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ABSTRACT

Maximum-likelihood estimation of chaotic signals generated by
iterating piecewise-linear maps on the unit interval exhibits an ex-
ponential increase in computational cost with the register length.
This paper considers iterative estimation algorithms based on the
Expectation-Maximization (EM) algorithm and related space al-
ternating methods. This approach is inspired in the parallelism
that may be drawn between chaotic estimation and multiuser de-
tection, which also becomes prohibitively complex as the number
of users increases. The resulting algorithms are based on an itera-
tive updating of estimates of the chaotic signal itinerary. Computer
simulations show that the proposed algorithms achieve the perfor-
mance of the ML estimator for short data registers and improve the
computationally feasible (suboptimal) estimators for long records.

1. INTRODUCTION

Chaotic signals, i.e. signals generated by a non-linear dynamical
system in chaotic state, are potentially atractive in a wide range of
signal processing applications. Classical signal processing tech-
niques are not adequate for this class of signals that, while deter-
ministic, exhibit a noise-like behaviour. Therefore there is a need
for robust and efficient algorithms for the estimation of these sig-
nals in noise.

Several authors have proposed signal estimation algorithms
for chaotic signals [1, 2, 3]. These methods are usually based on
the connection between the symbolic sequence associated to a par-
ticular chaotic signal and its initial condition, and are, in general,
suboptimal. A dynamical programming approach has also been
proposed [2]. Maximum-likelihood (ML) estimators have been
developed for the tent map dynamics [4], and generalized to all
piecewise linear (PWL) maps [5). In [6] a Bayesian estimator for
chaotic signals generated by the tent map has been proposed.

The exponential increase in complexity that arises in chaotic
signal estimation —since estimates have to be computed for any
possible itinerary [5]— motivates the search for more efficient es-
timation approaches. In this sense, it is interesting to notice that the
same problem arises in multiuser detection {7] where optimal de-
tectors have to consider all possible transmitted binary sequences
in the search for the optimal demodulated sequence. This par-
allelism justifies the application of good performing techniques in
the multiuser detection field to chaotic signal processing. In partic-
ular in this paper we consider the application of the Expectation-
Maximization (EM) algorithm to chaotic signal estimation. The
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EM algorithm provides an iterative approach to ML parameter es-
timation when direct maximization of the likelihood function is
not feasible or very time consuming. Although convergence to the
ML estimator is not guaranteed, the EM algorithm produces es-
timates that monotonically increase in likelihood. In some cases,
however, better performance is obtained by the Space Alternating
Generalized EM (SAGE) algorithm, that updates only a subset of
the parameter components [8]. In [9] several receiver structures
based on EM, SAGE, and related algorithms are developed based
on this philosophy.

In this paper we develop estimators for chaotic signals based
on the EM and SAGE algorithms, following the same approach ap-
plied in [9]. The fact that chaotic signal estimation is a detection
problem (the detection of the sequence of signs of the chaotic se-
quence) and the parallelism with multiuser detection justifies this
approach. Although in this paper we focus on a particular class of
maps, the method can be easily applied to general PWL maps [5].

2. SKEW-TENT MAPS

The signals z[n] that we consider in this work are generated ac-
cording to

z[n + 1] = F(z[n]), )
where F'(-} is the so called skew-tent map:
_J=/a, 0<z<a,
F(’”"{(l—z)/(l—a), a<ozy @

for some parameter 0 < a < 1. This map produces sequences that
are chaotic with invariant density uniform in the range [0, 1].

The phase space of non-linear maps can be divided in a col-
lection of non-overlapping regions E;. If a symbol from a known
alphabet is assigned to each of the regions, the dynamics of the
map may be characterized by following the different regions that
the map visits during its dynamical evolution. -In the particular
case of the skew-tent map, we divide the phase space in two re-
gions E; = [0,a) and E; = [a, 1] and associate a symbol s[n] to
each z[n] according to

s[n] = sign(z[n] — a).

