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Abstract

Chaotic signals are potentially attractive in a wide range of signal processing applications. This paper deals with Bayesian
estimation of chaotic sequences generated by piecewise-linear (PWL) maps and observed in white Gaussian noise. The
existence of invariant distributions associated with these sequences makes the development of Bayesian estimators quite
natural. Both maximum a posteriori (MAP) and minimum mean square error (MS) estimators are derived. Computer
simulations confirm the expected performance of both approaches, and show how the inclusion of a priori information

produces in most cases an increase in performance over the maximum likelihood (ML) case.
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1. Introduction

Chaotic signals, i.e., signals generated by a
non-linear dynamical system in chaotic state, rep-
resent an attractive class of signals for modeling
physical phenomena. Furthermore these signals may
provide a new mechanism for signal design in com-
munications and remote sensing applications. From
a signal processing perspective, the detection, esti-
mation, analysis and characterization of this type of
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signals represents a significant challenge [5]. In this
work, we deal with chaotic signals generated by
iterating one-dimensional PWL maps. These maps, al-
though very simple, show a very complex behaviour,
and have been applied in several signal processing
and communication applications. An important class
of PWL maps are the Markov maps. Signals generated
by Markov maps have many interesting properties,
for example, all of them have rational power spectral
densities [3]. In this work, we consider the estimation
of signals generated by PWL maps and observed in
white Gaussian noise.

Several authors have proposed signal estimation al-
gorithms for chaotic signals [1,4,10]. These methods
are usually based on the connection between the sym-
bolic sequence associated to a particular chaotic signal
and its initial condition, and are, in general, subop-
timal. A dynamical programming approach has been
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also proposed [4]. ML estimators have been devel-
oped for the tent map dynamics [8], and generalized
to all PWL maps [7]. In [6] a Bayesian estimator for
chaotic signals generated by the tent map has been
proposed. A recent issue of the Proceedings of IEEE
has been devoted to applications of chaotic signals to
electronic and information engineering; with many in-
teresting applications of chaotic signals to communi-
cations, modeling and signal processing [2].

In this paper, we extend the study of Pantaleon et
al. [6] and develop Bayesian estimators for chaotic
signals whose dynamics are governed by PWL maps.
The selection of the a priori density is based on the in-
variant density associated with chaotic sequences gen-
erated by PWL maps. The derivation of the Bayesian
estimators is based on a closed form expression for
the n-fold composition of the PWL map, necessary to
obtain the posterior density. The resulting MAP and
MS estimators show good performance at low SNR
in comparison with ML estimates, are asymptotically
unbiased, and achieve the CRLB at high SNR.

2. Symbolic dynamics of piecewise-linear maps

In this section, we discuss briefly the symbolic
dynamics of PWL maps, a more detailed discussion
can be found in [7,11]. We consider PWL maps
F:[0,1] — [0,1]. The interval [0,1] is partitioned

into M disjoint convex intervals E;, i=1,...,M. Then
F is defined as
Fx)y=ax+b;, ifxckE, (1)

where all the a; and b; are known constants. This for-
mulation includes all piecewise linear maps on the unit
interval, continuous or not, including Markov maps
[3]. An example of Markov map is shown in Fig. 1;
it is defined by the coefficients

l1—a -1

a; = , bi=a, a=
a 1—a

by = — @)
1—a

with £y =0, a] and E, =[a, 1], that satisfy the Marko-
vian property that partition points map to partition
points. Chaotic signals may be generated by iterating
an unknown initial condition x[0] € [0, 1] according to

x[n] = F(x[n — 1]). 3)

f(z)

a1z

Fig. 1. PWL Markov map with two partition elements.

We will denote F* the k-fold composition of F. We
will also denote the symbolic sequence—itinerary—
associated to a chaotic signal of length N+1 as a length
N sequence of symbols s = {s[0],s[1],...,s[N — 1]},
where s[k] = i if F¥(x[0]) € E;. We define Sy as the
map that associates an initial condition in [0, 1] to its
corresponding symbolic sequence of length N.

