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Abstract- In this paper we propose two pro-
cedures for accurate amplitude and phase es-
timation of vibration signals of rotating ma-
chinery. The first method reduces the am-
plitude attenuation and phase shift caused by
the “nonflat” top of the main lobe of the win-
dow. The second procedure is able to re-
duce not only the leakage effects due to win-
dowing, but also the distortion in the ampli-
tude and phase estimates when there is a slow
change in the frequencies. Using an additional
sensor giving one pulse per revolution, this
method transforms the input (asynchronous)
signal into a synchronous signal having a fixed
number of samples per revolution. The per-
formance of both procedures is illustrated by
means of simulation examples.

1. INTRODUCTION

Many large, slow speed, rotating machines are mon-
itored by vibration analysis. A typical problem in
these systems is the estimation of the frequencies and
amplitudes of harmonics of the running speed. Usu-
ally, a change in the root mean square (rms) value of
the vibration at an integer multiple of the running
speed can indicate the development of a fault.

In some monitoring systems it is necessary to es-
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timate not only the frequencies and amplitudes, but
also the phases of each harmonic component. This
happens, for instance, in systems using a couple of
orthogonally-mounted transducers located in a bear-
ing of the shaft. The objective of these systems is
to obtain orbits describing the displacement of the
shaft centerline.

A typical approach to solve the whole problem (fre-
quency, amplitude and phase estimation) consists of
two steps. First, the frequencies are obtained by
applying a Fourier-based method, or a high reso-
lution method if the harmonics cannot be resolved
by Fourier techniques. Second, the amplitudes and
phases are estimated by solving a linear least squares
problem [1]. In vibration analysis, however, long
data records are usually available and resolution is
not a problem. Therefore, the frequencies can be
estimated by selecting the largest peaks of the peri-
odogram, which is implemented using an FFT, while
the amplitudes and phases are estimated directly
from the spectral lines.

However, since the FFT is evaluated in a grid of
discrete frequencies, it introduces a bias in the fre-
quency estimate when the sampling period is not an
integer multiple of the fundamental period of the in-
put signal. This poses a practical problem since even
small errors in the frequency estimates can cause
large errors in both amplitude and phase estimates
[2]. Moreover, in rotating machines, fluctuations of
the running speed cause a broadening of the spectral



lines, in addition to the broadening caused by win-
dowing, which can degrade the estimates even more.

To overcome these problems in this paper we pro-
pose two procedures for obtaining accurate estimates
of the amplitudes and phases. The first approach is
based on the idea that selecting a shorter window,
thus broadening its main lobe, can improve the am-
plitude and phase estimates. This approach is useful
when we know in advance that there are small errors
in the frequency estimates. In the paper we propose
a procedure for obtaining the optimal window length
for a given error.

The second technique can be applied when there
are fluctuations of the running speed. It uses
a tachometer which gives one pulse per revolu-
tion. This signal is used to transform the data
acquired during an integer number of revolutions
(asynchronously with the running frequency) into
synchronous data. This means that in each revolu-
tion the vibration (or displacement) is measured at
the same physical positions of the shaft, i.e., in each
revolution we obtain exactly the same number of
samples. The asynchronous to synchronous transfor-
mation is performed using oversampling plus linear
interpolation techniques. After this transformation,
the spectral lines obtained from the discrete Fourier
transform (DFT) coincide with the harmonics; there-
fore, windowing and leakage effects are avoided and
the amplitudes and phases are precise.

2. PROPOSED METHOD I

2.1. Short-Range Leakage

The response of the shaft of a rotating machine can
be modeled by a sum of harmonics (or subharmonics
of the running speed). Considering a sampling fre-
quency fs = 1/T; and that the signals are observed
during 7" seconds, we have the following discrete-time
signals at the transducer’s output
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where A; are the amplitudes of the harmonics, 6;
are their phases, r[n] is the measurement noise and
T =NTs;.

