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ABSTRACT
It has been recently proved that the two main kinds of quaternion
improperness require two different kinds of widely linear process-
ing. In this work, we show that these definitions satisfy some im-
portant properties, which include the invariance to quaternion lin-
ear transformations and right Clifford translations, as well as some
clear connections with the case of proper complex vectors. More-
over, we introduce a new kind of quaternion properness, which
clearly relates the two previous definitions, and propose three mea-
sures for the degree of improperness of a quaternion vector. The
proposed measures are based on the Kullback-Leibler divergence
between two zero-mean quaternion Gaussian distributions, one of
them with the actual augmented covariance matrix, and the other
with its closest proper version. These measures allow us to quan-
tify the entropy loss due to the improperness of the quaternion vec-
tor, and they admit an intuitive geometrical interpretation based on
Kullback-Leibler projections onto sets of proper augmented co-
variance matrices.

1. INTRODUCTION

In the last years, quaternion [1, 2] signal processing has received
increasing interest due to its successful application to image pro-
cessing [3], wind modeling [4], and design of space-time block
codes [5, 6], which has motivated the extension of several signal
processing techniques to the case of quaternionic signals [7, 8].
However, unlike the complex case, only a few works have con-
sidered the fundamental problem of analyzing the properness of
quaternion random vectors [9–11] and its implication on the struc-
ture of the optimal linear processing [12].

In this work we review the two main properness definitions,
and show that they can be related by means of a third kind of
quaternion properness. Unlike previous approaches, which were
based on the invariance of the quaternion second-order statistics
(SOS) to left Clifford translations [13], the proposed definitions are
directly based on the cancelation of three complementary covari-
ance matrices, and they naturally result in invariances to quater-
nion linear transformations and right Clifford translations.

In order to quantify the degree of improperness of a quaternion
random vector, we propose three improperness measures based
on the Kullback-Leibler (KL) divergence [14] between zero-mean
quaternion Gaussian distributions. Specifically, the properness mea-
sures are given by the KL divergence between the actual aug-
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mented covariance matrix and its closest (in the KL sense) proper
version (for the required kind of properness). Thus, the proposed
measures provide the entropy loss due to the improperness of the
quaternion vector, or equivalently, the mutual information among
the quaternion vector and its involutions over three pure unit quater-
nions. Moreover, the improperness measures admit an intuitive
geometrical interpretation based on KL projections onto sets of
proper augmented covariance matrices, which also corroborates
the relationship among the three kinds of quaternion properness.

Finally, although it is beyond the scope of this paper, the pro-
posed properness measures should find direct application to the
problem of testing for the properness of a quaternion random vec-
tor or signal. These statistical tests will allow us to determine the
most appropriate kind of linear processing, namely, conventional
linear processing, semi-widely linear processing, or full-widely lin-
ear processing [12, 15].

2. PRELIMINARIES

Throughout this paper we will use bold-faced upper case letters to
denote matrices, bold-faced lower case letters for column vectors,
and light-faced lower case letters for scalar quantities. Superscripts
(·)T and (·)H denote transpose and Hermitian (i.e., transpose and
quaternion conjugate), respectively. The notation A ∈ Fn×m de-
notes that A is a n ×m matrix with entries in F, where F can be
R, the field of real numbers, C, the field of complex numbers, or
H, the skew-field of quaternion numbers. Tr(A) denotes the trace
of matrix A, ⊗ is the Kronecker product, In is the identity matrix
of dimension n, and 0m×n denotes the m× n zero matrix. A1/2

(respectively A−1/2) is the Hermitian square root of the Hermitian
matrix A (respectively A−1). Finally, E is the expectation opera-
tor, and in general Ra,b is the cross-correlation matrix for vectors
a and b, i.e., Ra,b = EabH .

