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In this paper we present the Smoothed Piecewise Linear (SPWL)
model as a useful tool for device modeling problems. The SPWL
model is an extension of the well-known canonical piecewise
linear model proposed by Chua, which substitutes the abrupt
absolute value function for a smoothing function (the logarithm
of hyperbolic cosine). This function makes the model derivable;
moreover the smoothness of the global model can be controlled
by means of a single smoothing parameter. The parameters of
the model are adapted to fit the nonlinear function, while the
smoothing parameter is selected according to derivative
constraints. The proposed SPWL model is successfully applied
to model a microwave HEMT transistor under optical
illumination using real measurements.
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In recent years, the need for efficient CAD tools to facilitate the
design and fabrication of microwave circuits has spurred the
search for new nonlinear models to predict the small and large-
signal nonlinear dynamic behavior of microwave and milimeter-
wave active devices such as MESFET or HEMT transistors [1].

Conventional nonlinear techniques for device modeling, such as
closed-form equations [2], Volterra series [3], or look-up tables
[4], suffer the drawback of a high memory requirement or a high
computational burden and, therefore, their implementation in
commercial simulators is difficult. Moreover, these techniques do
not represent adequately the nonlinear function derivatives
around the bias point, which is interesting, for instance, to model
the intermodulation distortion behavior. Although this is not
essential when modeling transistors in a large-signal regime, to
get a smooth and derivable model leads to a better representation
of the device behavior.

Recently, some alternatives based on neural networks have been
proposed for this problem. Neural networks have the capability
of approximating any nonlinear function and they learn from
experimental data; therefore, they are specially suited for this
modeling problem. However, most of these neural approaches are
based on the Multilayer Perceptron (MLP) [5], which also
requires a large number of parameters for accurate modeling and
it has the drawback of slow learning. Other architectures have
been proposed for specific problems. For instance, in [6] the

Generalized Radial Basis Function (GRBF) network was
proposed to model the derivatives around the bias point for
small-signal intermodulation prediction. Nevertheless, for large-
signal modeling problems, the semilocal activation function of
the GRBF network increases the number of parameters .

An alternative method widely used in device modeling is the
Canonical Piecewise Linear (PWL) model proposed by Chua [7].
It provides accurate approximations with a low number of
parameters and with a computational burden lower than the
neural networks solutions. The drawback of this model is that it
lacks the capability of approximating the derivatives of the
function because of its piecewise nature: the second and higher
order derivatives are always zero.

In this paper we propose the Smoothed Piecewise Linear
(SPWL) model as a generalization of the PWL model, which,
retaining its advantages, makes it smooth and derivable. In the
SPWL model, the absolute value function used in the PWL, is
replaced by a smooth function (the logarithm of hyperbolic
cosine). A single parameter controls the smoothness (i.e., the
integral of the squared second derivative) of the whole model:
this fact provides a link with regularization theory. The proposed
SPWL is applied to approximate the nonlinear I/V characteristic
of a microwave HEMT.
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 In its basic formulation, the canonical PWL model, proposed by
Chua [7], performs a mapping 10

55I →�  as follows
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where�� and αL  are vectors of dimension �, D and��L are vectors
of dimension �, � is an ��×� � matrix, βL is scalar and < , >
denotes the inner product. The model divides the input space into
different regions by means of several boundaries implemented by
hyperplanes of dimension ��1, and it carries out the function
approximation by means of the combination of hinging
hyperplanes of dimension �.  Such hinging hyperplanes are the
result of joining linear hyperplanes over the boundaries defined
in the input space. In (1), it can be seen that the expression inside



the absolute value function defines the boundaries partitioning
the domain space. The canonical PWL model inherits some
properties from the absolute value function: it is continuous but
not derivable along the boundaries. Moreover, the second and
higher order derivatives are zero except at the boundaries where
they are discontinuous.