The sequence s = {s[0],..., s[N — 1]} associated with a length
N + 1 chaotic signal z[n] is called itinerary, and it can be con-
sidered a symbolic coding of the chaotic signal. We can define
another partition of the phase space in a collection of P inter-
vals R; composed of the points in [0, 1] that share a common
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length N symbolic sequence. Given a certain itinerary s; we de-
fine R; = {z € [0,1] : Sn(z) = s;}, where Sn(-) is the map
that associates an initial condition in [0, 1] to its corresponding
symbolic sequence. If all the linear components are onto, as it is
the case for the skew-tent maps, all the symbolic sequences are
admissible and there are P = 2" regions R; [5].
Considering the two cases of (2), it is easy to verify that F(z[n])

can be expressed as

Flafn)) = S0 =20 -'5{:]) +a(l +sln)) -

©)]
with b = 2a(1—a). Asit is shown in [5], a closed form expression
for n-fold composition of F'(-) as a function of the initial condition
and the itinerary can be obtained by iterating (3):

FEGI0) =0 3614 sH)Shics + 5753200, 4

where S = 1 and

n—1
st=T] A-2a-s)) i=1,...,n

j=n—i

The subindex s in F5' (z[0]) stresses the fact that this expression is
only true if z[0] has a sign sequence given by s.

3. EM AND SAGE ALGORITHMS

Given a realization of a random vector Y, that we will denote y,
the ML estimator of a parameter @ is defined as

O(y) = arg maxlog /(¥;6). O]

In many situations direct maximization of (5) may produce algo-
rithms that increase exponentially in complexity with the register
length, as it is the case of multiuser detection. In these situations
the EM algorithm provides an attractive alternative [9]. This algo-
rithm is based on the existence of some missing data Z that would
help to estimate & but that are not observable. We will refer to
X = {Y,Z} as the complete data. The basic approach is to al-
ternate between an expectation step, where sufficient statistics of
the complete data are obtained based on the incomplete data and
current parameter estimates, and a maximization step where the
parameters are reestimated based on the sufficient statistics of the
complete data. The key point of the EM algorithm is to iteratively
maximize the new objective function

Q(8;6") = E{log f(Y,Z;0)|Y =y;6'}.

Given an initial estimate of the parameter 6°, the EM algorithm is
described by

o E(xpectation)-step: Compute Q(6; 8%),
o M(aximization)-step: 6*+! = arg max Q(6; 6").
0

The EM algorithm produces estimates that monotonically increase
in likelihood; and, in addition, ML estimates are fixed points of
the algorithm. As for any deterministic iterative maximization,
the ability of the approach to find the global maximum is heavily
dependent on the initialization step.

As an alternative, the SAGE algorithm updates only a subset
of the parameter components at each iteration [8, 9]. If we denote
by Os the parameter components indexed by the set S, the i-th
iteration of the SAGE algorithm is given by:

e Defn-step: Choose the parameter index set S and the miss-
ing data Z5,
e E-step: Compute Q5 (8s; 6%). s
Gfg“ = arg max Q°(0s; 0%), and
o M-step: i+l ; 0
05, = 05,

where § is the complement of S. Similar to EM, the SAGE esti-
mates monotonically increase in likelihood and the maxima of the
likelihood function are fixed points of the algorithm. When an a
priori distribution for the parameter 6 is available, both algorithms
may be easily extended to work with conditional densities.

4. EM-BASED ESTIMATION OF CHAOTIC SIGNALS

4.1. Problem Statement
The signal model we are consfdering is
yln] =zfn] +wlnl, n=01,...,N; )

where z[n] is generated using (2) by iterating some unknown ini-
tial condition z[0] € (0, 1] according to (1), and w|n] is a station-
ary, zero-mean, white Gaussian noise with variance o>.