2.1. Properness of Complex Random Vectors

Let us consider a n-dimensional zero-mean1 complex vector x =
r1 + iri with real and imaginary parts r1 ∈ Rn×1 and ri ∈ Rn×1

respectively. The second-order statistics (SOS) of x are given by
the covariance Rx,x = ExxH and complementary covariance
Rx,x∗ = ExxT matrices [16,17], or equivalently by the 2n× 2n
augmented covariance matrix

Rx̄,x̄ = Ex̄x̄H =

[
Rx,x Rx,x∗

R∗x,x∗ R∗x,x

]
,

1In this paper we consider zero-mean vectors for notational simplicity.
The extension of the results to non-zero mean vectors is straightforward.
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where x̄ =
[
xT ,xH

]T ∈ C2n×1 is defined as the augmented
complex vector. Thus, x is said to be proper if and only if (iff)

Rx,x∗ = 0n×n, (1)

i.e., iff x is uncorrelated with its complex conjugate x∗. In terms
of the real vectors r1 and ri, the condition in (1) can be written as

Rr1,r1 = Rri,ri , (2)

Rr1,ri = −RT
r1,ri . (3)

The properness definition can be easily extended to the case
of two complex random vectors x ∈ Cn×1 and y ∈ Cm×1.
In particular, x and y are jointly-proper iff they are proper and
cross-proper, or equivalently, iff the composite vector

[
xT ,yT

]T
is proper [17, 18].

From a practical point of view, the (joint)-properness of ran-
dom vectors translates into the optimality of conventional linear
processing, that is, operations of the form y = FH1 x, with F1 ∈
Cn×m. However, in the general case of improper complex vectors,
the optimal linear processing (which is referred to as widely-linear
processing) takes the form

y = FHx̄ x̄ = FH1 x + FHi x∗,

with Fx̄ =
[
FT1 FTi

]T ∈ C2n×m.

2.2. Quaternion Algebra

Quaternions are four-dimensional hypercomplex numbers defined
as

x = r1 + ηrη + η′rη′ + η′′rη′′ ,

where r1, rη, rη′ , rη′′ ∈ R are four real numbers, and the three
imaginary units2 (η, η′, η′′) satisfy

ηη′ = η′′ = −η′η,
η′η′′ = η = −η′′η′,
η′′η = η′ = −ηη′′,

η2 = η′
2

= η′′
2

= ηη′η′′ = −1.

Quaternions form a noncommutative normed division algebra
H, i.e., for x, y ∈ H, xy 6= yx in general. The conjugate of a
quaternion x is x∗ = r1−ηrη−η′rη′−η′′rη′′ , and the inner prod-
uct of two quaternions x, y is defined as the real part of xy∗. Two
quaternions are orthogonal iff their inner product is zero, and the
norm of a quaternion x is |x| =

√
xx∗ =

√
r2
1 + r2

η + r2
η′ + r2

η′′ .

Furthermore, we say that ν is a pure unit quaternion iff ν2 = −1
(i.e., iff |ν| = 1 and its real part is zero). Quaternions also admit
the Euler representation

x = |x|eνθ = |x| (cos θ + ν sin θ) ,

where ν is a pure unit quaternion and θ ∈ R is the angle (or ar-
gument) of the quaternion. Thus, given an angle θ and a pure unit
quaternion ν, we can define the left (respectively right) Clifford
translation of x ∈ H as the product eνθx (resp. xeνθ) [13].

2A particular choice of the imaginary axes is the canonical basis
{i, j, k}. However, in this paper we use the more general representation
{η, η′, η′′}.

The involution of a quaternion x over a pure unit quaternion ν
is

x(ν) = −νxν,
and it represents a rotation of angle π in the imaginary plane or-
thogonal to {1, ν}. Alternatively, quaternions can be represented
by means of the Cayley-Dickson construction

x = a1 + η′′a2, x = b1 + ηb2, x = c1 + η′c2, (4)

where

a1 = r1 + ηrη,
a2 = rη′′ + ηrη′ ,

b1 = r1 + η′rη′ ,
b2 = rη + η′rη′′ ,

c1 = r1 + η′′rη′′ ,
c2 = rη′ + η′′rη,

can be seen as complex numbers in the planes spanned by {1, η},
{1, η′} and {1, η′′}, respectively.

