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ABSTRACT n[n]

In this paper we present an algorithm for blind equalization y[n]
of single-input multiple-output (SIMO) nonlinear systerirs s[n]—> H(z) @ © x[n]
which each nonlinear channel is a Wiener system. The pro-

posed method combines ideas from blind linear SIMO iden-

tification with kernel canonical correlation analysis (el Fig. 1. A Wiener system with additive noisegn|.

CCA) to identify the nonlinearities. It is shown in the paper

that the blind equalization problem can be solved in an-tera

tive manner, alternating between a CCA problem (to estimate

the linear filters) and a kernel CCA problem (to estimate the

memoryless nonlinearities). The resulting algorithm can b contexts such as digital satellite communications [4]jaat
applied to the general case of nonlinear SIMO systems witfibre communications [5] and digital magnetic recording.

P outputs. Simulations are included to demonstrate its effec

tiveness. A number of supervised approaches have been proposed
to identify or equalize these systems, ranging from blagck-b
approaches using different types of structures and trgucriin
teria [6, 7], to approaches that explicitly exploit the gyst

) ~ structure [8, 9, 10]. However, very little work has been done
Inthe last decade there has been a great interest in blind ideg, plind identification methods. Blind methods generally as
tification and equalization methods. In digital communica-g;;me some knowledge on the input signal statistics andgor th
tions, blind methods permit channel identification or equal ;hannel model. A few blind methods to identify Wiener sys-
ization without the need to send known training signalssthuems can be found in [11, 12]. Blind identification methods

saving bandwidth. In particular, the problem of blind id8nt oy other nonlinear systems such as Volterra models hage als
cation of single-input multiple-output (SIMO) linear cvegls  peen presented in [13, 14].

has received considerable attention [1, 2]. In this casedbl
identification can be accomplished by resorting only to the
second-order statistics (SOS) of the channel output.

1. INTRODUCTION

In this paper we present a blind method to identify and
equalize nonlinear SIMO systems that consist of various

SIMVgh'Ie a lot of attentlor|1 lf}as gone to thﬁ_gnalyslls of IInﬁar\Niener systems, as illustrated in Fig. 2. These systemsicoul
systems, many real-life systems exhibit nonlinearcha represent a sensor array in which every sensor exhibits-a non

acteristics. Recently, a growing amount of research has be‘ﬁnear behavior, or they could be obtained by oversampling

conducted on nonlinear system identification [3]. Nonlmea{i{;e output of a nonlinear communications channel [1]. The

dynamical system models generally have a high. number resented method combines ideas from the blind linear SIMO
parameters, although many problems can be sufficiently wejljo sification method in [1] and from the supervised nonlin-

approximated by simplified block-based models. The mOdeé:ar equalization technique discussed in [9]. It performs at

con5|st|n|g of a (i_asca(_:{e _ofka linear d?/]nam}c system and @ o same time a kernel-based regression to learn the nonlin-
memoryless nonlinearity is known as the Wiener system, ag, jties and a least-squares (LS) method to retrieve tearin
illustrated in Fig. 1. Wiener systems are frequently used Nhannels. The assumptions made by our method are that

This work was supported by MEC (Ministerio de Educacion grigia) every non“neamy in the SIMO Wiener system is mvertl.ble’
under grant TEC2007-68020-C04-02 TCM (MultiMIMO) and FPeag  that the Ilnea_lr channels share no common zeros and, finally,
AP2005-5366. that the maximum channel order is known.
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Fig. 3. A blind identification scheme for a linear SIMO model
without noise.
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it can be easily verified that in a noiseless case the solution

Fig. 2. A SIMO system consisting of 2 Wiener systems. should satisfy

X hy = Xyhy, %)
2. PROBLEM SETTING as illustrated in Fig. 3.

Consider a nonlinear SIMO system, in which each channel In order to avoid the trivial solutioh; = 0, a restriction

is modeled as a Wiener system. An example with only panust be applied to the solution. Typical restrictions in eom

outputs is shown in Fig. 2. In a general case witloutputs %ﬂﬁ?ﬁ:ﬁ;ﬁg?ﬁr ::Sﬂixr:ggg?rm of the filtdrs or to
the system can be modeled as putsigna;h;.

