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A comparative study among several nonlinear high-power amplifier (HPA) models using real measurements is carried out. The
analysis is focused on specific models for wideband OFDM signals, which are known to be very sensitive to nonlinear distortion.
Moreover, unlike conventional techniques, which typically use a single-tone test signal and power measurements, in this study
the models are fitted using subsampled time-domain data. The in-band and out-of-band (spectral regrowth) performances of the
following models are evaluated and compared: Saleh’s model, envelope polynomial model (EPM), Volterra model, the multilayer
perceptron (MLP) model, and the smoothed piecewise-linear (SPWL) model. The study shows that the SPWL model provides
the best in-band characterization of the HPA. On the other hand, the Volterra model provides a good trade-off between model
complexity (number of parameters) and performance.
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1. INTRODUCTION

Practical high-power amplifiers (HPAs) exhibit nonlinear
behavior, which can become dominant unless the HPA is
far from its saturation point. Therefore, to have an accu-
rate nonlinear model for the amplifier is a key factor in
order to either evaluate the communication system perfor-
mance by computer simulation or develop compensation
techniques to linearize its behavior (using a predistorter, for
instance).

Typically, a power amplifier is represented by nonlinear
amplitude (AM/AM) and phase (AM/PM) functions in ei-
ther polar or quadrature form. These AM/AM and AM/PM
curves are measured using a single-tone test signal in the cen-
ter of the band and they are assumed to be frequency inde-
pendent (memoryless) over the bandwidth of the commu-
nications signal. This assumption limits its use to narrow-
band applications. A widely used model belonging to this
type is Saleh’s model [1], which represents the AM/AM and
AM/PM curves by two-parameter formulas. This model can
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be extended to wideband signals by considering the model
parameters as functions of the frequency [1, 2]. Neverthe-
less, the model parameters are again fitted using a sweeping
single-tone signal and not a wideband input. This fact ques-
tions the model’s validity for arbitrary wideband signal with
high peak-to-average power ratio such as OFDM. On the
other hand, single-tone power measurements cannot be used
to accurately characterize phenomena such as intermodula-
tion distortion or spectral regrowth.

Despite its practical limitations, Saleh’s model, derived
from power continuous-wave measurements, is still widely
used in the literature to propose and analyze different lin-
earization techniques for wideband systems [3, 4]. More-
over, the performance of these proposals is typically evalu-
ated by means of computer simulations. Therefore, it is ex-
pected that the mismatch between the actual HPA and the as-
sumed model will cause some degradation of these lineariza-
tion techniques in practice.

Our first claim is that to avoid these drawbacks, the
HPA models should be obtained by fitting the input-output
time-domain complex envelope of the wideband signal. In
the previous years, several methods for time-domain char-
acterization of RF power amplifiers have been proposed
[5, 6]. In general, these techniques sample a demodulated
version of the baseband signal, thus requiring up- and
downconverter mixers as well as a preamplifier. These de-
vices must be highly linear, otherwise they would intro-
duce additional nonlinear distortion. A solution to remove
frequency conversion errors from the measurement system
has been proposed in [7]; however, it requires a precise
calibration of the converters and the final setup is quite
complex.

In this paper, we use subsampling techniques to directly
sample the input and output (attenuated if necessary) of the
HPA. With the current data acquisition and instrumenta-
tion technology, it is possible to use subsampling for low mi-
crowave frequency bands (L and C) at a reasonable cost. Us-
ing this measurement setup, it is possible to develop models
from subsampled time-domain data.

In this paper, we develop new models for a GaAs MES-
FET power amplifier working at 1.45 GHz. In particular, we
concentrate on models specific for OFDM signals, which
are known to be extremely sensitive to nonlinear distor-
tion. A number of experiments varying the power and band-
width of the multicarrier input signal have been performed.
Using the acquired data, a comparative study among the
following nonlinear models was carried out: Saleh’s model
[1], envelope polynomial models (EPMs) with memory [8],
Volterra models [9, 10], the multilayer perceptron (MLP)
model [11, 12] and the smoothed canonical piecewise lin-
ear model [13]. Some conclusions about the memory of the
system are also obtained by using an information-theoretic
criterion.