3. PROPERNESS OF QUATERNION VECTORS

In this section we review the definitions of proper quaternion vec-
tors presented in [12], pointing out their differences with previ-
ous works. Additionally, we present some important properties
of the proposed definitions, and introduce a third kind of quater-
nion properness, which allows us to establish a clear relationship
between the two main types of quaternion properness.

3.1. Properness Definitions

Given a n-dimensional quaternion random vector x = r1 +ηrη +
η′rη′ + η′′rη′′ , the properness definitions in [12] are based on
the augmented covariance matrix, which contains all the second-
order statistics (SOS) of the quaternion vector. Specifically, the
augmented covariance matrix is defined as

Rx̄,x̄ =


Rx,x Rx,x(η) R

x,x(η′) R
x,x(η′′)

R
(η)

x,x(η) R
(η)
x,x R

(η)

x,x(η′′) R
(η)

x,x(η′)

R
(η′)

x,x(η′) R
(η′)

x,x(η′′) R
(η′)
x,x R

(η′)

x,x(η)

R
(η′′)

x,x(η′′) R
(η′′)

x,x(η′) R
(η′′)

x,x(η) R
(η′′)
x,x

 , (5)

where x̄ =
[
xT ,x(η)T ,x(η′)T ,x(η′′)T

]T
is the augmented quater-

nion vector, which can be easily obtained from the real vector

rx =
[
rT1 , r

T
η , r

T
η′ , r

T
η′′

]T
as x̄ = 2Tnrx, where

Tn =
1

2

+1 +η +η′ +η′′

+1 +η −η′ −η′′
+1 −η +η′ −η′′
+1 −η −η′ +η′′

⊗ In,

is a unitary quaternion operator, i.e., TH
n Tn = I4n.

From (5) we can readily identify the covariance matrix Rx,x =
ExxH and three complementary covariance matrices

Rx,x(η) = Exx(η)H ,

R
x,x(η′) = Exx(η′)H ,

R
x,x(η′′) = Exx(η′′)H .

Thus, we can introduce the two main kinds of quaternion proper-
ness, which are closely related to (but different from) the previous
definitions in [9–11].
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Definition 1 (Q-Properness [12]) A quaternion random vector x
is Q-proper iff the three complementary covariance matrices Rx,x(η) ,
R

x,x(η′) and R
x,x(η′′) vanish.

Definition 2 (Cη-Properness [12]) A quaternion random vector
x is Cη-proper iff the complementary covariance matrices R

x,x(η′)

and R
x,x(η′′) vanish.

Finally, we introduce a third (and completely new) kind of
quaternion properness.

Definition 3 (Rη-Properness) A quaternion random vector x is
Rη-proper iff the complementary covariance matrix Rx,x(η) van-
ishes.

Obviously, this intuitive kind of quaternion properness can be
seen as the difference between Cη and Q properness. Roughly
speaking, we can say that Rη-properness is all what a Cη-proper
vector needs to become Q-proper.

3.2. Main Properties

The main properties of these properness definitions can be sum-
marized as follows.

3.2.1. Independence of the Orthogonal Basis {η, η′, η′′}

It is clear that the Rη-properness definition depends on the pure
unit quaternion η, but it is independent of η′ and η′′. The same
holds for the Cη-properness definition, i.e., a quaternion random
vector x is Cη-proper iff the complementary covariance matrix
Rx,x(ν) vanishes for all pure unit quaternions ν orthogonal to η
[12]. Finally, it is easy to prove that the Q-properness definition is
completely independent of the basis {η, η′, η′′}, i.e., x is Q-proper
iff Rx,x(ν) = 0n×n for all pure unit quaternions ν [12].