A restriction on the filter norm was used in [1] to develop

L-1 the LS method, also referred to as cross-relation. This-prob
yiln] = Z hiljls[n — 7] (1) lem consists of minimizing the cost function
j=0
1 - .12 A .
ziln] = filwln]) + niln], (@) Jus=5|[Xihe = Xohu| sty + B)? =1, (6)

wheres(n] represents the input symbol sent at time instan{yhich is equivalent to the following eigenvalue problem
n, h;[j] is the j-th coefficient of thei-th linear FIR channel

H;(z), fi(-) is the nonlinearity of channelandn;[n] rep- XT'x, —-XTX, i — ah ;

resents additive Gaussian noise, foe= 1,..., P andn = [—X2TX1 XTX, ] = fph. ()

0,...,N — 1. Without loss of generalityl. represents the

maximum channel order (which we assume to be known). The solutionh = [h2, h7]” is found as the eigenvector cor-
The problem considered in this paper is to recover th@esponding to the smallest eigenvalue.

transmitted signad[n] when only the output signalg[»] are If, instead, the constraint is applied to the norm of output
observed. signals as in [2], the cost function to minimize turns outéo b
X 2 R R
3. BLIND SIMO WIENER SYSTEM EQUALIZATION Jooa = % HX1h2 _ X2h1H S.t || X1 ho |2+ Xohy |2 = 1.
(8)

Th? solution we pro.pose.to t.h.e e.qual|zat|on problem 'Sthis is a canonical correlation analysis (CCA) problem, and
mainly based on the linear identification method presenmted iy, < tion is given by the principal eigenvector of thedl-

[1]. In the following this linear method is explained briefly . ; ;
foral x 2 linear SIMO system, although the generalizationIng generalized eigenvalue problem (GEV)
to more output channels is straightforward. [Xixl X?XQ] -5 {X{Xl TO ] b
X53X; X3Xs 0 X3 Xo
3.1. Blind identification of a linear SIMO system
Once the channels; andh, have been estimated, they can
be used to obtain an equalizer by applying the zero-forcing
win+L—1 - i [n] (ZF) or the minimum mean square error (MMSE) approgch.
) i Note that both the LS algorithm and the CCA-based algorithm
Xi= : . : () require knowledge of the maximum channel orfieand they
zin+N—-1] - z;n+ N —1L] assume the linear channels share no common zeroes.
) . ) When we consider that each channel of the system is re-
for i = 1,2. Denoting the estimate of the channel |mpulsep|aced by a Wiener system, the scheme of Fig. 4 can be used
response vectors as for blind identification, where the influence of the nonlinea
R R . T ities f;(-) is removed first, by estimating the inverse nonlin-
h; = |k [0],... hi[L — 1]} : (4)  earitiesg; (1) = £, 1().

Taking a block of N observations, define the matrix



v2[n]

Fig. 4. The identification diagram for a SIMO system consisting &¥i2ner subsystems, in whigh(-) = fi‘l(-).

To estimate the inverse nonlinearitigg-), we will ap-  k7(n,m) = r(x;[n], z[m]) to simplify the notation. In a
ply a nonparametric identification approach based on kerndirst approach, all available poinis[n] will be used as sup-
methods. Nonparametric approaches do not assume that thert vectors, i.e.M/ = N.
nonlinearity corresponds to a given model, but rather let th At this point it should be clear that once the inverse non-

training data decide which characteristic fits them best. linearities g;(-) have been estimated, retrieval of the linear
FIR channelsh; is straightforward through a linear SIMO
3.2. Nonlinear regression with kernel methods identification technique such as the CCA- or LS-based algo-

) _rithms. Given only the outputs;[n] of the system, direct
Kernel methods [15] are based on a nonlinear transformatioggtimation of these nonlinearities is difficult, howevénce
® of the data from the input space to a high-dimensidea! no information on the input signa(n] is available.

ture Sp‘fice”.' where it is more likely that a problem can be Therefore, since separate estimation of the linear and non-
solved in a linear manner, linear parts of this system is difficult, we will design analg
& R™ K rithm that allows us to obtain both the linear filters and the
nonlinearities simultaneously, through a single cost fiamc
d(x) = x.

Scalar products in feature space can be calculated witheut t 3.3. Proposed cost function
explicit knowledge of the nonlinear transformatidnby ap-
plying the correspondingernel functionx(-,-) on pairs of
data points in the input space,

First, we will treat the case where the observed system has
only two outputs. Given the representation of the nonlinear
ity g;(-) as in (11), the output of the proposed identification

K(Xi, Xj) = (X4, Xj) = (®(x5), P(x5)). (10)  scheme can be written as
This property, which is known as the “kernel trick”, allows LMo . _ )
to perform any scalar product-based algorithm in the featur zi2[n] = Y holilki(n —i,m)én[m].  (12)
space by solely replacing the scalar products with the kerne =0 m=1

function in the input space.