Considering that the observation interval is long
enough to resolve the harmonics, i.e.,

N >> (27)/(wrq1 — wi) (2)

we can obtain the frequency estimates by selecting
the p largest peaks of the Discrete Fourier Transform

(DFT), which is given by

N-1 ]
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n=0

k=0,---,N—1. (3)

Since only a finite data register is available, when
we estimate the amplitude and phase of the £th har-
monic from the k spectral peak, two kinds of leakage
errors may exist. The first one is concerned with
the interference among the harmonics: the energy in
the main lobe of a spectral component “leaks” into
the sidelobes, distorting other spectral components.
This kind of leakage is know as long-range leakage.
In this paper we assume (2), therefore long-range
leakage will not be considered.

The second kind of leakage is denoted as short-
range leakage. It is caused by the nonflat-top main
lobe of the window. When there is an error in the
frequency estimate the amplitude and phase esti-
mates are attenuated and shifted, respectively. Some
techniques have been proposed to reduce the errors
caused by short-range leakage. In [3], this kind of dis-
tortion is eliminated by synchronizing the sampling
rate to the signal fundamental frequency. Other ap-
proaches obtain an accurate frequency estimate us-
ing the information given by two consecutive spectral
lines surrounding the true frequency; then, the am-
plitude and phase can also be accurately estimated
[2,4]. Finally, in [5] a flat-top window is proposed.

2.2,

In this section we propose a simple procedure for ob-
taining accurate estimates of amplitudes and phases.
It does not require the estimation of the frequency
deviation neither additional hardware. This method
is based on the idea that using a shorter window is
equivalent to broadening its main lobe. Therefore,
for the same frequency deviation, the amplitude and
phase errors are reduced. This idea is illustrated in
Fig. 1.

For simplicity, let us consider a discrete-time sinu-
soidal signal z[n] of frequency wp, amplitude Ag and
phase 6. If we take L samples of x[n], its spectrum
is given by

Optimal Window Length Selection

X(w) = %eﬁOW(W—WO)‘l‘ %e_ﬁOW(W-I-WO) (4)
where (w2
W(w) = e—iult-1/250L/2) (5)

sin(w/2)
is the Fourier transform of a rectangular window of
length L.
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Figure 1. Comparison of the amplitude errors for two different
window lengths: a) 32 samples, b) 16 samples.

Let &g = wg + Awg be the frequency estimate ob-
tained by selecting the largest peak of the DFT of
z[n]. This estimate is obtained in a previous step
using a larger window of length N (N > L) to in-
crease resolution. For a frequency deviation Awy,
the amplitude and phase estimates are given by

+ Agsin(Awgl/2)
o7 sin(Awg/2) (6)
and

. L-1
00:00—Aw0( )

(7)

Our objective is to obtain the maximum window
lengths I for a given amplitude error AA,,,. =
|Ag — Ag|/Ap. Considering that the frequency de-
viation is a small value, we can obtain a bound for
the amplitude error by using the following Taylor se-
ries expansion

A
sin(Awg/2) = %, (8)
Awel 1 (A 3
sin(Awol/2) = “;0 —§<%L) (9)

Substituting (8) and (9) in (6), we obtain that the
maximum amplitude error can be bounded by

2
M < ¢ (ﬂ) 12

- (10)

Now, assuming that the frequency estimate is ob-
tained using the whole register length (N samples),
the frequency deviation is less than half frequency
bin, i.e.,

Awg <

(11)

=] =

Substituting (11) in (10), we obtain the maximum
window length for a given error in amplitude

1< 20y aa

= (12)

Similar expressions can be obtained for other com-
mon windows in spectral analysis (Hamming, Han-
ning, Blackman,etc.). Nevertheless, the bound (12),
obtained for a rectangular window, can be consid-
ered as a worst case. Any other window reduces the
leakage (short and long-range), but also reduces the
resolution.

The Overall Method

Finally, the proposed method can be summarized in
the following steps:

2.3.

1. Select the maximum admissible amplitude error:

AAT)’LGJJ'

2. From the register z[n] of length N (n =
0,---, N —1), estimate the frequencies wy,---w,
as the largest peaks of the periodogram.