3.2.2. Invariance to Linear Transformations

It can be easily checked that the structure (location of zero comple-
mentary covariance matrices) of the augmented covariance matrix
Rx̄,x̄ is invariant to linear transformations of the form FH1 x, with
F1 ∈ Hn×m. Thus, since the three proposed properness defini-
tions are based on the cancelation of the complementary covari-
ance matrices, they are invariant to quaternion linear transforma-
tions, i.e., if x is Q-proper (respectively Cη or Rη proper), then
FH1 x is also Q-proper (resp. Cη or Rη proper). This invariance is
very desirable in signal processing applications, and justifies3 the
use of the proposed properness definitions instead of previous ap-
proaches based on invariances to left Clifford translations [9–11].
Finally, it is also easy to prove that the proposed Cη-properness
definition is invariant to the more general semi-widely linear trans-
formations FH1 x + FHη x(η), with F1,Fη ∈ Hn×m [12].

3.2.3. Relationship with the Complex Case

Using the Cayley-Dickson representations in (4), it can be proved
that a quaternion vector x = a1 + η′′a2 is Cη-proper iff

Ra1,a
∗
1

= Ra2,a
∗
2

= Ra1,a
∗
2

= 0n×n.

3It is straightforward to prove that the previous properness definitions
are not invariant to quaternion linear transformations of the form FH1 x.

In other words, x is Cη-proper iff it can be represented by means
of two jointly-proper complex vectors (a1 = r1 + ηrη and a2 =
rη′′ + ηrη′ ) in the plane spanned by {1, η}. Obviously, a similar
(but stronger) result holds for Q-proper vectors. Finally, in the case
of Rη-proper vectors we have that x is Rη-proper iff Ra1,a1 =
RT

a2,a2
and Ra1,a2 = −RT

a1,a2
, which resembles the complex

properness conditions in eqs. (2) and (3).

3.2.4. Implications on the Optimal Linear Processing

In general, the optimal linear processing of a quaternion vector is
full-widely linear, which operates on the quaternion vector and its
three involutions

u = FHx̄ x̄ = FH1 x + FHη x(η) + FHη′x
(η′) + FHη′′x

(η′′),

with Fx̄ =
[
FT1 ,F

T
η ,F

T
η′ ,F

T
η′′
]T ∈ H4n×m. However, in [12]

it has been proved that, in the case of jointly Q-proper vectors,
the principal multivariate statistical analysis techniques reduce to
conventional linear processing u = FH1 x, whereas in the case of
Cη-proper vectors the optimal processing is semi-widely linear

u = FHx̃ x̃ = FH1 x + FHη x(η),

where Fx̃ = [FT1 ,F
T
η ]T ∈ H2n×m, and x̃ = [xT ,x(η)T ]T is de-

fined as the semi-augmented quaternion vector. Finally, although
the Rη-properness definition does not result in a simplification of
the optimal linear processing, it establishes a link between the two
main kinds of quaternion properness.

3.2.5. SOS Invariance to Right Clifford Translations

Unlike previous approaches, which were based on invariances to
left Clifford translations [9–11], the proposed properness defini-
tions naturally result in invariances to right Clifford translations.
Here we summarize the three main invariance properties, whose
proof can be found in [15].

Property 1 A quaternion random vector x = a1 + η′′a2 is Rη-
proper iff the covariance Ra1,a1 , Ra2,a2 and cross-covariance
Ra1,a2 matrices are invariant to right multiplications by the pure
unit quaternion η′′.

Property 2 A quaternion random vector x is Cη-proper iff its
SOS are invariant under right Clifford translations xeηθ , ∀θ ∈ R.

Here we must note that, although the invariance associated to the
Rη-properness definition seems to be much weaker than that of
Cη-proper vectors, this weak invariance is sufficient (and neces-
sary) to guarantee the Q-properness of a Cη-proper vector. Finally,
the last property follows from the fact that Q-properness implies
Cη-properness for all η.