To overcome this drawback, in this paper we substitute the
absolute value function for a derivable function in order to
smooth the joint of hyperplanes at the boundaries. Several
possibilities exists to smooth the absolute value function
allowing, at the same time, a parametric control of the
“sharpness” of the transition. In this paper we propose the
following smoothing function
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where γ is a parameter that allows to control the smoothness of
the transition. There are several reasons to select this function.
For instance, its derivatives do not present overshootings unlike
some other commonly used smoothing functions (�tanh(�), for
instance): this is a clear advantage when we try to fit both a
function and its derivatives. In the other hand, the first derivative
of (2) is ) tanh(�,(’ [[OFK γ= , which is the activation function of
a universal approximator such as the MLP. Finally, the proposed
SPWL model is given by
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Standard regularization techniques minimize a cost functional
consisting of two terms: the first one measures the closeness to
the data, and the second term weights the cost associated with a
functional that measures the smoothness of the solution, i.e.,
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where �L�are the measurements, λ is a regularization parameter,
which controls the compromise between degree of smoothness of
the solution and its closeness to the data, and � is a functional
(stabilizer). Smoothness can be measured in a number of
different ways, generally, the stabilizer �� involves some
derivatives of the function. A widely used class of stabilizers is
given by the following functionals [8]
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For the SPWL model, the second derivative of each unit is a
localized function, with the shape γ�sech2(γ��). Therefore, we can
assume that the second derivative of each unit only overlaps with
the nearest component. Without lack of generality, we can
assume that the model is composed of two weighted components,

separated a distance �. Let us consider a 1-dimensional SPWL
model using the same γ��for all the boundaries (breakpoints), then
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For this 1-dimensional case, the stabilizer has the particular
expression of the squared second derivative of the model, which
is given by
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which varies monotonically with γ, independently of � and the
weighting parameters ��� and ��� Equation (7) formalizes
somehow the expected behavior of the SPWL model: a small γ
forces very smooth transitions and therefore increases the
smoothness of the global model. The same behavior can be
obtained for an input space of higher dimensionality.

The above result establishes a link between the SPWL model and
regularization theory. Specifically, the smoothing parameter γ
can be seen as a standard regularization parameter. In this way, to
minimize the squared error with a proper selection of γ,
according to some smoothness constraint (for instance derivative
constraints), is equivalent to minimize a regularized functional
such as (4).
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The method applied for estimating the boundaries and
hyperplanes is equivalent to the optimization method proposed
by Chua for the canonical PWL model [7]. Here we reformulate
this method for a SPWL model. Let us consider that we want to
approximate a mapping �0 �→  using a set of 	 input-output
samples (�O
�O), �=1,...,	 with �O=(�1�O, �2�O
���
� �M�O). Assuming that
αι,Μ 0≠ , we can eliminate one coefficient from each boundary by
rewriting <αL
�> - βL, as
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where �L(�) denotes the 
th boundary evaluated at �. Finally,
taking into account that �  and � in (3) are now a vector
�=(��,...,�0)7,  and a scalar �, respectively; our generic SPWL
model, with θ  boundaries, can be written as
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The model parameters can be grouped into two vectors: �S
grouping the coefficients associated to the linear combination of
components,
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and �U, grouping the parameters defining the boundaries of the
domain space
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The error function to be minimized is given by
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The algorithm begins by fixing the initial location of each
partition boundary, i.e., the vector �

U
. Generally, they are chosen

randomly. Then, the approximation error �(� ��
U
) is a quadratic

function of � , and its minimum is given by
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where  ( )7
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\��\ K1=\ , 	 is the following ��θ�1×	  matrix,
which can be partitioned as
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where � denotes a row of 	� ones, 
 is an �×	 matrix with
elements, 

ML��
�� =ML , and �� is an θ×	 matrix with elements
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Once the optimal �S parameters (for a given initial �U� partition)
are calculated, the algorithm estimates a new optimal partition �U.
This partition is found by calculating the gradient � and the
Hessian 
, which specify the optimal searching direction to
modify��U according to
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The gradient, � and the Hessian 
 are given by
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H��H K1=H  is the vector of errors, � is given by
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and � is the following matrix
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where �k
 are ���×	�matrices with ))(tanh(
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The second term of (17) involves the second derivative of the
SPWL model, ( ))(sech 2

OL
�� , which is a localized function along

the boundaries: only points close to the boundaries contribute to
this term. In practice, it has been observed that a great
computational saving (without any noticeable degradation) can
be achieved by dropping this term from the Hessian, that is, we

use ����
 72= . Once the search direction� (15) has been

calculated, the new boundaries are estimated as

V]] α+=
UU

          (20)

where α = argmin(�(�S,�U+α�)). With this new partition the
process is repeated: the optimal coefficients �S are calculated for
these new boundaries, and then the optimal partition is
reestimated again, until a given error is reached.
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For the estimation of γ, which is a key parameter of the SPWL
model, several strategies are possible. The simplest one is to
minimize (12) applying a gradient descent algorithm. A different
γ� can be used for each boundary; however, the improvement
achieved over using a common γ  for all the boundaries does not
compensate for the increase in the number of model parameters.

