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Abstract. In this paper we present two new methods to perform sparse deconvolution. Basically, they use a gradient-type
algorithm to minimize an objective function which consists on a weighted sum of the Lo-norm of the residual and the Li-
norm of the signal. Statistical information about the signal and noise can be efficiently used in our methods; for example,
to derive a convergence criterion or to modify the weighted cost function. After discussing these methods, their effectiveness
and robustness are illustrated by means of computer simulations using synthetic data.

1. Introduction

In many practical problems (geophysical signal process-
ing, speech coding, synthetic aperture radar, nondestruc-
tive testing, etc.), it is often necessary to find a sparse
solution to

z=Hx+n (1)

where H is an impulse matrix, x the unknown signal vec-
tor, n the noise, and z the observations. The signal x is
known to be sparse, i.e., it contains many zeroes plus se-
veral comparatively large nonzero values.

A direct application of standard methods to solve (1),
such as using the Moore-Penrose pseudoinverse, is not a-
ppropriate, since the ill-conditioned character of the pro-
blem prevents the obtention of the sparse solutions we are
looking for. In addition, theoretical solutions to the co-
rresponding detection plus estimation problem are cumber-
some; those available, such as [1], require that the peaks
of x have a Gaussian distribution, a hypothesis which is
not acceptable in many situations. Moreover, sometimes
signal statistics are not available, so a complete analytical
solution is not possible.

To overcome these limitations, many alternatives have
appeared in the literature: some of them [2] combine detec-
tion and estimation tasks using an adaptively contracted
selection operator. This technique is computationally a-
ttractive, but is very sensitive to the selection of the para-
meters involved in the method and, more important, some-
times misses small peaks in the first steps of the detection
process; an irreversible mistake.

An alternative approach consists on adding a regulari-
zing term to reduce the ill-conditioned character of the
problem, similar to the method proposed by Katsaggelos
et al. [3], to restore noisy-blurred images. Nevertheless, it
uses a constraint operator which produces a smooth solu-
tion not adequate for our problem.

Finally, other approaches based on using an Lj-norm
minimization algorithm have been proposed. In particular,
the method presented in [4] performs the Li-norm mini-

mization of the residuals by means of linear programming.
It was not proposed for its ability to recover sparse signals,
but rather for its ability to deal with large data errors. A
more appropriate approach consists on including the L;-
norm of the signal in a weighted objective function [5,6];
this approach is well suited for data driven from spiky dis-
tributions. However, it has two drawbacks: the high com-
putational cost when the data set is large, and the sparse
character of the resultant residual, which does not agree
with the usual type of added noise.

In this paper we propose some new methods to avoid the
problems of the previously mentioned algorithms. Specifi-
cally, we present a new objective function that consists on
a weighted sum of the Lo-norm of the residual and the L;-
norm of the signal. Some statistical information about the
signal and noise can be efficiently used in this approach
to stop the algorithm. Following similar ideas, another
weighted function is proposed: it includes the a prior: sta-
tistical knowledge in the objective function. In the rest of
the paper we discuss these approaches and illustrate their
performances by means of computer simulations using syn-
thetic data.

2. Proposed Algorithm

The first method studied in this paper consists on find-
ing the solution x that minimizes the following cost func-
tion

O (%, a)=1—0a)lz—Hx|2+a|%]1 0<a<1 (2)

By doing this, we seek a minimum Li-norm solution
while preserving a small Lo-norm residual. The weight-
ing parameter « controls the spiky character of x. The
minimization of (2) can be accomplished by means of a
gradient-type algorithm (with « fixed)

Rey1 = X + p(1 — a)HT(Z — Hx%y) — pasign(Xx) (3)

where the superscript T denotes transpose. The iterations
are carried out until a previously specified error criterion



is satisfied or a maximum number of iterations is reached.
Note that parameter a controls the sparse character of x:
for a=0, the pseudoinverse solution of (1) is obtained and,
as « is increased, spikier solutions are obtained; finally,
when a=1, the algorithm (3) converges to the trivial solu-
tion x=0.

