TRACKING PERFORMANCE OF ADAPTIVELY BIASED ADAPTIVE FILTERS

Jerénimo Arenas-Garcia' and Miguel Lazaro-Gredilla®

T Dept. Signal Theory and Commun.
Univ. Carlos III de Madrid, Spain
jarenas@tsc.uc3m.es

ABSTRACT

Adaptive filters can improve their performance by exploiting the well-
known tradeoff between bias and variance of the estimated solution. In
a previous work, a scheme for adaptively biasing the filter weights was
introduced, multiplying the output of a filter of any kind by a shrink-
ing factor o € [0,1]. With an appropriate value «, such a scheme
can reduce the steady-state error, especially for low signal-to-noise ra-
tio (SNR). Here, we extend such analysis for a tracking scenario in
which the optimal solution follows a random walk-model. We briefly
review a realizable scheme for learning «, based on recently proposed
algorithms for adaptive filter combination. Our experiments validate
the accurateness of the analysis, and illustrate the performance gains
that can be expected from these biased configurations in stationary and
tracking scenarios.

Index Terms— Adaptive filters, biased estimation, tracking per-
formance, bias-variance tradeoff, combination filters.

1. INTRODUCTION

Adaptive filters are nowadays crucial components in many signal pro-
cessing applications, such as system identification, echo cancellation,
or channel equalization. These tools are generally used in situations
where the statistics of the involved stochastic processes are not (com-
pletely) known, so that an optimal filter design is not possible, and
become especially useful when such statistics, and therefore the opti-
mal solution, change over time [1].

No matter how sophisticated adaptive filters become, their adapta-
tion speed is typically controlled by some parameter (e.g., a step size
in stochastic gradient schemes, or a forgetting factor in recursive-least-
squares (RLS) algorithms) whose selection imposes a compromise re-
garding the speed of convergence and the steady-state misadjustment
in stationary and tracking conditions. Thus, increasing the adaptation
speed of the filter results in faster adaptation, but also in larger gradi-
ent noise after convergence, increasing the estimation variance and the
residual error of the filter.

In a recent paper [2], we studied how the modified filter config-
uration depicted in Fig. 1 can exploit a bias versus variance trade-
off, as is customary in the estimation theory literature [3], to reduce
the mean-square error (MSE) of adaptive filters in stationary situa-
tions. The basic idea consists in multiplying the filter output, y(n),
by a shrinkage factor o € [0, 1] to produce a modified estimator of
the reference signal: yo(n) = ay(n). The resulting scheme can be
considered as a new filter with weights w(n) = aw(n) and output
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Fig. 1. Adaptive filter with biased weights estimation via output mul-
tiplication.

error eq(n) = d(n) — ya(n), d(n) being the reference signal to be
estimated by the filter.

As was studied in [2], the introduction of the shrinkage factor bi-
ases the filter weights towards zero, but also reduces the variance of the
error. As aresults, if « is appropriately selected, the tradeoft between
bias and variance can be exploited to reduce the MSE of the biased
filter configuration. It should be clear that these advantages apply to
any kind of adaptive filtering algorithm, and that more sophisticated
schemes for biasing the filter could be considered, e.g., to benefit from
structured inputs.

The steady-state excess MSE (EMSE) of the configuration in
Fig. 1 was studied both analytically and empirically in [2] for sta-
tionary situations. In this paper, we extend such analysis to a more
challenging tracking scenario where the optimal solution changes in
each iteration according to a random-walk model. The analysis sug-
gests that the filter can also reduce the steady-state tracking EMSE
with respect to that of the unbiased filter, and those advantages are
more significant for small signal-to-noise ratio (SNR). Since in prac-
tice the SNR and the degree of non-stationarity of the solution are
not known, or can even be time varying, our scheme offers improved
robustness to this lack of knowledge.

Since the optimal value of « can change with time, some practi-
cal schemes for adjusting the shrinkage factor were presented in [2],
based on algorithms recently proposed in the literature for filter com-
bination [4]-[8]. Among those schemes, the one using a sigmoid func-
tion (adapted from [7]) was shown to be very effective, providing both
fast adaptation of v and reducing the additional gradient noise in some
important situations (notably, for « = 1, when the biased configura-
tion should perform exactly like the original unbiased filter). For this
reason, the sigmoid scheme will be briefly reviewed in Section 3, and
used in the experiments of this paper.