The paper is organized as follows. In Section 2, we de-
scribe the measurement systems and the discrete-time sig-
nal processing carried out to obtain the input-output com-
plex envelope for the HPA. Section 3 briefly describes the
main characteristics of the nonlinear models used in this

Figure 1: Experimental setup.

study. The performances of these models are compared in
Section 4. Finally, the main conclusions are summarized in
Section 5.

2. MEASUREMENT SETUP

The power amplifier used in this study is a Motorola model
MRFC1818 GaAs MESFET. The MRFC1818 is specified for
33 dBm output power with power gain over 30 dB from a
4.8 V supply. The used HPA was tuned to provide maximum
power at 1.45 GHz.

Figures 1 and 2 show the experimental setup and a
schematic block diagram of the system, respectively. An
RF signal generator (HP4432B) generates the multicarrier
signal; the signal goes through a passband filter tuned to
1.45 GHz and with bandwidth 80 MHz; and finally, the in-
put signal is acquired using a digital oscilloscope (Tektronix
model TDS694C) which is able to sample up to 10 GHz and
store in memory a register of 120 000 samples. An exact
replica of the acquired input signal, provided by the splitter,
is amplified by the HPA under test, bandpass filtered, atten-
uated (when the signal level is too high), and acquired using
the second channel of the oscilloscope.

In this study, OFDM signals with 64 subcarriers were
generated using the RF generator HP4432B. Different sub-
carrier spacing values were considered ∆ f = 45, 60, 75, 90,
105, 120, 135, and 150 kHz; in this way, the bandwidth of the
OFDM signal ranges from 3 MHz to 10 MHz, approximately.
Similarly, we carried out the experiments for different input
power levels Pi = 0, 3, 6, and 9 dBm, covering from an al-
most linear amplifier behavior to a strongly saturated point.
Finally, we considered different modulation formats for each
subcarrier (e.g., BPSK, QPSK, and 64QAM). The main con-
clusions of this study, however, do not depend on the partic-
ular modulation format for each subcarrier.

The processing to acquire the time-domain complex en-
velope for each experiment is the following. First, the digi-
tal oscilloscope acquires the input and output signals using
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Figure 2: Schematic diagram of the measurement system.

a sampling frequency of 1.25 GHz. These registers are then
transferred via GPIB to a PC. The input and output bandpass
OFDM signals, which were originally centered at 1.45 GHz,
are centered at 1.45 GHz − 1.25 GHz = 200 MHz after the
subsampling stage.

Since the passband filters of Figure 2 are not identical,
there is some delay between the acquired input and output
signals that must be corrected before further processing. This
linear delay has been estimated by searching the maximum
of the cross-correlation function between the input and out-
put complex envelopes. Note that the delay is estimated at the
higher sampling rate (i.e., at 1.25 GHz), then the uncorrected
delay that can be erroneously attributed to the HPA is lower
than the sampling period T = 0.8 nanosecond. Using the es-
timated linear delay, the input and output complex envelopes
are properly time aligned.

Next, the signals are demodulated by the complex expo-
nential sequence g[n] = e− j2π0.16n, thus shifting the positive
part of the spectrum of the OFDM signals to zero frequency.
The complex signals are then lowpass filtered using an FIR
filter with 100 coefficients. The specifications of this filter are
the following: passband cutoff frequency = 15 MHz, tran-
sition band = 7 MHz, stopband attenuation = 60 dB, and
passband ripple= 1 dB. Finally, the signals are downsampled
by a factor of 40, so the final sampling frequency is approx-
imately 31 MHz. In this way, the complex envelope of the
OFDM signal with the largest bandwidth occupies the band
0–5 MHz, and the oversampling ratio is approximately 3. We
consider that this value is enough to characterize the spectral
regrowth. With these parameters, the estimated SNR of the
input register is approximately 35 dB; this value can be con-
sidered as an upper bound on the performance that a perfect
HPA model could provide.

The length of the stored registers after downsampling is
3000 samples and we repeat each experiment three times;
therefore, for each couple (BWi, Pi), we have 9000 samples
of the input-output complex envelope.