On the other hand, for =0, g must be less than twice
the inverse of the maximum eigenvalue of HHT in order to
guarantee convergence. In general, convergence depends on
both g and «. Since « is a bounded parameter (0 < a < 1),
we can choose an empirical g to ensure convergence for any
a.

A complete application of the method requires a pro-
cedure to select an optimum o« which leads to a feasible
solution. Without additional information we must choose
« empirically. Nevertheless, as we will show later, « is not
a critical parameter; so it can be fixed a priori for a given
problem obtaining good results in a wide variety of exam-
ples. More accurate results can be obtained if we assume
that some (very general) a priori knowledge about the orig-
inal signal and noise is available (for example coming from
a reasonable model). We will assume that estimates of the
To-norm of the noise (NQ) and the Li-norm of the signal
(Sl) are available (the true values will be denoted without
the symbol ). The estimate of the noise variance has been
used in several signal deconvolution and image restoration
problems [7,8] to derive convergence criteria, to choose the
regularization parameter, or to find a projection operator
onto a convex set such as Cy = {x | ||z — Hx||> < Ny}, In
[8] it is noted that many other constraints can be applied
to the deconvolution problem. They depend upon the cha-
racteristics of the specific signal; in particular, when we
are dealing with a sparse signal, to use a similar constraint
over the Li-norm of the signal has proven to be useful.

The proposed method starts selecting an a4, that pro-
duces a solution sparse enough. Then, the weighting para-
meter is iteratively decreased in fixed steps Ao until some
covergence criterion is fulfilled. The criterion presented in
this paper is based on the derivative of the objective func-
tion with respect to o: each « yields a solution x* which
minimizes (2), the value of the objective function for this
solution is ®1(x*, o). Assuming that the solution x* does
not depend on «, we can write

d®, (x*, o

WO B @)
when x* is similar to the true series, the term ||z — Hx"||2
approaches the Lo-norm of the noise and ||x*||; the L;-
norm of the signal. Consequently, our knowledge about
(NQ) and (Sl) can be used to stop the algorithm when a
near optimum « has been reached, i.e., we know in advance
an estimate of the derivative (4) for the true signal

A%, (x, o)

=S —-N 5
o 1= N2 (5)

thus, the final solution x*  and the final weighting parame-
ter aope, must satisfy the following criterion

Py (x*, aope)  dDi(x, o)
da do

< (6)

where 6 is a small positive constant.

It 1s also possible to use simpler convergence criteria.
For example, using only information about the Li-norm of
the signal: | ||x*|| — S, |< &, or the Lo-norm of the noise:
| ||z — Hx*||2 — N |< 8. The three criteria provide similar
performance, as it will be shown in Section 4. Summari-
zing, the proposed algorithm is as follows

1 Initialize xo = Onx1, J=0, 00 = Omax

2 Estimate W = Sl — N2

3 for k=0 to N-1
3.1 Kpy1 =X+ p(1 — a])HT(Z — Hx%y) — pajsign(Xr)
3.21if | ©1(Xpy1,a5) — P1(Xp, ;) |[< € gotod
end

4 X* = f(k+1

5 d@l(X*,a)
da

a; = ~llz = Hx*|l2 + ||x*||x
7

6 if d%(d);*’a) |aj — dq}lcg;(’a) < § then stop
else
6.1 aj41 = a; — Aa
6.1  j=j+1
6.1 go to 3
end

Finally, to obtain a fully sparse signal we must apply
a threshold procedure. The method selected proceeds in
three steps: first, a conservative threshold is applied; se-
cond, the amplitudes of the surviving peaks are adjusted in
order to minimize the quadratic error (this step increases
the magnitude of the true peaks and, conversely, it de-
creases the false ones); finally, a new threshold is applied
that eliminates the smaller spikes. The selection of the fi-
nal threshold depends on the problem. For instance, in a
multipulse coding application it could be selected to obtain
a fixed number of spikes in the final solution.