The rest of the paper is organized as follows: in the next section
we present the tracking data model, and carry out the analysis of the
filter with bias. Section 3 reviews the practical scheme for adapting
a, and Section 4 provides empirical evidence of both the validity of
our analysis, and the ability of the real scheme to decrease the tracking
error of NLMS and RLS filters. Finally, Section 5 states the most
important conclusions of this work.
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2. TRACKING PERFORMANCE OF THE BIASED SCHEME

2.1. Tracking Data Model and Definitions

In the sequel, we adopt the following assumptions:

Al. d(n)and u(n) are related via a linear regression model, d(n) =
wl (n)u(n) + eo(n), for some unknown time-varying weight
vector wo(n) of length M, and where eg(n) is an indepen-
dent and identically distributed (i.i.d.) noise with zero mean
and variance g, and independent of u(m) for any n and m.

A2. First- and second-order moments of the input regressors are
E{u(n)} = 0 and E{u(n)u”(n)} = R.

The unknown weight vector changes with time, according to
the following tracking model taken from [1, Eq. (7.2.8)]:

{wo(n+1) = wo+0(n+1)
6(n+1) = ~0(n)+q(n)

with 0 < v < 1, and where g(n) is a sequence of i.i.d. pertur-
bations with zero mean and covariance matrix ), independent
of the input regressors and output noise at every time step. Us-
ing this model, it is easy to verify that the following expression,
which will be used in the analysis, is satisfied:

A3.

M

Q
— fy2 :
For the analysis, it will also be convenient to introduce some nota-

tion and additional variables. We define the weight error and a priori
output error of the standard and biased filters as:

lim E{w,(n)wl (n)} = wow. + 7
n— oo

@

e(n) = wo(n) —w(n),  €a(n) =wo(n) — wa(n),

ea(n) = u’ (n)e(n), ea,a(n) = u’ (n)ea(n).
It can be easily checked that a priori errors are related to the total
errors by ea(n) = e(n) — eg(n) and ea,a(n) = ea(n) — eo(n).
To measure filter performance, we use the excess MSEs (EMSEs),
which are defined as
Jex(n) = E{ez(n)}, Jex,a(n) = E{€i o (n)},

whereas their limiting values as n — oo, which represent the steady-
state tracking performance of the filters, will be denoted as Jex(0c0)
and Jex,o (00). Expressions for the steady-state EMSE of LMS (least
mean squares) and NLMS (normalized LMS) filters under the tracking
scenario described in A3 can be found in [1, pp. 396-397].

2.2. Mean-Square Peformance Analysis

We next study the tracking performance of filter wq (n). Similarly to
what is done in [2, Eq. (5)] for the stationary case, the a priori error of
filter with bias can be expressed as

eaa(n) = aea(n) + (1 — a)wz(n)u(n). 3)
Squaring this expression, and taking expectation, we obtain
Jexa(n) = o Ja(n) + (1 = @)  E{wg (n)u(n)u’ (n)wo(n)}
+2a(1 — a)E{e" (n)u(n)u” (n)wo(n)}. (4)
We can simplify this expression by taking into account that w,(n) is
independent of u(n):
Joxia(n) = 0 Jes(n) + (1 = @) Tr (RE{wo(n)w] (n)})

+2a(1 — a)Tr (E{u(n)uT(n)wo(n)sT(n)}> )

where Tr(-) denotes the trace of a matrix. Next, taking the limit as
n — 0o, and introducing also the common assumption that w(n) and
u(n) are independent as n — oo, we obtain the following expression
for the tracking EMSE of the biased filter with shrinkage factor a:

Jex,a(oo) - a2Jex(oo) + (1 - Q)ZA + 20((1 — OZ)B7 (6)

where we have used the following definitions:

A Tr [R (wowd + 125 )],
B = Tr|Rlimp o E{wo(n)e" (n)}].

The limiting value of the expectation that appears in the definition of
B will be dependent on the algorithm used for adapting w(n). For the
LMS and NLMS cases, it is shown in the Appendix that

' o) = s efr-a (- 4r)]
Jim E{wo(n)e” (n)} = 1= SQUI-a(I-CR)| . O
where f is the step size, and ¢ = 1 for LMS and ¢ = E|ju(n)||* for
NLMS.

Finally, taking derivatives of (6) with respect to v, and setting the
result to zero, we obtain the value for the optimal shrinkage factor,

« B—-A

¢ T Julo) +A—2B’

®)

which substituting into (6) provides the optimal tracking EMSE of the
biased configuration.

3. ADJUSTING THE SHRINKAGE FACTOR

In this section we review a practical algorithm for adapting the shrink-
age factor a. It should be clear that in most practical situations we will
lack the necessary knowledge for an optimal selection; furthermore,
in many adaptive filtering applications the statistics change with time.
This makes evident the need for algorithms that adapt uninterruptedly
the value of «(n) to the current characteristics of the filtering scenario.
By doing so, the biased configuration will show improved performance
over the original filter, especially when the SNR or Tr(RQ) are un-
known or time-varying.

