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ABSTRACT

In this paper a novel blind equalization algorithm based on
stochastic gradient descent minimization of order-a Renyi’s
entropy and designed for constant modulus signals is intro-
duced. The algorithm applies a new nonparametric estima-
tor for Renyi’s. entropy, which has been recently proposed
and allows to compute any order of entropy. In compar-
ison with conventional adaptive blind techniques, such us
CMA, the proposed algorithm shows a remarkable increase
in convergence speed with only a moderate increase in com-
putational cost.

1. INTRODUCTION

Blind adaptive equalizers play a key role in bandlimited
digital communications systems in which the transmission
of a training sequence is not possible or impractical. For
nonminimum-phase channels, it is known that blind tech-
niques must use the higher-order statistics (HOS) of the
channel .output. They can be explicitly exploited by esti-
mating the higher-order cumulants using a block of received
data, or implicitly by minimizing some non-mean square
error (MSE) cost function that indirectly extracts the HOS
[1, 2]. The latter approach usually leads to simpler algo-
rithms since the minimization of the non-MSE cost function
is carried out using stochastic (sample-by-sample) gradient
descent (SGD) algorithms.

To this class of adaptive blind equalization techniques
belong the Godard-type algorithms [3] as well as the cons-
tant modulus algorithm (CMA) [4], which is a special Go-
dard algorithm and, probably, the most popular blind equal-
ization technique. Despite its simplicity, the main drawback
of Godard/CMA equalization algorithms is that they require
a long sequence of data to converge. Therefore, some effort
to develop new non-MSE cost functions leading to fast and
robust adaptive blind equalization algorithms is still needed.
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Recently, a new information theoretic criterion based on
order-a Renyi’s entropy has been proposed and success-
fully applied to a number of applications including blind
source separation [5] and data-aided equalization [6]. In
these works the interest was placed on quadratic entropy
(o = 2) estimated over a block of data (batch) and us-
ing Parzen windowing with Gaussian kernels. However, the
technique has been generalized to cope with any order of en-
tropy, and the minimization can be carried out on a sample-
by-sample basis {7].

Although the use of some measure related to entropy
(such as the normalized kurtosis) has been widely applied
to blind equalization and deconvolution [8, 9, 10], we are
not aware of any equalization technique using directly the
entropy as a cost function. This is due to the fact that the
most widely known definition of entropy (i.e., Shannon’s
entropy) is, in general, hard to estimate and minimize. As it
has been shown, the use of Renyi’s entropy overcomes this
problem.

In this paper we propose and study the apphcatlon to
blind equalization of this new family of algorithms based
on SGD minimization of order-a Renyi’s entropy. In com-
parison with conventional adaptive blind techniques, such
us CMA, the proposed algorithms show a remarkable in-
crease in convergence speed with only a moderate increase
in computational cost.

2. ANEW FAMILY OF COST FUNCTIONS

In this paper we focus on blind equalization of constant
modulus signals; in particular, in this section we will as-
sume a QPSK signal. The channel output can be described
using the following discrete-time baseband representation

L
Te= Y hnSkon + ek, M

n=0

where sy, is assumed to be a sequence of i.i.d. complex sym-
bols, hy are the complex channel coefficients (we assume
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here an FIR channel), and ey, is a zero-mean white Gaussian
noise.

The objective of a blind linear equalizer is to remove
the intersymbol interference (ISI) at its output without using
any training sequence. Typically, the equalizer is designed
as an FIR filter with M coefficients, w, then its output is
given by

M-1
Yk= D WnThon. @
n=0
The most popular blind algorithms are the family of Go-
dard algorithms [3], which are stochastic gradient descent
methods for minimizing the cost functions

Jow)= B[yl -~ Ry)?], p=12--- @)

w}%ere R, = %l}ﬁ":';]l and E []denotes mathematical expec-
tation.

For the particular case p = 2, Eq.(3) is the cost function
of the CMA, which was independently developed using the
idea of penalizing the output samples that do not have the
constant modulus property [4]. Using an SGD minimization
approach, the CMA can be written as

Wist = Wi —p(ykl® — Rodykxy 4

where the superscript * denotes complex conjugate.

Due to its simplicity the CMA is one of the most widely
used blind equalization techniques, although typically it re-
quires a large number of samples to converge satisfactorily.