We can define another partition of the phase space
in a collection of P intervals R; composed of the
points in [0, 1] that share a common length N sym-
bolic sequence. Given a certain itinerary s; we define
R;={x€[0,1]: Sy(x)=s,;}. Every point in the phase
space belongs to one and only one of these sets, and, if
the E;’s are convex sets, the R;’s are also convex [11].
If all the linear components are onto, all the symbolic
sequences are admissible and there are P = MV re-
gions R;. If any of the linear components is not onto,
some symbolic sequences will not be admissible and
P <MV,

We will denote F¥(x[0]) as the k-fold composition
of F for an initial condition x[0] with Sy(x[0]) =s.
Given a known itinerary, we can write a closed form
expression for F¥(x[0]). If we define

Aé’k: H As[n] (4)

and A2* = 1, then we have
k=1

FEx[0]) = AE*x[0] + )~ Al¥ by (5)
1=0

Note the linear dependence on the initial condition
in (5). The index s stresses the fact that (5) is only
equivalent to F¥(x[0]) if the itinerary of x[0] is given
by s. Let us finally define an indicator (sometimes
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called characteristic) function

) 1 if)CERj, 6)
7i(x) =
’ 0 ifx¢R,.

With this definition we may express F(x) as

P
FRa) = 1i()FE(x). (7)

J=1

As a conclusion, given any PWL map, we can define
a partition of the phase space in convex intervals R; in
which all the points share the same symbolic sequence
of length N. In this case, given an itinerary s;, (5) is a
closed form expression for F¥(x[0]) in the domain R;.

3. Bayesian estimation of PWL map sequences
3.1. Problem statement

The data model for the problem we are considering
is

y[n]l=x[n]+w[n], n=0,1,...,N, (8)

where w[n] is a stationary, zero-mean white Gaussian
noise with variance ¢2, and x[n] is generated using
(1) by iterating some unknown x[0] according to (3).
In this paper, we will address Bayesian estimation of
the initial condition x[0]. The rest of the signal com-
ponents may be estimated in a similar way.

3.2. Prior density

To develop the Bayesian estimators, we need to
define the prior density for the initial condition x[0].
The obvious choice is to assign the invariant den-
sity associated with the known map. In many cases,
closed form expressions exist for these densities,
as is the case of Markov maps [3] where they are
piecewise-constant. In those cases for which no closed
form expressions are available, we propose to express
the prior densities according to

,
PGI01) = pjz(x[0]), 9)

J=1

where the p; constants are given by
1

= | pwx (10)
J JR;

and 4, is the width of the region R;. The invariant den-
sity is substituted by a staircase approximation. This
model is exact in many cases, as in Markov maps, and
is a reasonable approximation in most cases. For ex-
ample the map in (2) has an invariant density with the
form of (9) with p;=1/(1+a) and p,=1/(1—a?*) [3].
In a general case, the constants p; may be estimated
from long sequences of data generated according to
the model given by (1) and (3).

3.3. Posterior density

Since our observations y = {y[0], ¥[1],..., ¥[N]}
are a collection of independent Gaussian random vari-
ables with equal variance, the conditional density may
be expressed as

p(y[x[0]) =

A 6: ()
(\/27[0-)1\1H P 2062 >
where J(x[0]) is given by

N

TG0 = (yIk] — FX G012 (11)
k=0

Using (5), we can express (11) in a certain region R;

as

N

JiGI0]) = S (K] — FEGLOD)Y, (12)
k=0

so we can write (11) as

P
J([0]) =Y 7;(x[01);(x[0]).
j=1
Finally, the conditional density may be expressed as

1 P
PORIOD = o ; 1,(x101)

comp (2.

Applying the Bayes rule, and using (9) as the prior
density, the posterior density becomes

P 7, 0
PGL01Y) =K D piz(+[0]) exp (— Sl D) ,

4 202
J=1
(13)
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where K is a normalization constant. It is clear from
(5) that (12) is a quadratic function of x[0] in each R;.
Differentiating and solving for the unique minimum
we obtain

k—1
S ohoo(VTK] = Y012y Al gy —y)AEE

o
o S

>

(14)

where 4. is given by (4) with itinerary s; and s;[n]
is the nth component of's;. Using (14) we can express
J;(x[0]) in the following way

N
Ji(x[0]) = J;(,[0]) + (x[0] — £;[0])* D "(4E* 2.
k=0

(15)

Finally, substituting (15) into (13), and after some
straightforward calculations, we obtain

P
p{0IlY) =K q;7;(x[0])

j=1
5. 2
xexp<_<x[01 sG] ) S e
J
where
o (_J,(;EJ-[O]))
qj = Pj€Xp 752 5

N —1
2_ 2 k2
gj =0 Z(AS/
k=0

and
P

K™'=>"p;B;, (17)
j=1

where

. 2
B = /R oxp <_(x[°] 26);/[0]) )dx[O].