In [2], different schemes for learning «v(n) were investigated based
on algorithms for adaptively combining adaptive filters that have ap-
peared in the literature over recent years [4]— [8]. Among these algo-
rithms, in this paper we consider the proposal from [7], which employs
a sigmoid activation. According to our experiments in [2], the intro-
duction of a non-linearity reduces the gradient noise near « = 1, a
case in which the biased scheme should work like the original filter.

To be more specific, a(n) is defined as the output of a sigmoid
function,

a(n) = sigmoid[a(n)] = [1 + e ™7,

where the variable a(n) is adapted at each iteration to minimize the
overall error according to

fa  Oea(n)
p(n) Oa(n)

a(n+1) =a(n) —
=a(n)+ &ea n)yn)5——~

where
p(n) = Bp(n — 1) + (1 = B)y*(n)

4129



is a low-pass filtered estimation of the power of y(n), and from which
a(n + 1) can readily be recovered. Selection of 3 is not critical for
appropriate performance of the algorithm, and we will simply set it to
0.9, as was done in [7], [8].

Following [2], we truncate a(n) to the interval [—a™, a™] to pre-
vent adaptation rule (9) from freezing, and use the slightly modified
definition

sigmoid[a(n)] — sigmoid[—a™]
sigmoid[at] — sigmoid[—a™]

a(n) = ) (10)
so that a(n) takes values 0 and 1 for the minimum and maximum
values of a(n), respectively.

The advantages of introducing the activation function (10) are
twofold. First, it keeps «(n) within the reasonable interval [0, 1] (note
that, otherwise, the variance of the estimation error could be ampli-
fied). Second, since the derivative of (10) is small near a(n) = 0
and a(n) = 1, the adaptation speed of (9) is reduced near these
points. Note that this is convenient, especially near «(n) = 1, since
it prevents adaptation of the shrinkage factor from degrading the
performance of the original filter in this case.

4. EXPERIMENTS

In this section, we will investigate the tracking performance of the
biased NLMS as compared with its standard version, and verify the
quality of the theoretical expressions introduced in this work. Anal-
ogous behavior can be obtained with other filtering schemes; we will
illustrate this empirically for the RLS case.

The tracking scenario for our experiments is as follows: Coeffi-
cients w,, of length M = 16, are generated i.i.d. from a zero-mean
Gaussian distribution and scaled so that ||w||? = 1. Input regressors
u(n) are obtained from a zero-mean i.i.d. Gaussian random process
u(n) with o2 = 1072, so that u(n) = [u(n),u(n — 1),...,u(n —
M+ 1)]".

We consider two different values for the output noise o = {2 -
1073,5-1072} to illustrate operation under different SNR conditions.
The driving force for the random walk model (1), 03 , is logarithmi-
cally swept between 10~ and 2, with v = 0.9 in all cases. Follow-
ing [2], we fix the step size for adaptation of the shrinkage factor to
e = 0.1. Each data point in the following plots corresponds to av-
eraging 100 independent realizations, and for 10 000 time steps. An
initial “burn-in” period of another 10 000 time steps is used to guaran-
tee that the filter is in stable tracking operation.

In addition to the experimental results obtained from the filter
operation, it is also possible to obtain theoretical approximations
for Jex,a(00) and o™ using (6) and (8), respectively. The quality of
these approximations crucially depends on the quality of the required
Jex(00). Therefore, we will present results based both on the actual
Jex(00) as obtained from NLMS operation [theoretical, using actual
Jex(00)], and on the approximation provided in [1, p. 393] for the
Jex (00) of the NLMS filter [theoretical, using Jex(c0) from [1]].

4.1. NLMS tracking performance

Fig. 2 shows the EMSE of the standard NLMS filter [ Jex(00)] and of
its biased counterpart [Jex,o (00)] as a function of 03, for two different
step sizes (u € {0.3,1}). Both empirical and theoretical values are
plotted. Both panels show good agreement between the empirically
obtained Jex, (00) and the theoretical approximation (6) introduced in
this work, independently of whether it is used with the actual Jex(00)
or the approximate Jex(00). This latter approximate Jex (00), provided
by [1], is also shown to be reasonably accurate.

- - =Theor. Jex(w) (from [1])
[|— Empirical (actual) Jex(oo)

51 © Theor.J  (e), using Jex(oc) from [1]

ex,ou
| =% - Theor. ch,(x(w)’ using actual ch(oc)

- Empirical Jex.o((m)

cfl/(wf) [dB]
(a) EMSE for . = 0.3

- = = Theor. ch(w) (from [1])

51 —— Empirical (actual) Jex(w)

O Theor. Jex (), using JeX(M) from [1]

0L
- % - Theor. Jex,a(m)’ using actual Jex(w)

|- Empirical Jex.q(x)

20
oz/(l—yz) [dB]

(b) EMSE for p = 1

Fig. 2. EMSE of the standard and biased NLMS for different values
of y and 0. In addition to the experimental results, we show the
approximate Jex(0o) from [1], and the novel approximate Jex,q (00)
from (6) [using both the actual and approximate Jex(c0)].