3. An Alternative Approach

To minimize the Li-norm of the signal tends to under-
estimate the amplitudes of the true spikes. This effect can
be reduced if we include our knowledge about Sl and N2
in the objective function. For example, according to

®2(%,0) = (1-a)||z — HE|l2 = No| " +a[I]1 = S:|* (7)

with 0 < o <1 and 1 < p,q. This second approach has
an additional advantage: it avoids the need to obtain the
optimum «, since in this case the objective function by it-
self forces the vector x to be in a neighborhood of the true
solution. Therefore, an empirical « can be fixed in advance
achieving good results for a great number of examples. For
instance, «=0.5 is the most obvious selection, thus giving
the same importance to each term in the objective func-
tion. Other possibility is to change successively between
a=0 and a=1. In this way, an alternative adjustment be-
tween the residual Lo-norm and the signal L;-norm can be
made. However, the simulations indicate a superior per-
formance of the former approach (« fixed) . Therefore we
will consider only this procedure.

In addition to choose a weighting parameter we must



select the values p, q of the objective function. Experi-
mental evidence shows that p=q=1 provide the best re-
sults. The minimization of (7) is again accomplished by
means of a gradient-type algorithm. As previously, for «
fixed the parameter of the gradient algorithm g controls
the convergence. A conservative selection is needed with
this approach to avoid convergence problems.

4. Simulation Results

We have selected two computer experiments with diffe-
rent sparse signals. The first uses a deterministic signal;
the second uses randomly generated sparse signals accord-
ing to a preestablished model. Specifically, we generate
sparse signals with Gaussian or uniform amplitude distri-
butions.

4.1.  Experiment 1

The impulse response used in this example corresponds
to the first 20 points of an ARMA filter having a zero at
z=0.6 and two poles at z=0.8exp(£j57/12). The test signal
x 18 a 110 points register having nonzero values at points
x(20)=8, x(25)=6.845, x(47)=-5.4, x(71)=4 and x(95)=-
3.6. The SNR used in this example is 4 dB, and is defined
as the power of Hx with respect to the power of n; n being
a zero mean Gaussian white noise.

We compare the performance of the algorithms corres-
ponding to:

A1) Cost function ®1(%X,a) with an optimum weighting
parameter chosen to fulfill (6).

A2) Cost function ®2(%,«) with a fixed weighting para-
meter.

A3) Using an adaptive threshold [2].

For the three methods we ensure covergence by selecting
1#=0.1. We apply the first method with «¢=0.8, and then
update this parameter in fixed steps of Aa=0.01 until (6)
is fulfilled. For each «, a maximum number of 50 iterations
of (3) is carried out. For the second method we have empi-
rically selected an optimum «=0.5 and a maximum number
of iterations of 200. With respect to the selection of o we
must remark that it is not a critical parameter: valuesin a
neighborhood of the optimum « give visually satisfactory
solutions.

Figure 1 shows the result obtained for one simulation
applying the first algorithm after thresholding.

Figure 1. Solution obtained with the first algorithm after
thresholding. Circles depict true spikes.

Al A2 A3

spike 1 100 100 100
spike 2 100 100 100
spike 3 99 99 96
spike 4 94 89 86
spike 5 84 82 67

average of 0.71 | 0.61 | 0.53
spurious spikes

Table 1. Comparison of the results from the three algorithms
tested in Example 1. The first row indicates the method
used, the next five rows show the detection percentage for
each spike, and the last row shows the averaged number of
false peaks detected in each simulation.

Table 1 shows the averaged results for one hundred inde-
pendent simulations. Both methods have similar detection
capabilities and outperform the adaptive threshold proce-
dure but increase the number of spurious spikes.

We have tested the first algorithm applying other con-
vergence criteria. Using only the Sl estimate or the N2
estimate, all the criteria achieve similar results. This can
be explained noting that if for a solution x*, ||x*||1 is close
to Si, then, ||z — Hx™||2 will be near to N».