J J
3.4. Bayesian estimators

The posterior density given by (16) is composed of
P truncated Gaussians weighted by the coefficients ¢;,
as is shown in Fig. 2 for the map defined by (2) for
N =3, x[0] = 0.4 and SNR = 10 dB. The maximum
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Fig. 2. Posterior density of the observations for N =3, x[0] = 0.4
and SNR = 10 dB. The dashed lines mark the region boundaries.

of each Gaussian is given by the ML estimate for a
known itinerary [7]

4, [0] = min(RY, max(R}, £,[0])), (18)

where R} and R} are the lower and upper limits of the
region R;.

The MAP estimator is obtained from the ML esti-
mator as Xpap[0] = X3y, [0], where

_ , J(#.[0]
m= arg;nax {p, exp (—202 s

j=1,...P. (19)

The MS estimate is the mean of the posterior density
given by (16). The resulting estimator is

P 2 .
fusl0] =K Y 0,8, (f,-m] -2 g(é,~)> o)
Jj=1 J

where &; = x;[0] — d; is the displacement of each es-
timate from the midpoint, d;, of the associated region
of width 4;, and

By _(éj*l‘j/z)2
g(é,-)—@XP( BT )
(& + 4,2
_exp<_265 ) (21)

Both Bayesian estimators clearly resemble, in each
region, the well-known MAP and MS estimators for a
constant signal in Gaussian noise with uniform prior
density [9].
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Fig. 3. Number of symbolic sequences of length N.

4. Numerical results

In this section, we return to the Markov map defined
in (2). For this PWL map not all the itineraries are
admissible. In particular, since all x € E| are mapped
onto FE,, it is not possible for any itinerary to have
s[n]=s[n+1]=1. Taking into account this restriction,
it is straightforward to derive a recurrence rule for
P(N), the number of itineraries of length N. As shown
in Fig. 3, the number of symbolic sequences of length
N can be decomposed into two groups. On the one
hand, for each itinerary of length N — 1, a length N
itinerary can be obtained by appending a symbol 2
at the end. On the other hand, for each itinerary of
length N — 1 that ends with a symbol 2, a length N
itinerary can be obtained by appending a symbol 1 at
the end. However, according to the rule for the first
group, the number of length N — 1 itineraries that
ends with symbol 2 must be equal to the total number
of itineraries of length N — 2. From the construction
above, it is clear that P(N)=P(N — 1)+ P(N —2),
the same recurrence rule as the Fibonacci sequence.
Given the initial conditions P(1)=2 and P(2)=3, the
recurrence can be solved to provide the closed form

N
P(N):5+3ﬁ <1+\@>

10 2

535 (1-v5)
(155

The number of symbolic sequences, which determines
the number of regions in the partition of the phase
space, grows much slower than the limit 2V . For ex-
ample, for N = 10, the number of regions is 144,

Table 1
MSE of the three estimators as a function of the SNR
SNR MSE (dB)

ML MAP MS
10 18.2 20.7 20.8
15 30.1 31.1 33.0
20 40.0 40.6 41.9
25 47.9 48.2 49.4
30 54.9 55.1 55.9
45 73.1 73.2 73.3

almost an order of magnitude smaller than the limit
1024.

To check the method, a PWL given by (2) with
a = 0.75 has been chosen. In all the simulations the
register length is N = 6. One thousand initial condi-
tions x[0] have been randomly generated according to
the prior density of the map. For each one of the ini-
tial conditions, the sequence x[n] is generated by iter-
ating (3). This sequence is used to build 1000 noisy
sequences y[n] for each SNR. Table 1 shows the MSE
for the three estimators.

An example of the behaviour of the three estimators
for a given initial condition is shown in Fig. 4 also with
a = 0.75. In this case, (3) has been used to generate
a sequence x[n] for the initial condition x[0] = 0.83.
From this sequence, one thousand noisy signals y[n]
have been randomly generated for each SNR, and the
MSE has been calculated by averaging the results.

5. Conclusions

In this work, we have developed Bayesian esti-
mators for a class of chaotic signals generated by
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Fig. 4. The mean square error (MSE) for the three estimators: ML (O0), MAP (+), and MS (O) is shown against the Cramer—Rao lower

bound (dashed line).

iterating PWL maps and observed in white Gaussian
noise. Using the itinerary associated to any chaotic se-
quence, we have developed a closed form expression
for the conditional density of the initial condition. Ap-
plying the Bayes rule, we obtain the posterior density
using the invariant density of the map as prior density.
The resulting Bayesian estimators improve the ML es-
timator performance at low SNRs. The computational
cost, although increased over the ML estimator, re-
mains reasonable for moderate sized data records.

Further lines of research include searching for new
performance bounds that better capture the per-
formance of optimal estimators and looking for
suboptimal estimation approaches that reduce the
computational cost by only considering a small subset
of the possible itineraries.
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