4.2. ML estimation of chaotic signals

_The observations y = {y[0], ¥[1],...,y[N]} in (6) are a collec-

tion of independent Gaussian random variables with equal vari-
ance. The conditional density then may be expressed as

I SR G )
vt = e (2550 )

where J(z[0]) is given by

J(z[0]) = Y _(ylk] - F*(z[0])*. ®

Using (4), we can express (8) in a certain region R; as

N
J5(2[0]) = 3 (ylk] — Fy; ([0)*. ©
k=0

If we define the indicator or characteristic function

1, ifz € Ry,
Xj(x)'= {0’ itz ¢ R;; (10)
the equation (8) can be written as
P
J(2{0]) = > x;(=[0]) J5(z[0]). an
=1

This cost function is quadratic within the limits of each region.
Differentiating and solving for the unique minimum we obtain

o :Z?Ob"‘&’h[k]
Z;[0] = =

= (12
> (b-ksk)?
k=0
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where
n-1 )
VR = ylkl = ad b+ s[)Skoiore (13)
i=0
The ML estimate of z[0]for a given itinerary is £;[0] only if
£;[0] € Rj; otherwise the minimum of J(x([0]) in the region R;
is given by the closest value to £;{0] in R;

R}, &5[0])), (14)

where R; and R} are the lower and upper limits of the region R;.
To simplify the notation the dependence on j, that has been used
to indicate a particular itinerary, will we droped from now on.

2], [0] = min(RY, max(

4.3. EM chaotic estimation

In this paper we apply iterative algorithms to find the ML estimate
of chaotic signals observed in noise. It might be argued that the
highly irregular shape of the likelihood function with many local
maxima [3] precludes the application of iterative approaches due to
the fact that these methods would always fall in suboptimum solu-
tions. Although this is true, there is another fact: it is well known
that the itinerary obtained by hard limiting the noisy chaotic se-
quence is a good estimate of the itinerary [1, 2, 3]. Hence we have
a good starting point for our iterative approach, and this will com-
pensate, to a certain extent, the irregular shape of the likelihood
function.

In this section we derive EM-based estimators that consider all
of the signs in the itinerary but one as missing data. Let s; denote
all the signs in the itinerary s except sx. Application of the EM
to the detection of sx considering s; as missing data is derived
below. The complete-data log-likelihood function is given by

log f(sg, ylsk) = log f(sglsk) + log f(yls)-

Since the itinerary components are independent in the case of chaotic
signals generated by skew tent maps [10], we only have to consider
the second density.

Given a certain itinerary s, and taking into account (7) and
(11), the density function of the observations is

el
SO ) = moxtelo exp (L5 )

To eliminate the dependence with z[0], we integrate this expres-
sion,

/R £(ylz[0], 8)£(z[0]ls) dz[0];

and because the density function of z[0] given a certain itinerary is
uniform in the region associated with the given itinerary, we obtain

_ 1 _J@&opY B
= Wamoynn "P\"T20? ) T
where L is the length of the region R and B is given by
@0~ 3[0)* §~ -k gk)?
B= / exp ( BTy — kzzr‘) (b Sk) dz[0].
Finally we obtain

Qskisk) = D

s,—ce{:tl)l"“1

flyls)

f(sg, sk) F(¥lsg, st) log f(yIsk, sk)-

The summation index sg € {£1}"~" in the final result indicates

that it is an expression composed of 2V ~! terms. Consequently it
is not useful to reduce the exponential increase in complexity of
direct approaches. The difference with multiuser detection, where
the complexity is indeed reduced, is that in our problem the depen-
dence on the itinerary is highly nonlinear, while in multiuser detec-
tion there is a linear dependence with the bit sequence. Nonethe-
less we may use the preceding expressions for developing more
efficient algorithms in the next section.

44 SAGE chaotic estimation

The SAGE algorithm can be applied to our problem with 8 = s
and the index sets cycling through 0, ..., N — 1. In this way the
algorithm may be implemented without any missing data. Conse-
quently the E-step is trivial and may be ignored. The M-step is
simply
B J(&5)
i+l k k
Sk arg max [Lk exp ( 292 )] ,

where & is the estimate obtamed according to (12), when all the
itinerary components are fixed except si (the same idea applies to
By, and Lg). So the algorithm becomes:

e Defn-step: Let k = 0 + imod (N — 1).

i Bg -’(A')
o Mostep: s,;rl = argamax [Z‘: exp (—2—:§-)] ,
st = g8 forallm # k.