In this paper we propose the following generalization of
the CMA cost function: instead of penalizing the squared
error deviations from the desired constant modulus prop-
erty, we penalize the entropy of the deviations. Specifically,
we use order-a Renyi’s entropy, which, for a random vari-
able e with pdf f (), is defined as [11]

H, ) = S bg(/ f (e)“de) . 5)
1-a —oo

The entropy of a signal is a function of its pdf. In this way,
by minimizing it we are using much more information than
by minimizing just its variance. Similarly to other nonlin-
ear problems where this criterion has been applied, it is ex-
pected that the extra information exploited by the entropy
will provide some advantage, mainly in terms of speed of
convergence.
In summary, we propose to use the following family of
entropy-based cost functions
JEw)= Ha (kP - Rp), p=1,2,---  (6)

which, since the entropy does not depend on the mean of
the signal, is equivalent to

JEw) = Ho (yel”), p= 1,2, %)

Therefore, the new family of cost functions is the order-a
Renyi’s entropy of the equalizer’s output raised to the pth
power. In the sequel we will concentrate on the case p = 2,
which can be considered as an extension of the CMA cost
function.

For a doubly infinity equalizer and considering a con-
stant modulus input and a noiseless situation, the minima
of (7) are obtained when f (yx|?) = & (yx/? — K) for any
K, i.e., when the equalizer output is also a constant modu-
lus signal. Except for the case K = 0, which can be easily
avoided by constraining the equalizer parameters (forcing
the central tap to one, for instance), the pdf of the input se-
quence and that of the equalizer’s output coincide up to a
gain factor. Then, the minima of (7) correspond to points
where perfect equalization (zero-forcing) is attained.

3. MINIMIZATION OF THE COST FUNCTION

The minimization of the entropy cost function (7) is equiv-
alent, for o > 1, to maximize the function

Vaw)=E [f(!yklzv)a_l] 3 ®

which is called the information potential {11]. Using a win-
dow of N samples formed by the current and the past N —1
outputs of the equalizer, the information potential can be
estimated by substituting the expectation by a sample mean

)
Va t) %;fqy,-ﬁw-l. ©)

If the pdf of |y;|? is estimated using the Parzen window
method, we finally get that the objective function to be max-
imized in our problem is

a-—1
Voz W)= 'Nl—a ‘ (ZGJ (ijlz - lyi’2)> ’ (10)

J

where G, (y) denotes a Gaussian kernel of variance o2. A
To maximize (10), the coefficients of the equalizer are
updated as

Vo )
Wit1 = We+ [ £ (1m

where p is the stepsize of the algorithm. Finally, the deriva-
tive of the information potential with respect to the equalizer
coefficients is ' :

oV a1
Ow  g2N?

k
> flyh ey 12)

j=k+1-N
where the term F’ (y;) is given by
F) =Y Go lysl* —lwil®) Iy ® —lusl®) guxt —ysx5).
i
(13)
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As we can see from (13), each data sample y; interacts
with all other samples in the block of data used in the cur-
rent iteration, pushing the solution towards a constant mod-
ulus signal. Moreover, in (12) the individual forces F' (y;)
are weighted by the probability of that sample (measured
through its pdf estimate) raised to the power o — 2.

For a = 2 (quadratic entropy), Eq. (12) reduces to

oV, 1
Bu = ot 2T, (14
J

from a practical standpoint, a case of particular interest con-
sists of using just the current and the past sample in the es-
timation of F' (y;). In this situation (a = 2, N = 2), the
quadratic entropy algorithm is given by

L Go( 1)k Gerxfy — wex}), (15)

Wk+1= W+ 202 o

where = |yk|?> — lyx—1/%. The computational cost of
this adaptive algorithm is similar to that of the CMA.

The extension of this algorithm to a general case a # 2
requires estimating the pdf of |y;|2. Although this estima-
tion can be carried out using the Parzen window method, a
simpler alternative consists of assuming a Gaussian model

1 T )2>
—_— - —m—— 16
famoy exp ( 202 » o (16)
in this way, only the mean y,, and the variance aZ of the
squared output of the equalizer must be estimated. More-
over, these estimates can be easily updated on a sample-by-
sample basis.