Property 3 A quaternion random vector x is Q-proper iff its SOS
are invariant to right Clifford translations xeηθ for all pure unit
quaternions η and ∀θ ∈ R.

4. IMPROPERNESS MEASURES

In the case of complex random vectors, improperness measures
have been proposed in [19]. Here, we extend this idea to quater-
nion vectors. In particular, given a random vector x ∈ Hn×1 with
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Table 1. Probability density function, Entropy, and Kullback-Leibler Divergence of Quaternion Gaussian Vectors.

Probability density function (pdf) Entropy Kullback-Leibler Divergence

Expression from
the real vector rx px(rx) =

exp
(
− 1

2
rTxR−1

rx,rxrx
)

(2π)2n|Rrx,rx |1/2
Hx(Rrx,rx) = 2n ln(2πe)

+
1

2
ln |Rrx,rx |

D(Rrx,rx‖R̂rx,rx) =
1

2
ln

(
|R̂rx,rx |
|Rrx,rx |

)

+
1

2
Tr
(
R̂−1

rx,rxRrx,rx

)
− 2n

Expression from
the augmented

vector x̄

px(x̄) =
exp

(
− 1

2
x̄HR−1

x̄,x̄x̄
)

(π/2)2n|Rx̄,x̄|1/2
Hx(Rx̄,x̄) = 2n ln

(πe
2

)
+

1

2
ln |Rx̄,x̄|

D(Rx̄,x̄‖R̂x̄,x̄) =
1

2
ln

(
|R̂x̄,x̄|
|Rx̄,x̄|

)

+
1

2
Tr
(
R̂
−1/2
x̄,x̄ Rx̄,x̄R̂

−1/2
x̄,x̄

)
− 2n

Expression from
the

semi-augmented
vector x̃

(Cη-proper case)

px(x̃) =
exp

(
−x̃HR−1

x̃,x̃x̃
)

(π/2)2n|Rx̃,x̃|
Hx(Rx̃,x̃) = 2n ln

(πe
2

)
+ ln |Rx̃,x̃|

D(Rx̃,x̃‖R̂x̃,x̃) = ln

(
|R̂x̃,x̃|
|Rx̃,x̃|

)
+Tr

(
R̂
−1/2
x̃,x̃ Rx̃,x̃R̂

−1/2
x̃,x̃

)
− 2n

Expression from
the vector x

(Q-proper case)
px(x) =

exp
(
−2xHR−1

x,xx
)

(π/2)2n|Rx,x|2
Hx(Rx,x) = 2n ln

(πe
2

)
+2 ln |Rx,x|

D(Rx,x‖R̂x,x) = 2 ln

(
|R̂x,x|
|Rx,x|

)
+2Tr

(
R̂−1/2

x,x Rx,xR̂−1/2
x,x

)
− 2n

augmented covariance matrix Rx̄,x̄, we propose to use the follow-
ing improperness measure

P = min
R̂x̄,x̄∈R

D
(
Rx̄,x̄‖R̂x̄,x̄

)
,

whereR denotes the set of proper augmented covariance matrices
(with the assumed properness), andD(Rx̄,x̄‖R̂x̄,x̄) is the Kullback-
Leibler divergence between two zero-mean quaternion Gaussian
distributions with augmented covariance matrices Rx̄,x̄ and R̂x̄,x̄.

The probability density function (pdf) of quaternion Gaussian
vectors can be easily obtained from the pdf of the real vector rx,
and it can be simplified in the case of Cη-proper or Q-proper vec-
tors. Table 1 shows the pdf, entropy, and Kullback-Leibler diver-
gence expressions for quaternion Gaussian vectors.