Both methods use estimates of Ny and Si, therefore it is
important to study their robustness against errors in the
estimates. To do so, we have repeated the same one hun-
dred simulations but in this case we introduced random
errors in the estimates; i.e., we considered that Sl and N2
were two random variables uniformly distributed in the in-
tervals [S1(1 — €1),S1(1 + €1)] and [N2(1 — €2), No(1 + €2)]
with 0 < €1, 62 < 1. To simplify the results, we assume the
same error percentage for both estimates, i.e., €1 = €2 = €.
Figure 2 shows the worsening in detection percentage for
the first algorithm and e varying from 0 to 1. Besides,
the average number of spurious spikes remains nearly con-
stant. So we can conclude that the proposed method is
remarkably robust. On the other hand, the minimization
of ®,(%, o) is less robust against errors in Ny and S;. this
is understandable because in the first approach the errors
only affect the convergence criterion, while in the second
approach they affect the objective function, thus modifying
the algorithm itself.
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Figure 2. Degradation in the detection performance for the
first method when there are errors in N2 and Sy



4.2.  Ezperiment 2

In this example we evaluate the performance of our al-
gorithms using synthetic signals according to the following
model: x(k)=r(k)q(k); where q(k) is a Bernoulli process for
which q(k) =1 with probability A and q(k)=0 with proba-
bility 1-); r(k) is a white random process with zero mean,
variance o2 and whose amplitudes fit a Gaussian or uniform
distribution (in particular, the Gaussian distribution is of-
ten used for seismic deconvolution cases). Registers of five
hundred samples were generated according to the above
models (with A = 0.05 and ¢2 = 10), and then convolved
with the source wavelet described in Example 1. Finally, a
zero mean Gaussian noise was added to the result.

For this example, the simulations compare the perfor-
mance of the algorithms corresponding to:

B1) Cost function ®;(%,a) with an optimum weighting
parameter chosen to fulfill (6).

B2) Cost function ®2(%, ) with a fixed weighting para-
meter.

B3) One-shot threshold detector [1].

Figure 3 shows the results obtained with the first method
before thresholding. The signal has a Gaussian amplitude
distribution and the SNR= 8 dB.

Table 2 shows the averaged results of 25 simulations
when there is a Gaussian (Table 2.a) or a uniform (Ta-
ble 2.b) amplitude distribution. The SNR for this example
is 4 dB. Somehow surprisingly, the three algorithms give
better results for a uniform amplitude distribution of the
sparse signal. However, this can be easily explained since
for a fixed variance, data driven from a Gaussian distri-
bution are near zero (and, therefore, are more difficult to
detect) with higher probability than if they were driven
from a uniform distribution. It is clear that the proposed
methods outperform the one-shot threshold detector.

0 50 100 150 200 250 300 350 400 450

Figure 3. Solution obtained with the first algorithm before
thresholding, Gaussian amplitude distribution and SNR= 8
dB. Circles depict true event amplitudes.

5. Conclusions

In this paper we have presented two new methods to
recover a sparse signal from a noisy register. They use
a gradient-type algorithm and incorporate statistical in-
formation about the signal and noise. The methods are
computationally simple and efficient, and they achieve

a) B1 B2 | B3
correct 70.7 | 68.1 | 56.6
detections (%)
false 1,5 1.6 0.7
detections (%)
b) B1 B2 | B3
correct T1.3 | 73.7 | 64.2
detections (%)
false 1.5 1.3 0.4
detections (%)

Table 2. Averaged results for the three detectors (SNR=4
dB). The first column shows the average detection percent-
age, and the second the percentage of false peaks detected.
a) Gaussian amplitude distribution and b) Uniform amplitude
distribution.

good performance when applied to a wide variety of ex-
amples. The first method (which uses the statistical in-
formation to derive a convergence criterion to obtain the
optimum weighting parameter) is more robust than the
second (which includes the statistical information in the
objective function), but it is slightly more involved.

Open study lines in this weighted objective approach
are: to include other regularized functionals and other ap-
proaches to adjust the regularizing parameter; as well as to
modify these methods to apply them to the (dual) problem
of sinusoid detection.
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