Two operation modes, separated by a clear “knee”, can be ob-
served in these plots. In the left area (small O'g ), the tracking speed
is so slow that the NLMS behaves as in the stationary case [2]. At the
very “knee” point and to its right, the NLMS is actually in tracking
operation. In all cases, and across a wide range of output noises and
step sizes, the biased filter provides consistent improvement.

Note that the biased filter, just as the standard NLMS, does not
have any information regarding the data-generating process. This im-
plies that the advantages of biasing are still present in situations in
which o3, 03, and/or -y are not known or change over time.

Fig. 3 shows « as estimated by (9) and its theoretically optimal
value o for 1 = 0.3 (analogous results obtained for 1 = 1 are
omitted). When o* is computed using the actual Je (00), an almost-
perfect match between the theoretical and empirical value is obtained,
thus proving the accuracy of (8). However, if the approximate Jex (00)
from [1] is used in (8), this correspondence degrades as 03 grows and
the NLMS enters tracking operation. Thus, the accuracy of the ap-
proximation for o™ is more dramatically affected by the quality of the
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Fig. 3. Shrinkage factor a corresponding to p+ = 0.3. The experi-
mental value is plotted together with the optimal value provided by (8)
[using both the actual and approximate Jex (00)].

10,

Sl —— Empirical Jex(oo)

= Empirical Jexﬂ(w)

EMSE [dB]

20 10 0 10
cZ/(l—yz) [dB]

Fig. 4. EMSE of the standard and biased RLS with settings A = 0.95
and 0§ = 5 - 1072 (analogous results obtained for other cases not
shown here).

available Jex(00) than the accuracy of the theoretical approximation
for Jex,a (00) was.

4.2. Tracking performance of other filtering schemes

Though we have investigated in detail a biased NLMS filter here, the
performance of other filters can also be enhanced with the proposed
biased configuration. For example, we have obtained analogous results
for the RLS filter, where for a wide range of scenarios, the biased filter
always showed improvement over the standard, unbiased version. A
typical result is illustrated in Fig. 4.

5. CONCLUSIONS

Biasing the weights of adaptive filters is an interesting way of reducing
their EMSE. In this paper, we have studied the tracking peformance of
a simple biased scheme, which multiplies the output of the filter by
a shrinkage factor . In addition to the already known advantages of
such scheme in stationary situations [2], the new theoretical and sim-
ulation work allows us to conclude that biased configurations can also
contribute to a lower tracking error. The bottom line is that biased
filters can outperform standard ones in certain situations, and thus be-

come useful in situations where the statistics are not known a priori or
change unpredictably.

APPENDIX

In this Appendix we analyze the value of lim,, o E{wo(n)e” (n)}
for the particular case of LMS and NLMS filters using the data model
and definitions in Subsection 2.1. We start by recalling that the adapta-
tion rule for these filters is given by w(n + 1) = w(n) + pu(n)e(n),
where ji = p/c, with ¢ = 1 for LMS, and ¢ = |[u(n)||* for NLMS,
which will be approximated in the analysis by its expected value ¢ =
E|Ju(n)]||* for tractability reasons.

Subtracting both terms from w,(n + 1), and taking into account
that according to the tracking model in A3 it can be shown that w,(n+
1) = wo(n) — (1 —4)0(n) + g(n), we arrive at
e(n+1) = [I —pu(n)u’ (n)]e(n) — (1 -7)6(n) +q(n) + fip(n),
where ¢(n) = —u(n)ep(n). Since the expression above will only
be used in the limit as n — oo, and assuming independent w(n) and
u(n) in steady-state, the term inside square brackets in the expression

above can be approximated as C' & [I — iR]. The above recursion
allows us to obtain the general term for the weight error vector as

e(n) = C"e(0) + 2 C" 7 g(i) — (1= 7)6(i) + fgp(i)]. (1)

=0

Premultiplying the transpose of (11) by wo(n) = w, 4+ 0(n), and
taking expectations of the result, leads to

E{wo(n)e" (n)} = i C"T T E{B(n)[g" (i) — (1 - 7)8" ()]}

i=0
If we now take into account that, according to the tracking model for

Wo(n), we have O(n) = ;.:01 "1 q(4), and after some algebra,
we obtain

Bwo(me” ()} = 13- QU —10) (I =7"C")

1 —1 2n—1 n—1mn
—QI - I— .o(12
+ 1+VQ( 7 O)y yTCT). (12)

Finally, since |y| < 1 and for convergent algorithms C™ vanishes as
n — 00, the limiting value of the above expression gives (7).
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