; . L In matrix notation, this becomes
Most kernel algorithms usekernel matrixK;, which is

constructed by applying the kernel function on pairs of in 212[n] = BQTKl[n]o?l, (13)
ki(m,n) = k(x;[m], z;[n]), withm,n =1,..., N. An often
used kernel function is the Gaussian kernel with wiglth where thel-th row of Ki[n] contains the elements from
i — x;12 Ei(n+1—1,1)till k§(n +1—1,M). The expression for
K (X, X;) = exp (—TQJ) ; 291[n] is found in the same manner. Combining output

samples of each channel into the vecters and zy;, we
which implies an infinite dimensional feature space [15].  obtain the following cost function to minimize:
Nonlinear regression with kernels is possible by repre-

senting the nonlinearity aska&rnel expansion Jo = ||z12 — 221> St |z + [z P =1.  (14)
M . . .
9iln] = gi(z:[n]) = &i[m)k(xi[n], z5[m]), (11 3.4 Proposed iterative solution
m=1

The minimization problem (14) has no direct analytical so-
wherez?[m] are called thesupport vectorof the nonlin-  lution. However, if&; and & were available, it would be
ear representation. In the following we will use the vargabl possible to obtain the corresponding optimal fillegsandh;



by applying linear CCA. Moreover, since we are representAlgorithm 1 Equalization algorithm for nonlinear SIMO
ing the nonlinearitieg, (-) andg>(-) as linear combinations channels.

of support vectors, a similar operation can be carried out to |njtialization: obtainh; by solving the LS problem (7).
estimate these: i, andh; are given, (14) can be solved to  Construct the kernel matricd§; from z;[n].

find the optimal coefficients of the kernel expansiénsand Perform kernel PCA to obtain the reduced matrig¥és.
&2. This suggests an iterative scheme that alternates betweenrepeat
updating the linear channels and the memoryless nonlin- CCA1: With glvenh“ updated; by solving (18).
earities&;. Convergence is guaranteed because each update CCA2: With givena;, updateh by solving (16).
may either decrease or maintain the cost. until Convergence

Obtain s[n] from ¢;[n] and h; by applying linear ZF or
3.4.1. lteration 1: givery;, obtainh; MMSE equalizers.

If estimates ofx; andés are given, Eq. (12) shows that the

outputz;o[n] of the identification scheme can be obtained as _ . o ) i
matrices, which in this case implies a high computational

cost.
z12[n] = Y halilin[n — i, (15) Overfitting is a common issue in kernel CCA that can be
=0 solved in different manners [16]. Common workarounds in-

clude adding regularization to the problem or reducing the
dimensionality of the problem by applying kernel PCA [17].
In this case a dimensionality reduction is desired sincheat t
same time it will avoid overfitting and reduce the computa-
tional load. Specifically, kernel PCA reduces the kernel ma-
trix K; € RV*N to

whereg, [n — 4] is calculated with (11). In matrix form this
can be written ag;, = Ylhg, wheren-th row of the matrix
Y contains the elements frofa[n] until §; [n + L — 1]. The
minimization problem (14) can be rewritten as minimizing

Jn = [[Y1hy — Yohy |2 st Yihy|]? + |[Yohy |2 =1,
(16)
which can be solved by standard linear CCA. V%V~ K, (19)

whereX; ¢ RM*M js a diagonal matrix containing the/
largest eigenvalues d&; andV; € RY*M contains thel/

If estimates oth; andh, are given, Eq. (12) shows that the corresponding eigenvectors. This allows us to redefine the
outputzi2[n] of the identification scheme can be obtained asvariablew; [n, m] asw;[n,m] = ZZ o " holilvr (n — i, m),
wherev; (n, m) is then-th element of then-th eigenvector in

3.4.2. lteration 2: giverh;, obtainé;

M . V. Thanks to this reduction, the dimensions of the matrices
z12[n] = Z wi[n, mjéa[ml, (A7) W, in (18) are reduced t x M, with M < N, and the
m=1 solutionsé&; can be found by applying CCA.

where the variable), [n, m] = .5 holilky (n—i,m) is in-
troduced. In matrix form this can be writtenzas = W14, )
where then-th row of the matrixW, contains the elements 3-5- Extensions and Further Comments
w1 [n, 1] until wq [n, M]. The minimization problem (14) can

be rewritten as minimizing Analogously to many other iterative techniques, the perfor

mance of the proposed approach can depend on the initial-
Ja = |[Wid1—Wads|? st ||Widy|>+||[Waébs|? =1. ization of the linear channels and nonlinearities. Here, we
* (18)  Propose to obtain an initial estimate of the linear channels