3. Select a new shorter window of length L given

by (12)

4. For k = 1,---,p estimate the amplitude and
phase of the kth harmonic as

L-1
X(&p) = Z_: x[n)e™I¥kn (13)
and
R 2 .
Ap = E|X(Wk)| (14)
)y = arg (X (&), (15)

Let us expose some comments about the proposed
method. First, the selected window length L must
be long enough to resolve clearly the harmonics
and to make the long-range leakage negligible, i.e.,
L >> 27 /(wgg1 — wi). Second, from (6) and (7)
it can be seen that short-range leakage distorts the
phase estimates more than the amplitude estimates.
Finally, in high noise situations the estimates ob-
tained using different (maybe overlapped) windows
of length L should be averaged to improve the per-
formance.



3. PROPOSED METHOD II
3.1.

In this section we propose an alternative procedure
for accurate amplitude and phase estimation. It is
able to reduce not only the distortion caused by
short-range leakage, but also the effects of long-range
leakage. Moreover, it provides a solution in situa-
tions for which the running frequency changes slowly.
This method requires an additional sensor (tachome-
ter) giving a once-per-turn pulse. This signal is used
to synchronize (approximately) the transducer’s out-
put with the running frequency.

To give an intuitive idea about how the method
works, let us consider that the running frequency of
the shaft is changing, in this case we will observe a
different number of samples in each revolution. Since
we know the starting and ending points of each revo-
lution (i.e., the pulse locations given by the tachome-
ter), we can interpolate the signal in order to obtain
a fixed number of samples in each revolution. Us-
ing this procedure we have transformed a signal ac-
quired asynchronously with the running frequency
into a synchronous signal acquired with a sampling
rate which is an integer multiple of the running fre-
quency. We will denote this procedure asynchronous
to synchronous conversion.

Therefore, the proposed method can be summa-
rized in the following steps: first, the signal is ac-
quired during an integer number of revolutions; sec-
ond, asynchronous to synchronous conversion is per-
formed. Finally, the frequencies are estimated as the
largest peaks of the periodogram, while the ampli-
tudes and phases are estimated from the spectral
lines. Let us note that even if the running frequency
does not change the acquisition of an integer number
of revolutions avoids leakage effects.

Description

3.2. Asynchronous to Synchronous Conver-
sion

In this section we evaluate the distortion caused by
the asynchronous to synchronous conversion when
we use linear interpolation to obtain the new sam-
ples. Let us consider a sinusoidal analog signal of fre-
quency fp, (the frequency of the maximum harmonic
of interest), and a sampling frequency f, = 1/Ts. As-
suming that the tachometer provides the true time
instants in which each revolution starts, the first step
in the conversion consists of finding the new sampling
instants by locating f,; uniformly spaced samples be-
tween consecutive tachometer pulses. To obtain the
new signal values any interpolation technique could
be used.

In particular, if we use linear interpolation, the
maximum interpolation error will occur at times
Ts/2. It can be shown [6] that this error is given
by

Aépae = A(l — cos(Tfin [ fs)) (16)

The resultant signal after the conversion can be
viewed as the true signal plus some additive noise
due to non-ideal interpolation. A reasonable model
for this noise is a uniform distribution within the
interval [—Ae€,,4:, A€pmaz]; therefore its variance is
given by

o2 = AX(1 — cos(m [/ fs))* (17)
3

The distortion due to non-ideal interpolation can

be measured in terms of Signal to Noise Ratio (SNR)

SNR =176 —20log (1 — cos(m fi/fs)) (18)

For example, if fi = 2f,, (the Nyquist sampling
rate), then SNR = 1.76 dB and it becomes clear that
the performance of any frequency, amplitude and
phase estimation procedure can be reduced. This
puts in evidence the necessity of using oversamplig:
the signals must be acquired at a sampling rate
higher than the Nyquist rate.

As a final example, if we want to keep the distor-
tion lower than 80 dB (representing the signal with a
finite resolution of 12 bits), the required oversamplig
ratio is M = 100. It is possible to reduce this ratio
using a higher order interpolator.

Finally, we want to remark that the above worst
case analysis is very pessimistic. In practice, an over-
samplig ratio of M = 10 leads to accurate estimates
using linear interpolation.