Fly®) =

4. RESULTS

In the first example we assume a QPSK input and consider
the following real channel with phase error

Jjm/4

Hy )= ¢

el (04—0.6271+ 1127205273+ 0.127%).

The channel noise is white and Gaussian for a SNR=30
dB, and a 21-tap equalizer with a tap-centering initialization
scheme was applied. As a measure of equalization perfor-
mance we use the ISI defined by

3o 16nl* —max, [0,
max, |6,]?

IS8T = 10g, an
where § = h * w is the combined channel-equalizer im-
pulse response, which is a delta function for a zero-forcing
equalizer.

First, we have tested the proposed adaptive blind equal-
ization algorithm for quadratic entropy (o = 2) and dif-
ferent data-block sizes (N = 2,5,10. We used a fixed

stepsize 4 = 0.03 and a fixed kernel size 0 = 1 for en-
tropy estimation. In each case the algorithm was tested in
25 Monte-Carlo trials and the average ISI was plotted in
Fig. 1. For comparison purposes, the corresponding per-
formance of the CMA is included; in this case, a value of
1 = 0.009was used, which is the largest stepsize for which
the CMA converged in all trials.

0

Entropy (a=2)

CMA 1=0.009

'25[ N=5,1 ]

2000 4000 6000 8000
Iterations (symbols)

Fig. 1. ISI performance of the CMA and the proposed al-
gorithm using o = 2 and different data-block sizes. QPSK
input and channel H; (z).

In comparison to the CMA, the increase in convergence
speed is remarkable. More important is that the algorithm
has a very fast initial convergence and slows down later;
therefore, the switch to a simpler and faster decision-directed
mode can be made much earlier than with the CMA. For in-
stance, Fig. 2 shows the complex channel output and the
equalizer output using the proposed algorithm with a = 2
and N = 2 after 3000 symbols. It is also remarkable that
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Fig. 2. a) Complex channel output, and b) proposed equal-
izer output with & = 2, N = 2 after 3000 symbols.

most of the improvement in speed is obtained using the
smallest window size, N = 2, thus requiring only a small
increase in computational cost with respect to the CMA.
The learning curves for N = 5and N = 10are very similar.
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We have studied the effect of « in the algorithm: Fig.
3 shows the average ISI for the proposed algorithm using
N = 2 and three different values for the entropy order
a =2, 24 and 2.8. A value @ > 2 can achieve a small
increase in speed, but this increase comes when the eye-
pattern is already sufficiently open to a degree where a de-
cision-directed mode can operate satisfactorily. Moreover,
this increase in speed does not compensate the increase in

computational cost, therefore a value o = 2is recommended.

In the second example the input sequence is a 2-PAM sig-
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Fig. 3. ISI performance of the proposed algorithm using
N = 2 and three different values for the entropy order.

nal and the channel is: H, (2) = (02258 + 0516k~ ! +
0.64522—0.516%~3). The SNR is 30 dB and the equal-
izer has 19 coefficients. Again, a fixed stepsize 4 = 0.03
and a fixed kernel size 0 = 1 was used for the entropy al-
gorithm, while a value of © = 0.007was selected for the
CMA. Fig. 3 shows the average learning curve for this
example: the improvement in convergence speed is clear.
Moreover, for N = 5and N = 10the final result is even
better than that of the CMA.

5. CONCLUSIONS

A new family of cost functions based on order-a Renyi’s
entropy has been applied to blind equalization of constant
modulus signals. They can be minimized using SGD tech-
niques, thus leading to simple and useful algorithms. In par-
ticular, the use of quadratic entropy (o = 2) and the short-
est window (N = 2) is recommended, since in this case
an algorithm with a computational cost similar to that of
the CMA, but with a much faster convergence, is obtained.
Although it has been shown that for a doubly infinity equal-
izer the minima of the proposed cost function correspond
to points where perfect equalization is attained, a rigorous
convergence analysis is still needed. Furthermore, the ex-

-25 N=10- ]
12000 15000

8000 )
Iterations (symbois)

Fig. 4. ISI performance of the CMA and the proposed al-
gorithm using o = 2 and different data-block sizes. 2-PAM
input and channel Ha ().

tension of these ideas to multilevel modulations (QAM, in
particular) is an interesting future research line.
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