An example to highlight the severity of the HPA nonlin-
ear behavior is shown in Figure 3. Here the signal constella-
tion at the output of the FFT processor is plotted for a 6 MHz
and 3 dBm 64QAM-OFDM test signal. Unlike single-carrier
systems, for which compression and warping effects appear
clearly in the constellation, in multicarrier systems, the non-
linear distortion provokes three effects: a phase rotation, a
slight warping of the constellation, and, mainly, a distortion
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Figure 3: Signal constellation at the output of the FFT processor for
a 64QAM-OFDM signal with BW = 10 MHz and Pi =3 dBm.

that can be modeled as an additive noise. Taking into ac-
count that an OFDM signal with a sufficiently large number
of carriers can be modeled by a complex Gaussian process
with Rayleigh envelope and uniform phase distributions, this
nonlinear distortion noise can be theoretically characterized
as it is shown in [14, 15].

3. HPA NONLINEAR MODELS

In this section, we briefly describe the different nonlinear
models compared in the study. For each model, we tested
polar (modulus/phase) and quadrature (I/Q) configurations.
Except for Saleh’s model, for which only a polar config-
uration is considered, the quadrature structure performed
slightly better for all the models. For this reason, we will con-
sider only quadrature models.

Probably the most widely known memoryless nonlinear
HPA model is Saleh’s model, which considers that if the sam-
pled passband input signal is

r[n] = x[n] cos
(
ω0n + φ[n]

)
, (1)

then the corresponding output signal is

z[n] = A
(
x[n]

)
cos
(
ω0n + φ[n] + Φ

(
x[n]

))
, (2)
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Figure 4: Envelope polynomial model.

where the AM/AM and AM/PM curves are given by

A
(
x[n]

) = αax[n]
1 + βax[n]2

,

Φ
(
x[n]

) = αΦx[n]
1 + βΦx[n]2

.
(3)

Typically, the four parameters of the model are obtained us-
ing a single-tone test signal, measuring the amplitude and
phase difference, and fitting the curves (3). However, since
our goal is to develop specific models for wideband OFDM
signals, we have obtained the model parameters by fitting the
input-output complex envelope of the subsampled OFDM
signal.

In Saleh’s model, it is assumed that the characteristics
of the HPA are independent of the frequency (memoryless
model). In practice, however, when broad-band input signals
are involved, a frequency-dependent HPA model is needed.
To take into account the memory effects, we use a time de-
lay embedding of the subsampled complex envelope, that is,
denoting as x[n] and y[n] the input and output complex en-
velopes of the wideband OFDM signals, the nonlinear mod-
els considered in this paper can be expressed through the fol-
lowing nonlinear mapping:

(
yI[n], yQ[n]

) = f
(
xI[n], xQ[n], . . . , xI[n− d], xQ[n− d]

)
.

(4)

The choice of the maximum time delay d plays an important
role in the performance of the model (4). This value depends
on the particular characteristics of the amplifier, as well as
on other factors such as the oversampling ratio of the mea-
surement data set. In this study, we have used the mutual in-
formation between the time series y[n] and the delayed time
series x[n−k] as an appropriate criterion to estimate the op-
timum value of the time delay d. The time-delayed mutual
information was suggested by Fraser and Swinney [16] as a
tool to determine a reasonable delay. Unlike the autocorre-
lation function, the mutual information takes into account
also nonlinear correlations. In particular, a detailed analysis
that will be described later concluded that the memory of the
HPA is just one tap (i.e., any model with memory should use
the current and the past sample of the complex envelope). No

improvement in performance was achieved by using more
than one tap of memory.

The first model with memory is the EPM [2, 8] repre-
sented in Figure 4. The in-phase and quadrature submod-
els of order (L,N) have the following input-output relation-
ships:

ỹI[n] =
L∑

k=0

N∑
j=1

bIk j
∣∣xI[n− k]

∣∣ j ,
ỹQ[n] =

L∑
k=0

N∑
j=1

bQk j
∣∣xQ[n− k]

∣∣ j ,
(5)

where L denotes the memory and N is the highest poly-
nomial order (note that there is not constant term in the
polynomial). In the model, the polynomials operate over the
modulus of the I/Q components, whereas the phase of the in-
put complex envelope is added at the output. A general study
carried out with this model concluded that the best perfor-
mance was obtained with an EPM(1, 3) with a total number
of 12 parameters.

