the matrixW1 contains the elements
w1[n, 1] until w1[n, M ]. The minimization problem (14) can
be rewritten as minimizing

J
α̂

= ‖W1α̂1−W2α̂2‖
2 s.t.‖W1α̂1‖

2+‖W2α̂2‖
2 = 1.

(18)
If all data pointsxi[n] are used as support vectors in the kernel
expansion (11), i.e., ifM = N (which impliesα̂i ∈ R

N ), the
dimensionality of this problem is significantly higher thanits
linear counterpart (16). This leads to various difficulties.

First of all, problem (18) will suffer from overfitting when
sufficiently “rich” kernel functions are used, i.e., kernels that
correspond to feature spaces whose dimensionm′ is much
higher than the number of available data pointsN . This oc-
curs for instance for the Gaussian kernel, whose feature space
is infinite dimensional. Second, the GEV corresponding to
this problem requires the retrieval of eigenvectors of2N×2N

Algorithm 1 Equalization algorithm for nonlinear SIMO
channels.

Initialization: obtainĥi by solving the LS problem (7).
Construct the kernel matricesKi from xi[n].
Perform kernel PCA to obtain the reduced matricesWi.
repeat

CCA1: With givenĥi, updateα̂i by solving (18).
CCA2: With givenα̂i, updatêhi by solving (16).

until Convergence
Obtain s[n] from ŷi[n] and ĥi by applying linear ZF or
MMSE equalizers.

matrices, which in this case implies a high computational
cost.

Overfitting is a common issue in kernel CCA that can be
solved in different manners [16]. Common workarounds in-
clude adding regularization to the problem or reducing the
dimensionality of the problem by applying kernel PCA [17].
In this case a dimensionality reduction is desired since at the
same time it will avoid overfitting and reduce the computa-
tional load. Specifically, kernel PCA reduces the kernel ma-
trix Ki ∈ R

N×N to

ViΣiV
T
i ≈ Ki, (19)

whereΣi ∈ R
M×M is a diagonal matrix containing theM

largest eigenvalues ofKi andVi ∈ R
N×M contains theM

corresponding eigenvectors. This allows us to redefine the
variablew1[n, m] asw1[n, m] =

∑L−1

i=0
h2[i]v1(n − i, m),

wherev1(n, m) is then-th element of them-th eigenvector in
V1. Thanks to this reduction, the dimensions of the matrices
Wi in (18) are reduced toN × M , with M ≪ N , and the
solutionsα̂i can be found by applying CCA.

3.5. Extensions and Further Comments

Analogously to many other iterative techniques, the perfor-
mance of the proposed approach can depend on the initial-
ization of the linear channels and nonlinearities. Here, we
propose to obtain an initial estimate of the linear channels
ĥi by first applying the LS algorithm from [1] to the outputs
xi[n], i.e, in the first iteration, the estimated nonlinearities are
gi(xi[n]) = xi[n]. Furthermore, we must note that the final
target of the proposed algorithm consists in recovering the
source signals[n]. Thus, after obtaining the outputŝyi[n] and
the linear channelŝhi, the input can be easily recovered by
means of a linear ZF or MMSE equalizer.

In the general case of a system withP sensors, the cost
function needs to take into account the difference between
each pair of outputs. Note that the output signalzij represents
the signalxi after being transformed bygi(·) and filtered by
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Fig. 5. Identification results on the1 × 3 Wiener SIMO sys-
tem. (a) shows the noisy outputx3[n] vs. the real internal
signaly3[n], andx3[n] vs. the estimated̂y3[n]. (b) shows the
estimated filter coefficients ofh3 vs. the real coefficients.

hj . The cost function to minimize now becomes

JP =

M
∑

i,j=1

i6=j

‖zij − zji‖
2 s.t.

M
∑

i,j=1

i6=j

‖zij‖
2 = 1, (20)

and the resulting algorithm is analogous to that of the two-
channel case. The final iterative technique forP output chan-
nels is summarized in Algorithm 1.

Finally, we must note that when the SIMO system is ob-
tained by oversampling, theP nonlinearities will be the same.
Obviously, this can be exploited to obtain a more accurate es-
timate. The corresponding GEV can be found easily, but it is
omitted here due to space restrictions.

4. EXPERIMENTS

We experimentally tested the proposed algorithm with some
numerical examples. All tests were conducted on data sets of
N = 256 data symbols. The fraction of the signal energy dis-
carded by the kernel PCA procedure in the initialization phase
was fixed as10−14. The resulting number of kept eigenvec-
tors was betweenM = 11 andM = 15. In all experiments
convergence was obtained in less than20 iterations.

The first system used is a1×3 Wiener SIMO system with
linear filtersh1 = [0.6172, 0.6247, 0.3373,−0.0349,−3.2957]T,
h2 = [−0.8601, 0.1532,−0.1888,−0.6264, 0.9985]T and
h3 = [1.3271,−0.1472,−0.4786, 0.6682, 0.0045]T , respec-
tively. The nonlinearity was the same for all the channels,
namelyfi(x) = tanh(0.8x) + 0.1x.

A first test was conducted on this system with a zero mean
and unit variance Gaussian source. The power of the white
Gaussian noise after the nonlinearities was fixed to obtain a
20dB SNR. Fig. 5 shows the true and estimated linear filter
and nonlinearity for one of the branches of the Wiener SIMO
system, after15 iterations of the algorithm.

We then compared the proposed algorithm to the linear
CCA-based equalizer from [2]. Averages were taken over
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Fig. 6. MSE comparison for different algorithms.

50 independent Monte-Carlo simulations, and the MSE was
calculated between the true and the estimated input signal.
The results are shown in Fig. 6. The curve with solid black
dots was obtained by applying the linear CCA-based equal-
izer on the system that only contained the linear channelsh1,
h2 andh3. The same algorithm was tested on the nonlinear
1× 3 SIMO Wiener system, resulting in the curve with white
squares. The curve marked with circles was obtained by ap-
plying the proposed blind method on the1× 3 SIMO Wiener
system, and in the last curve (dashed line) we show the re-
sults when the supervised method of [9] was applied to this
system. The proposed method obtains results that are very
close to those obtained by the supervised method.

For the second test we compared three SIMO Wiener sys-
tems with different numbers of outputs. System1 was a1× 2
SIMO Wiener system withh1 andh2 as defined in the first
experiment. System2 was the discussed1 × 3 system. Sys-
tem 3 was a1 × 4 SIMO Wiener system that included all
three previous Wiener systems and a new linear channelh4 =
[−0.1155,−0.9170, 0.5605, 0.4862,−0.8004]T in its fourth
branch. The nonlinearity was maintained, and we exploited
the fact that it was the same for each channel. The results are
shown in Fig. 7. The same test was repeated for a system
with a binary inputs[n] ∈ {−1, 1}, but now we did not ex-
ploit the information that the nonlinearity was the same for
each channel. The results are shown in Fig. 8.

5. CONCLUSIONS

We proposed a blind equalization algorithm for nonlinear
SIMO systems in which every channel is a Wiener system.
Basically, the method iterates between a CCA algorithm for
estimating the linear channel and a KCCA algorithm for es-
timating the memoryless nonlinearities. First results show
that this iterative algorithm converges fast and achieves per-
formance that is very close to a related supervised method.
Future research lines include a comparison to other blind
nonlinear equalization methods such as [13, 14].
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Fig. 7. Blind identification results for different SIMO Wiener
systems with a Gaussian input, where the algorithm took into
account that each channel had the same nonlinearity.
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