4. SIMULATION RESULTS

4.1. Example I

In this section we present some simulation results
in order to evaluate the performance of the first
method. We generated a sinusoidal signal com-
posed of four harmonics with frequencies f;=18 Hz,
f2=36 Hz, f3=b54 Hz and f;=72 Hz; amplitudes
A1=1, A3=0.5, A5=0.25 and A4,=0.125; and phases
61 =7/2, 0, =7/4, 5 = —0.37 and 64 = 0.67. We
acquire 2048 samples of this signal using a sampling
frequency of fs=245 Hz, and finally we added white
Gaussian noise to obtain a final SNR of 20 dB.
This represents a case where, due to the high num-
ber of samples acquired, a small error in the fre-
quency estimate can lead to larger errors in ampli-
tudes and phases. Applying the proposed method



we obtain that using a shorter window of length
N = 325, it is possible to keep the amplitude es-
timation error lower than 1%. This value is only ap-
proximated since due to noise and long-range leakage
the estimates are distorted.

Table 1 shows the results obtained averaging 500
independent simulations. The first row shows the
mean values of the amplitude estimates and below
the error percentage when we use the whole register
length N = 2048. The second row shows the re-
sults obtained with the proposed method which uses
a shorter window of length N = 325. In particu-
lar, the estimates of the amplitude of the fundamen-
tal frequency and the third harmonic are clearly im-
proved.

Ay Ay As Ay
N=2048 | 0.681 [ 0.497 [ 0.191 [ 0.121
31.9% | 0.6% | 23.6% | 3.2%
N=325 | 0.992 [ 0.495 [ 0.256 | 0.120
0.8% | 1.3% | 3.6% | 4.9%

Table 1. Table 1: Mean values and error percentage (below)
for the amplitude estimates using the whole register length
N=2048 and using the proposed method with N=325.

For the phase estimates the improvement is even
more noticeable. These results are shown in Table 2.

6 6y 3 04
N=2048 | 3.03 | 0.564 | 0.298 | 1.449
93.1% | 28.1% | 131.6% | 23.1%
N=325 1.67 | 0.785 | -0.942 1.88
151% | 5.2% | 19.5% | 5.3%

Table 2. Table 1: Mean values and error percentage (below)
for the phase estimates using the whole register length N=2048
and using the proposed method with N=325.

4.2,

In this second example we illustrate the effects of a
change in the running frequency and we show that
the asynchronous to synchronous conversion can re-
duce this distortion. In order to model the fluctu-
ation of the running speed, we consider that each
harmonic component of the signal generated in the
previous example changes according to the following
FM model:

Example 2

Fi(t) = fi(1 + 0.01sin(27 /251)) (19)

In order to improve the asynchronous to syn-
chronous conversion we acquire 50 revolutions of
the signal at a sampling frequency fs =1225 Hz.

This means an oversampling ratio of approximately
M = 8.5 since the maximum frequency of interest is
the fourth harmonic f; = 72 Hz. We perform the
conversion fixing 72 samples per revolution, in this
way the running frequency and the final sampling
frequency are synchronized. The spectrum of the
signals before and after the conversion are shown in
Figs. 2 and 3, respectively. The advantages of the
proposed procedure in the presence of fluctuations of
the running frequency are obvious.
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Figure 2. Spectrum obtained without asynchronous to syn-
chronous conversion.
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Figure 3. Spectrum obtained after asynchronous to syn-
chronous conversion.

5. CONCLUSIONS

In this paper we have proposed two improved pro-
cedures for amplitude and phase estimation of sinu-
soidal signals in vibration analysis. The first one
allows to reduce the short-rage leakage effects by
working with a window with a broader main lobe.
In vibration analysis of rotating machinery, where



the acquired registers can be very long, this method
achieves a noticeable improvement. The second
method performs an asynchronous to synchronous
conversion to get a fixed number of samples per rev-
olution. In this way, it is possible to synchronize
the sampling frequency with the fundamental one.
Therefore, leakage effects are avoided. By means of a
simulation example we have shown that this method
obtains accurate estimates even when there is a slow
change in the frequency components.
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