A more general polynomial model with memory is a
Volterra series representation of the HPA. In particular, we
consider a form of Volterra series suitable to represent band-
pass channels [9]:

y[n] =
M∑
k=0



(

2k+1
k

)
22k

L∑
l1=0

· · ·
L∑

l2k+1=0

h2k+1
[
l1, . . . , l2k+1

]

×
k∏

r=1

x∗
[
n− lr

] 2k+1∏
s=k+1

x
[
n− ls

],
(6)

where x[n] and y[n] denote the input and output complex
envelopes, respectively, and h2k+1[l1, . . . , l2k+1] represent the
lowpass equivalent Volterra kernels.

Equation (6) represents a Volterra series expansion of a
causal bandpass system for which the terms not lying near
the center frequency have been filtered out, and hence have
been neglected in the series. The complexity of the Volterra
series depends on the number of odd terms in the expan-
sion 1, 3, . . . , 2M + 1 as well as on its memory L: this model
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is then denoted as Volterra(2M + 1, L). The study carried out
with this model concluded that the best performance was ob-
tained with a Volterra(3, 1) model; that is, only the linear and
the third-order terms are retained in (6). The total number
of parameters in this case is 20.

The fourth model considered in this study is a conven-
tional MLP whose input-output mapping is given by

yn = WT
2 tanh

(
W1xn + b1

)
+ b2, (7)

where xn = (xI[n], xQ[n], xI[n− 1], xQ[n− 1])T is the input
vector, yn = (yI[n], yQ[n])T is the output, W1 is an n × 4
matrix connecting the input layer with the hidden layer, b1

is an n × 1 vector of biases for the hidden neurons, W2 is an
n × 2 matrix of weights connecting the hidden layer to the
output neurons, and b2 is an 2 × 1 vector of biases for the
output neurons. Therefore, we have an MLP(4, N, 2) struc-
ture, where N denotes the number of neurons in the hidden
layer. For the MRFC1818 amplifier, the number of neurons
to achieve the best performance is N = 10; then, the total
number of parameters of the MLP(4, 10, 2) model is 72. The
training of this structure to minimize the mean square error
criterion has been carried out using the backpropagation al-
gorithm [17].

Finally, in this study, we consider the SPWL Model [13],
which is an extension of the canonical Piecewise-Linear
(PWL)model proposed by Chua for microwave device mod-
eling [18, 19]. In its basic formulation, the canonical PWL
performs the following mapping:

yn = a + Bxn +
N∑
i=1

ci
∣∣〈αi, xn

〉− βi
∣∣, (8)

where a and ci are 2×1 vectors, αi is a 4×1 vector, B is a 2×4
matrix, βi is a scalar, and 〈·, ·〉 denotes inner product.

The PWL model divides the input space into different re-
gions limited by hyperplanes, and in each region, the func-
tion is composed by a linear combination of hyperplanes.
The expression inside the absolute value defines the bound-
aries partitioning the input space.

The main drawback of the PWL model is that, like the
absolute value function, is not derivable. The SPWL model
overcomes this lack of derivability by smoothing the bound-
aries among hyperplanes using the function

lch(x, γ) = 1
γ

ln
(
cosh(γx)

)
, (9)

where γ is a parameter controlling the smoothness of the
model. Thus, the SPWL(4, N, 2) model with N boundaries
performs the following mapping:

yn = a + Bxn +
N∑
i=1

cilch
(〈
αi, xn

〉− βi, γ
)
. (10)

In this model, we have used N = 10 boundaries for a total
number of 71 parameters.