4.1. Measure of Q-Improperness

Let us start our analysis by the strongest kind of quaternion proper-
ness. The setRQ of Q-proper augmented covariance matrices is

RQ =
{

R̂x̄,x̄|R̂x,x(η) = R̂
x,x(η′) = R̂

x,x(η′′) = 0n×n
}
,

and the matrix R̂x̄,x̄ ∈ RQ minimizing D(Rx̄,x̄‖R̂x̄,x̄) is

R̂x̄,x̄ = DQ =


Rx,x 0n×n 0n×n 0n×n
0n×n R

(η)
x,x 0n×n 0n×n

0n×n 0n×n R
(η′)
x,x 0n×n

0n×n 0n×n 0n×n R
(η′′)
x,x

 .
Thus, the Q-improperness measure reduces to

PQ = −1

2
ln |ΦQ|,

where we have defined ΦQ = D
− 1

2
Q Rx̄,x̄D

− 1
2

Q as the Q-coherence
matrix. Furthermore, we can easily check that PQ is non-negative,
invariant under quaternion linear transformations of the form FH1 x,
and it can be rewritten as

PQ = Hx(DQ)−Hx(Rx̄,x̄) = Hx(Rx,x)−Hx(Rx̄,x̄),

which represents the entropy loss due to the improperness of x.
That is, PQ can be seen as a measure of the mutual information
among the random vectors x, x(η), x(η′) and x(η′′).
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4.2. Measure of Cη-Improperness

In this case, the set of Cη-proper augmented covariance matrices
is

RCη =
{

R̂x̄,x̄|R̂x,x(η′) = R̂
x,x(η′′) = 0n×n

}
,

and the matrix R̂x̄,x̄ ∈ RCη minimizing D(Rx̄,x̄‖R̂x̄,x̄) is

R̂x̄,x̄ = DCη =

[
Rx̃,x̃ 02n×2n

02n×2n R
(η′)
x̃,x̃

]
.

Therefore, the Cη-improperness measure reduces to

PCη = −1

2
ln |ΦCη |,

where ΦCη = D
− 1

2
Cη Rx̄,x̄D

− 1
2

Cη is defined as the Cη-coherence
matrix. Furthermore, it is easy to prove that PCη is non-negative,
invariant to semi-widely linear transformations FH1 x + FHη x(η),
and it also represents the entropy loss due to the Cη-improperness
of x, i.e.

PCη = Hx(DCη )−Hx(Rx̄,x̄) = Hx(Rx̃,x̃)−Hx(Rx̄,x̄).

Additionally, we can rewrite the semi-augmented quaternion
vector x̃ = [xT ,x(η)T ]T in terms of the Cayley-Dickson repre-
sentation [

x

x(η)

]
︸ ︷︷ ︸

x̃

=

([
1 η′′

1 −η′′
]
⊗ In,n

)
︸ ︷︷ ︸

L

[
a1

a2

]
︸ ︷︷ ︸

a

,

which allows us to rewrite the Cη-improperness measure as

PCη = −1

2
ln |Φã|,

where Φã = D
− 1

2
ã Rã,ãD

− 1
2

ã is the coherence matrix for the com-
plex vector ã =

[
aT ,aH

]T
, and

Dã =

[
Ra,a 0n×n
0n×n R∗a,a

]
.

Therefore, the Cη-improperness measure is also the improperness
measure of the complex vector a [19], which is a measure of the
degree of joint-improperness of the complex vectors a1, a2. That
is, as previously pointed out, the Cη-properness of a quaternion
vector x can be seen as the joint-properness of the complex vectors
in the Cayley-Dickson representation x = a1 + η′′a2.

4.3. Measure of Rη-Improperness

For the Rη-improperness measure, the problem is more involved
than in the previous cases. This is due to the fact that, given the set

RRη =
{

R̂x̄,x̄|R̂x,x(η) = 0n×n
}
,

obtaining the matrix R̂x̄,x̄ ∈ RRη that minimizesD(Rx̄,x̄‖R̂x̄,x̄)
is far from trivial, and it is closely related to the problem of max-
imum likelihood estimation of structured covariance matrices [20,
21].