This algorithm, that we will denote SAGE-1, selects the most prob-
able value of si, and is a coordinate descendent or greedy algo-
rithm.

As an alternative, another SAGE algorithm may be imple-
mented by defining 6 = {z[0], s} and the index set including al-
ways the component in z[0] and cycling through the components
of the itinerary, one each iteration. The E-step again may be ig-
nored and the M-step is

. {z[O i“,si“} = arg min J(x{0]). (15)

sk, {0]

so the final algorithm, denoted as SAGE-2, becomes:
e Defn-step: Let k = 0 + i mod (N — 1).

sl = arg min J (:cML [opn,

e Mstep:
sitl =gt for allm # k.

where £3y,,[0] is the ML estimate, obtained from (12) and (14),
with all itinerary components fixed except sx. In this case we
search for the most likely of the possible values of the initial con-
dition.

Further improvement may be expected by modeling sp, as tak-
ing values in a continuous set, for example in the range [—1, 1],
producing fractional itinerary values. In any case the boundness
and monotonicity of the log-likelihood function guarantees the con-
vergence of the SAGE algorithm.

5. SIMULATION RESULTS

In this section we analyze the performance of the different signal
estimation algorithms. We consider a skew-tent map with param-
eter a = 0.9. We first study short sequences, namely with N = 6.
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WN=29,x[0]=0.8274 ,a=0.9
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Fig. 1. Mean square error (MSE) for the three estimators: HC-ML,
SAGE-1, and SAGE-2.

One thousand initial conditions have been selected according to
the uniform invariant density of the map. For each initial condi-
tion and SNR, one thousand data registers have been generated.
‘We compare four methods: ML estimator, SAGE-1, SAGE-2, and
a method similar to the those proposed in [1, 2, 3] (where the
itinerary is obtained by hard-censoring the noisy data) that we will
denote as HC-ML. Table 1 summarizes the results. The perfor-
mance of both SAGE algorithms is similar to that of the ML es-
timator, with a much lower computational cost, and much better
than that provided by the HC-ML. It is also obvious that no much
room for improvement is left, so it is arguable whether a soft de-
cision SAGE algorithm would be useful for short data records. In
a second set of tests, we compare the performance of the proposed
algorithms on longer sequences. Specifically, we have generated
noisy registers with N + 1 = 30 and a = 0.9. Figure 1 shows an
example for z[0) = 0.8274. Again both approaches improve the
performance of the HC-ML estimator. It should be noted that in
this case it is unfeasible to compute the ML estimate.

MSE (dB)

SNR (dB) [ HC-ML [ SAGE-T | SAGE-2 | ML
0156 157 15.0 4.7
51187 189 19.0 18.7

10 | 227 24.0 24.6 243
15 ] 27.2 30.0 30.8 304
20 | 319 362 36.8 36.8
25 1 383 42.0 42.6 433
60 | 88.6 39.0 89.0 89.0

Table 1. MSE of the four estimators as a function of the SNR.
One thousand noisy sequences for each of the one thousand initial
conditions have been averaged.

6. CONCLUSIONS

ML estimation of chaotic signals generated by iterating piecewise-
linear maps on the unit interval exhibits an exponential increase in
computational cost with the register length. In this paper we have
developed efficient estimators for chaotic signals based on the EM
and SAGE algorithms that are closely related to similar estima-
tors developed for multiuser detection, where the same complexity
problem arises. The EM-based approach produces an algorithm
that mantains the exponential complexity and therefore it is not
useful by itself. However, it allows to develop SAGE algorithms
that achieve a quasi-optimal performance for short register lengths
and that improve the performance of known estimation algorithms
for long registeré. Future lines of research include the extension of
these algorithms to chaotic signals generated by any Markov map
and to further exploit the connection between chaotic signal esti-
mation and multiuser detection ir order to develop new methods in
the chaos signal processing field.
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