The SPWL has three different kinds of parameters: those
defining the boundaries partitioning the input space: αi and
βi; those defining the linear combination of the model com-
ponents: a, B, and ci; and the smoothing parameter γ. The
training algorithm for the SPWL model is an iterative al-
gorithm based on the successive adaptation of the bound-
aries and the estimate of the optimal coefficients for that
given partition. The adaptation of the parameters defining
the boundaries in the input space is based on a second-order
gradient method. Once the boundaries are fixed, the MSE
is a quadratic function of the parameters defining the linear
combination of the components, and the minimum can be
easily found by solving a linear least squares problem. Then,
the boundaries are adapted again and the process is repeated
iteratively. On the other hand, the smoothness parameter γ
is typically a value fixed in advance. More details of this algo-
rithm can be found in [13, 18].

4. EXPERIMENTAL RESULTS

In this section, we first draw some conclusions about the
required memory (maximum time delay) of the nonlinear
models. Then we compare the performance of the previ-
ously described nonlinear models. Throughout this section,
we use QPSK-OFDM and BPSK-OFDM wideband signals.
However, we have found that the main conclusions do not
depend on the particular modulation format on each sub-
carrier.

4.1. Data set analysis

The training and testing sets are formed from the subsam-
pled time-domain measurements as follows: for each band-
width and input power, we have 9000 samples of the input-
output complex envelope; 3000 samples are retained for
training the models and 6000 for testing. We have carried out
measurements for 8 different bandwidths 3, 4, 5, 6, 7, 8, 9,
and 10 MHz, and for four different input powers Pi = 0, 3, 6,
and 9 dBm. Therefore, the final training and testing sets for
each input power are composed of 24000 and 48000 complex
samples, respectively. Our aim is to obtain a different model,
independent of the bandwidth, for each input power.

As discussed in Section 3, the choice of the maximum
delay d of the time embedding (i.e., the memory) plays an
important role in the performance of the HPA model. As-
suming that the number of carriers is sufficiently large, the
OFDM signal can be modeled by a complex Gaussian pro-
cess with independent I/Q components. For this reason, here
we consider the simpler problem of estimating the optimum
value of d for the mapping yI[n] = f (xI[n], . . . , xI[n − d]);
the conclusions can be readily extended to the global nonlin-
ear model (4). To this end we use an information-theoretic
criterion; specifically, we estimate the mutual information
between the output time series yI[n] and the delayed input
time series xI[n−k]: a value of the mutual information close
to zero indicates that there is not any statistical relationship
between the two time series. This criterion has been previ-
ously used to estimate the dimensionality of dynamical sys-
tems from experimental time series [16, 20].
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For two random variables Y and X , mutual information
can be estimated using the Kullback-Leibler (KL) divergence
between the joint probability density function (pdf) and the
factored marginals, that is,

IKL(Y,X) =
∫∫

fYX(y, x) log
fYX(y, x)
fY (y) fX(x)

dy dx. (11)

The mutual information is a natural measure of the depen-
dence between random variables. It is always nonnegative,
and is zero if and only if the variables are statistically inde-
pendent. Thus the mutual information takes into account the
whole dependence structure of the variables. The problem
with mutual information is that it is difficult to estimate from
data. To solve this problem in this study, we have used the fol-
lowing alternative information-theoretic distance measure

IQMI(Y,X)

= log

( ∫∫
fYX(y, x)2dy dx

)( ∫∫
fY (y)2 fX(x)2dy dx

)
( ∫∫

fYX(y, x) fY (y) fX(x)dy dx
)2 ,

(12)

which is denoted as quadratic mutual information (QMI)
and was proposed in [21, 22]. It can be viewed as a general-
ized correlation coefficient that estimates the angle between
the joint pdf and the product of the marginals. If we estimate
the joint pdf and both marginals using the Parzen window
method with Gaussian kernels, then the QMI can be easily
evaluated: this is the main advantage of (12) in comparison
to (11). The details of the estimation procedure can be found
in [21, 22].