If all data pointsz; [] are used as support vectors in the kernehi by first applying the LS algorithm from [1] to the outputs
expansion (11), i.e., i/ = N (which impliesa; € RY), the x;[n], i.e, in the first iteration, the estimated nonlinearities a
dimensionality of this problem is significantly higher thigs gz(%[ |) = @i[n]. Furthermore, we must note that the final
linear counterpart (16). This leads to various difficulies ~ target of the proposed algorithm consists in recovering the
First of all, problem (18) will suffer from overfitingwhen Source signaé[n]. Thus, after obtaining the outpufgn] and
sufficiently “rich” kernel functions are used, i.e., keméhat  the linear channelh;, the input can be easily recovered by
correspond to feature spaces whose dimensionis much ~ means of a linear ZF or MMSE equalizer.
higher than the number of available data poiivts This oc- In the general case of a system withsensors, the cost
curs for instance for the Gaussian kernel, whose featuigespafunction needs to take into account the difference between
is infinite dimensional. Second, the GEV corresponding teeach pair of outputs. Note that the output sigharepresents
this problem requires the retrieval of eigenvector3§fx 2N the signalx; after being transformed hy;(-) and filtered by
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tem. (a) shows the noisy outpug[n] vs. the real internal 10 SUPefvlized KCCA on SIMO Wiener Sys‘iﬁ(‘)“ - &
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estimated filter coefficients dfs vs. the real coefficients.

Fig. 6. MSE comparison for different algorithms.

h;. The cost function to minimize now becomes 50 independent Monte-Carlo simulations, and the MSE was
o V _crzra]lculate:j betwere]n the_t trll:J_e agd _It_r;e estimatg?] inpl_udt tflignl;(il.
9 9 e results are shown in Fig. 6. The curve with solid blac
T = Z 23 — 2" st Z 251" =1, 20)  4ots was obtained by applying the linear CCA-based equal-
n b izer on the system that only contained the linear charingls
h; andh;. The same algorithm was tested on the nonlinear
and the resulting algorithm is analogous to that of the twod x 3 SIMO Wiener system, resulting in the curve with white
channel case. The final iterative techniquefooutput chan-  squares. The curve marked with circles was obtained by ap-
nels is summarized in Algorithm 1. plying the proposed blind method on thex 3 SIMO Wiener
Finally, we must note that when the SIMO system is ob-system, and in the last curve (dashed line) we show the re-
tained by oversampling, th nonlinearities will be the same. sults when the supervised method of [9] was applied to this
Obviously, this can be exploited to obtain a more accurate esystem. The proposed method obtains results that are very
timate. The corresponding GEV can be found easily, but it ilose to those obtained by the supervised method.
omitted here due to space restrictions. For the second test we compared three SIMO Wiener sys-
tems with different numbers of outputs. Systémvas al x 2
SIMO Wiener system witth; andh, as defined in the first
experiment. Systerd was the discussetl x 3 system. Sys-

We experimentally tested the proposed algorithm with som§™ 3 was al x 4 SIMO Wiener Zystem It_hat mcrl]ude;all
numerical examples. All tests were conducted on data sets ?Tree previous Wiener systems and nevi gu?ar.c ?m h
N = 256 data symbols. The fraction of the signal energy dis- —0.1155, ~0.9170, 0.5605, 0.4862, —0.8004]" in its fourt

carded by the kernel PCA procedure in the initializationggha bhra?ch. ;’hg nonlmﬁarlty wafs mam;[]alr;]ed, ar:dTvr\]/e expl|0|ted
was fixed as0~ 4. The resulting number of kept eigenvec-t e fact that it was the same for each channel. The results are

tors was between! — 11 andM = 15. In all experiments shown in Fig. 7. The same test was repeated for a system

convergence was obtained in less tRariterations. with a binary inputs[n] € {~1,1}, but now we did not ex-

The first system used islax 3 Wiener SIMO system with ploit the information that the nonlinearity was the same for

linearfiltersh, — [0.6172, 0.6247,0.3373, —0.0349, —3.2957)7, €¢h channel. The results are shown in Fig. 8.

4. EXPERIMENTS

hy = [-0.8601,0.1532, —0.1888, —0.6264,0.9985] and

hz = [1.3271, —0.1472, —0.4786,0.6682, 0.0045] ", respec- 5. CONCLUSIONS

tively. The nonlinearity was the same for all the channels,

namelyf;(z) = tanh(0.8z) + 0.1x. We proposed a blind equalization algorithm for nonlinear

Afirst test was conducted on this system with a zero mea8IMO systems in which every channel is a Wiener system.
and unit variance Gaussian source. The power of the whitBasically, the method iterates between a CCA algorithm for
Gaussian noise after the nonlinearities was fixed to obtain estimating the linear channel and a KCCA algorithm for es-
20dB SNR. Fig. 5 shows the true and estimated linear filtetimating the memoryless nonlinearities. First resultsvsho
and nonlinearity for one of the branches of the Wiener SIMQthat this iterative algorithm converges fast and achiewss p
system, aftet 5 iterations of the algorithm. formance that is very close to a related supervised method.

We then compared the proposed algorithm to the lineaFuture research lines include a comparison to other blind
CCA-based equalizer from [2]. Averages were taken ovenonlinear equalization methods such as [13, 14].
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