A more interesting alternative for device modeling problems is to
use information about the function derivatives. As it was said
before, to reproduce the intermodulation distortion behavior it is
necessary to model the higher order derivatives. It seems
reasonable, therefore, to look for a tradeoff between the
approximation of the function and the approximation of these
derivatives. For example, let us assume that it is possible to
measure the first derivative of the model with respect to the  th
input parameter: 
\ = (

1
�

� �1 )T, then γ� � can be selected to

minimize the error of the model over this derivative. In this case,
the optimal γ��is obtained by applying
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As a conclusion of this section, we can say that one of the most
relevant characteristics of the SPWL model is that we can take
advantage of the additional degree of freedom provided by γ to
fit the derivatives without degrading noticeably the fit to the
function
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In this section we use the proposed SPWL model to characterize
the large-signal behavior of a microwave HEMT Philips D02AH
(4*30µm) transistor under optical illumination. The SPWL
model is used to accurately reproduce the nonlinear dependence
of the drain to source current !GV�with respect to the bias voltages
("JV� 
�"GV), the instantaneous voltages (�JV� 
��GV) and the incident
optical power �R. We dispose of a set of 9792 input/output
samples, which have been used to train and test the SPWL model
and four additional models used for comparison: a MLP network,
a GRBF network, the canonical piecewise linear (CPWL) and an
analytical model [9].

Table I presents the signal to noise ratio (SNR) values in dB for
the !GV�estimates and for the first derivatives with respect to the
instantaneous voltages (�JV
��GV). From the Table I we can see that
for a given number of parameters, the SPWL model provides the
best results for the function and specially for the derivatives.



Figure 1 shows the original function and derivatives (left) and
the approximation given by the SPWL model (right) for an
incident optical power �R�= 1 �#, and bias voltages "JV� �� 0"
and "GV�= 2 ".

In this section, we have obtained large-signal SPWL models with
a small number of parameters (from 5 to 12 hyperplanes). In this
case, the model is able to fit only the first derivative (see Fig. 1),
since the higher derivatives are very spiky. In order to improve
the behavior of the second and third derivatives it is necessary to
increase the number of parameters (hyperplanes) of the model.

Another important advantage of the SPWL model is its low
computational burden. Using MATLAB in a Pentium 200MHz,
to train a SPWL model requires a few minutes, while the MLP or
the GRBF need several hours, and the analytical model requires a
exhaustive study of the problem that, moreover, is device
dependent and must be repeated for each new device.

#��$��� %. Measured functions (left) and approximation
given by the SPWL model (right) for a) !GV, b) !GV
derivative with respect to �JV, and�c) !GV derivative wrt��GV.
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The SPWL model has been presented as a useful tool to model
the large-signal behavior of MESFET/HEMT transistors. It
allows getting a smooth and derivable approximation with a low
number of parameters and with a low computational burden.
Moreover, the smoothness varies monotonically with a single
smoothing parameter of the function. In this way, the use of the
SPWL model inherently provides some kind of regularization of

the modeling problem. The proposed SPWL model has been
applied to model a HEMT transistor under optical illumination
using real measurements. When compared with neural networks-
based alternatives the SPWL model shows clear advantages both
in terms of performance and computational burden.

Model No.
Of
Param

Function
SNR (dB)

GVGV
Y, ∂∂

SNR (dB)
JVGV

�! ∂∂
SNR (dB)

MLP(5) 36 25.50 14.00 14.40
CPWL(5) 36 30.62 9.52 13.04
63:/��� �) ���%� %*�*� %*��+
MLP(9) 64 27.17 12.62 14.75

CPWL(10) 66 32.44 10.44 12.96
63:/���� *) ����& %,��+ %)�%&
MLP(11) 78 28.09 13.71 14.66

CPWL(12) 78 33.04 11.51 14.34
63:/���� )- �&�%* %,�,, %)�%*
GRBF(8) 88 28.84 10.09 13.79

Analyt. Model 98 32.92 -0.8674 16.53

 	./�� �. Comparison of results for a Philips D02AH
HEMT transistor. In the first column the number between
parentheses indicates the number of components of the
models.
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