Our aim here is to quantify the amount of “new” infor-
mation that xI[n − k] provides about yI[n]. Therefore, be-
fore estimating the mutual information between xI[n − k]
and yI[n], we must subtract somehow the information al-
ready provided by the previous inputs xI[n], . . . , xI[n−k+1].
Specifically, the applied preprocessing step consists of calcu-
lating the mutual information between the delayed time se-
ries xI[n − k] and the residual after linear prediction e[n] =
yI[n] − ∑k−1

l=0 alxI[n − l], for k ≥ 1. In this way, we elimi-
nate any statistical linear relationship between yI[n] and the
previous inputs xI[n], . . . , xI[n− k + 1].

Figure 5 shows the results obtained for a QPSK-OFDM
signal with Pi = 9 dBm and different bandwidths. For k ≥ 2,
the mutual information between yI[n] and xI[n− k] is prac-
tically zero, so both time series can be considered as statisti-
cally independent. The conclusion of this analysis is that all
the information about y[n] can be extracted from x[n] and
x[n − 1] (i.e., the memory of the nonlinear models is one
tap).

4.2. A comparative study

To have a first qualitative idea about the capabilities of the
obtained models, Figure 6 compares the measured and esti-
mated power spectral densities (PSDs) at the output of the
HPA. In this example, the input signal is a QPSK-OFDM
with bandwidth 6 MHz and input power 3 dBm (represent-
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Figure 6: Measured (dotted line) and estimated (solid line) PSDs at
the output of the HPA. The signal is a QPSK-OFDM with 6 MHz of
bandwidth and 3 dBm of input power. The nonlinear HPA model is
an MLP.

ing a mild nonlinear behavior), and the nonlinear HPA
model is an MLP. The spectral regrowth of the HPA is evi-
dent, indicating its nonlinear behavior. On the other hand,
we observe a good fitting between the measured PSD and the
output of the MLP model. However, the out-of-band distor-
tion at frequencies far from the signal bandwidth tends to
be slightly overestimated. This good agreement between the
measurements and the estimated signals can be also observed
in the time domain (see Figure 7). For higher bandwidths or
higher input powers, the performance of the models tends to
degrade, as we will show in the following examples.
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To carry out a more detailed comparative study among
the different nonlinear models discussed in this paper, we
have considered a BPSK-OFDM signal. A figure of merit,
which captures the in-band behavior of the model, is the
signal-to-error ratio (SER) defined as

SER = 10 log


 ∑

n

∣∣y[n]
∣∣2∑

n

∣∣ ŷ[n]− y[n]
∣∣2


, (13)

where ŷ[n] is the output of the model and y[n] is the actual
output of the HPA.

Another figure of merit, specific to evaluate the out-of-
band behavior of the HPA, is the adjacent channel power ra-
tio (ACPR). It is defined as the ratio between the power in the
input signal bandwidth and the power in either the upper or
lower adjacent channels. In this study, we use the mean of the
power between the lower and upper channels; specifically, the
ACPR is defined as

ACPR
(
S( f )

) = 10 log


 2

∫ B/2
−B/2 S( f )df∫−B/2

−3B/2 S( f )df +
∫ 3B/2
B/2 S( f )df


,
(14)

where B is the bandwidth of the input signal and S( f ) is the
PSD of the acquired signal (over a bandwidth of 30 MHz). In
order to evaluate the ability of the nonlinear HPA models to
reproduce the ACPR, we will use

∆ACPR = ACPR
(
Ŝ( f )

)− ACPR
(
S( f )

)
, (15)

where Ŝ( f ) is the PSD of the output provided by the model
and S( f ) is the true output.

Figures 8 and 9 compare the SER obtained with the five
nonlinear models under test for an input power Pi = 0 dBm
(slightly nonlinear behavior) and Pi = 9 dBm (strongly non-
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Figure 8: SER for an input power Pi = 0 dBm.
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Figure 9: SER for an input power Pi = 9 dBm.

linear behavior), respectively. We can see that, as long as the
bandwidth increases, the performance of all the methods de-
creases. The explanation of the fact is twofold. First, it is
clear that keeping fixed the number of model parameters, it
is more difficult to adjust a larger bandwidth. Secondly, for
larger bandwidths, the distortion due to aliasing increases.
On the other hand, Saleh’s model and the EPM, with only 4
and 12 parameters, respectively, obviously provide worse re-
sults than the MLP, SPWL, and Volterra models, which have a
higher number of parameters (70, 71, and 20, resp.). Finally,
we can conclude that when the HPA is working far from its
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Figure 11: ∆ACPR for an input power Pi = 9 dBm.

saturation point, the best results are provided by the SPWL
and the Volterra models.