Here we focus on an alternative and more meaningful mea-
sure. In particular, we focus on the Rη-improperness of Cη-proper

vectors. That is, given an augmented covariance matrix Rx̄,x̄ ∈
RCη , we look for the closest (in the Kullback-Leibler sense) ma-
trix R̂x̄,x̄ ∈ RRη , and with a slight abuse of notation define

PRη = D(Rx̄,x̄‖R̂x̄,x̄).

Thus, analogously to the previous cases, the Rη-improperness mea-
sure is

PRη = −1

2
ln |D−

1
2

Q DCηD
− 1

2
Q |

= − ln |D−
1
2

Rη Rx̃,x̃D
− 1

2
Rη | = − ln |ΦRη |,

where

DRη =

[
Rx,x 0n×n
0n×n R

(η)
x,x

]
,

and ΦRη = D
− 1

2
Rη Rx̃,x̃D

− 1
2

Rη is the Rη-coherence matrix. Finally,
the measure PRη is non-negative, invariant to linear transforma-
tions, and it provides the entropy loss due to the Rη-improperness
of the (Cη-proper) vector x

PRη = Hx(DQ)−Hx(DCη )

= Hx(DRη )−Hx(Rx̃,x̃) = Hx(Rx,x)−Hx(Rx̃,x̃),

or equivalently, the mutual information between x and x(η).

4.4. Relationship among the Improperness Measures

Interestingly, the previous improperness measures satisfy the fol-
lowing relationship

PQ = PCη + PRη , (6)

which can be seen as a direct consequence of the Pythagorean
theorem for exponential families of pdf’s [22], and corroborates
our intuition about the complementarity of Cη and Rη properness.
Moreover, since the Q-improperness measure does not depend on
the orthogonal basis {1, η, η′, η′′}, PQ can be decomposed as (6)
for all pure unit quaternions η. In other words, the Kullback-
Leibler distance from an augmented covariance matrix Rx̄,x̄ to
the closest Q-proper matrix DQ can be calculated as the sum of
the distance from Rx̄,x̄ to the closest Cη-proper matrix DCη , and
the distance from DCη to the closest Rη-proper matrix DQ. This
fact is illustrated in Figure 1 for three orthogonal pure unit quater-
nions η, η′ and η′′.

5. CONCLUSIONS

The two main definitions of quaternion-properness have been re-
visited, showing that they can be related by means of a third kind of
properness. We have also shown that, unlike previous approaches,
these definitions are invariant to linear quaternion transformations,
and they naturally result in the invariance to different kinds of right
Clifford translations. More importantly, we have proposed three
measures for the degree of improperness of a quaternion random
vector. These measures, which are based on the Kullback-Leibler
divergence between zero-mean quaternion Gaussian distributions,
provide the entropy loss due to the improperness of the quater-
nion vector, and they also admit an intuitive geometrical interpre-
tation based on Kullback-Leibler projections onto sets of proper
augmented covariance matrices. Current research lines include the
application of the proposed measures to the problem of testing for
the properness of quaternion random vectors.



52

Fig. 1. Illustration of the Q-improperness measure decomposition.
The figure shows the sets of R-proper (RRη ,RRη′′ andRRη′′ ), C-
proper (RCη , RCη′′ and RCη′′ ), and Q-proper (RQ) augmented
covariance matrices. Point A represents a general augmented co-
variance matrix Rx̄,x̄. B is the closest (in the Kullback-Leibler
sense) point to A in RCη (matrix DCη ). C (matrix DQ) is the
projection of A onto RQ, which coincides with the projection of
B onto RRη . The length of the segment AC represents the mea-
sure PQ, which is equal to the sum of the lengths of the segments
AB (PCη ) and BC (PRη ). The same interpretation can be made
in terms of the points B′ and B′′.
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