When the input power increases and the HPA works close
to its saturation point, the two neural-based models, that
is, the MLP and the SPWL, provide the best results. On the
other hand, the performance of the Volterra model degrades,
specially for the smaller bandwidths. This degradation of
Volterra models for hard nonlinearities is due to the fact that
when the input level tends to infinity, the output of any poly-
nomial model also tends to infinity. Therefore, it is not possi-
ble to accurately model hard clipping effects with polynomial

Table 1: Mean absolute error in the ACPR (in dB).

0 dBm 3 dBm 6 dBm 9 dBm Mean

EPM 1.1200 0.5660 0.5490 0.5710 0.7015

Volterra 0.5980 0.6130 0.6090 0.7030 0.6307

Saleh 2.3981 2.1474 1.7872 0.9990 1.8329

MLP 0.4283 0.4788 0.4364 0.8649 0.5521

SPWL 1.2121 1.3673 1.2230 1.4753 1.3194

models, which is an important drawback of Volterra models
(and EPMs).

To evaluate the out-of-band behavior, that is, the capacity
of modeling the spectral regrowth, Figures 10 and 11 show
the ∆ACPR obtained with each model for Pi = 0 and 9 dBm,
respectively. In these figures, a value of ∆ACPR = 0 means
a perfect match between the out-of-band power of the HPA
and the model output. On the other hand, Table 1 shows the
mean of |∆ACPR | for each input power.

It is interesting to highlight the following points. Despite
its relatively high number of parameters and its good in-
band performance, the SPWL models tend to underestimate
the ACPR, mainly for the larger bandwidths. This means
that the spectral regrowth caused by the nonlinear model is
larger than the actual one. The same behavior is observed for
Saleh’s model. Considering the results obtained for all the in-
put powers (see Table 1), the MLP provides the best results.

Finally, considering both the SER and ACPR results, the
Volterra model, with only 20 parameters, is a good trade-off
between complexity and performance, at least for mild non-
linearities.

5. CONCLUSIONS

In this paper, the characteristics of five nonlinear HPA mod-
els have been compared with respect to their in-band and
out-of-band performances. The comparative study has been
carried out using measurements obtained from a GaAs MES-
FET amplifier, and it has been focused on wideband OFDM
signals. For this kind of signals, conventional models ob-
tained using a single-tone test signal are inadequate and bet-
ter models are obtained by directly fitting the input-output
time-domain complex envelope of the OFDM signal. Con-
sidering the SER, the best results are provided by the SPWL
model, whereas in terms of ACPR, the MLP model gives the
best approximation. This result suggests that different mod-
els (or different training criteria) should be used depending
on whether the aim is to model the in-band or the spec-
tral regrowth behavior. As a final conclusion, we can remark
that the Volterra model provides a good trade-off between
model complexity (number of parameters) and performance
for mild nonlinearities.
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Madrid (UPM), Spain in 1990 and 1994, re-
spectively. In 1990, he joined the Departa-
mento de Ingenierı́a de Comunicaciones at
the Universidad de Cantabria, Spain, where
he is currently an Associate Professor. His
research interests include digital signal pro-
cessing and nonlinear and chaotic systems.

Luis Vielva was born in Santander, Spain in
1966. He received his Licenciado degree and
his Ph.D. degree in physics from the Uni-
versidad de Cantabria, Spain in 1989 and
1997, respectively. In 1989, he joined the
Departamento de Ingenierı́a de Comuni-
caciones, Universidad de Cantabria, Spain,
where he is currently an Associate Profes-
sor. In 2001, he spent a visiting period at the
Computational NeuroEngineering Labora-
tory (CNEL), University of Florida. Dr. Vielva has more than 50
publications in refereed journals and international conference pa-
pers. His current research interests include blind source separation
and bioinformatics.


