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RCS OF ELECTRICALLY LARGE TARGETS 
MODELLED WITH NURBS SURFACES 

J. PBrez and M. F. Catedra 

Indexing terms: Radar cross-sections, Modelling 

A technique is presented for the RCS computation of electri- 
cally large conducting bodies, modelled by NURBS patches, 
using physical optics (PO) and asymptotic expansion of inte- 
grals methods. The NURBS surfaces are transformed in 
Bezier patches to apply PO. Excellent accuracy is obtained. 

Introduction: The radar cross-section (RCS) predictions of 
complex targets need a realistic modelling of the objects. At 
present the most popular target geometry modelling uses flat 
facets [l]. The geometric description is simple but has some 
disadvantages: it needs a very large number of facets in targets 
with complex geometries, artificial wedge appearance, etc. 

An alternative is the NURBS (nonuniform rational B- 
spline) [2] surface design. It presents great advantages in the 
geometrical representation of complex targets. NURBS sur- 
faces are parametric surfaces of arbitrary degree that provide 

(i) good accuracy with a low number of patches 

(ii) the capacity for every geometry to be modelled using a 
relatively low amount of information. 

For these reasons NURBS modelling is currently used in 
many industries to represent complex bodies: aircraft, cars, 
etc. 

PO techniques are used for RCS computation. Asymptotic 
analysis methods [3] are used to calculate the PO integral 
[4]. These techniques have a direct and very simple applica- 
tion in NURBS geometries. 
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T h e o r y :  Given an incident plane wave, under the far field 
approximation, the backscattering field of a general conduct- 
ing surface S predicted by PO theory is given by 

where i is the wavelength, 8, is the amplitude of the incident 
electric field, is the wave vector, ri, is the normal vector at 
surface points, and P and 7 are the observation and source 
points, respectively. 

In this case the integral is extended over NURBS patches. 
NURBS surfaces are piecewise polynomial parametric sur- 
faces normalised with a weight function. They are defined by 
two degrees (one for each parametric co-ordinate), a mesh of 
control points, a set of weights that define the weight function, 
and two knot vectors (one for each parametric co-ordinate). 

The first step in solving the PO integral is to transform the 
NURBS surface into the corresponding rational Bezier 
patches [2] using the Cox-De Boor algorithm [SI. The math- 
ematical treatment of Bezier surfaces is simple and numeri- 
cally stable, and the surface point function computation and 
its derivatives is easy. The union of Bezier patches form the 
corresponding NURBS surface. They are polynomial para- 
metric surfaces normalised with a weight function. A Bezier 
patch is defined by two degrees (one for each parametric co- 
ordinate), a mesh of control points and a set of associated 
weights. The continuity between Bezier patches is determined 
by the knot vectors of the corresponding NURBS surface. 

The PO integral is computed as the sum of the integrals of 
the Bezier patches. A particular kind of Bezier surface is the 
plane facet. Its scattering field contribution is obtained using 
the Gordon method [6]. For curved surfaces, asymptotic 
expansion techniques are used for the PO integral computa- 
tion. The PO integral under a general rational Bezier surface 
is given by 

u = 1  “ = l  

(3) I =  5 iu(u, U) x PJu, u)e2j iz . i ‘u~v)  d u  du 

u = o  u = o  

where the surface points are given by 

m n  

(4) 

where m and n are the surface degrees, gij  are the surface 
control points, wij are the control point weights, Bxu) and vu) are the Bemstein polynomials, and ?,(U, U) and i,(u, U) are 
the derivative functions of eqn. 4. 

To solve the stationary phase method [3] is used. Thus 

f- l [ e 3 j K . i  (ru - x io)[(& . P..)~ - ( R  . i,X& . P J - ~ ’ *  (5) 

where the function surface points P and its derivatives are 
evaluated at the stationary phase point; these are the specular 
points and are given by 

R . ?“(UO, uo) = 0 - 
K . ?”(U,, u0) = 0 

If over a Bezier surface more than one stationary phase point 
appears, the integral is the sum of the contributions due to all 
these points. 

In the asymptotic integral computation, the contribution 
due to the finite domain is neglected. This is at least one order 
of magnitude smaller than the specular point contributions. 
Moreover, if the connection between patches is continuous in 
the parametric derivatives, the finite domain contributions are 
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cancelled. Under these assumptions the results obtained agree 
with geometrical optics (GO) [4] predictions. 

When one of the second derivatives of the surface points 
equation is equal to zero, eqn. 5 is not valid. In this case it is 
possible to analytically solve the integral of one parametric 
co-ordinate; one of the principal curvatures is equal to zero 
for all the points. Two examples are cylinder and cone sur- 
faces. 

For example, if in& U) is equal to zero, the stationary phase 
approximation is used to solve the integral over the 'U' co- 
ordinate : 

i = "[ i.(uo, u) x iu(uo, u)J(n) 
"=O 

[ - j K  , u ) l - l / z e 2 J 1 7 . i ( ~ o . ~ )  du (7) 

In this case a stationary phase isoparametric segment appears 
with U = uo where uo is given by 

I? . i.(uo, U) = o (8) 

The integral (eqn. 7) is solved analytically developing the 
amplitude term of the integral in the Taylor series about any 
value of U = uo (normally the domain mid-value): 

V L i  . 
(9) 

fa = 2K . yu0, U J  f" = 2 2  . iu(uo, uo) (1 1) 

where &k) is the kth term of the amplitude Taylor series and 
N is the number of terms considered in the Taylor series. 

Analogous expression are obtained when the patch verifies 
?&, 4. 

If over a Bezier surface more than one stationary phase 
segment appears, the global contribution is the sum of the 
contributions of the segments. 

Results: The backscatter RCS values of an elliptic cylinder 
(Fig. I), prolate spheroid (Fig. 2) and oblate spheroid (Fig. 3) 
are presented. All RCS values are normalised to 1 m2. All the 
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Fig. 1 Comparison results with GO solutionfor 2 : J elliptic cylinder 
This is modelled using four NURBS patches 
Incident direction is perpendicular to cylinder axis 
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curves agree with GO predictions. RCS results are indepen- 
dent of the incident field polarisation. 

0 
0 30 60 
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Fig. 1 Comparison results with GO solution for 2 : J prolate spheroid 
modelled using light NURBS patches 
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Fig. 3 Comparison results with GO solution for 2 . J oblate spheroid 
modelled using eight NURBS patches 

~ GO 
A thismethod 
a = 2 m , b = l m  

Conclusions andfuture work:  This work provides a general 
RCS computation method for electrically large targets model- 
led with NURBS surfaces. The method is eficient and accu- 
rate for targets without hard discontinuities between patches. 

In the future, surface discontinuity contributions, curved 
wedge diffractions, creeping waves and second order effects 
(multiple reflections, patches hiding, etc.) will be considered. 
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EFFECT OF AMPLIFIER SATURATION ON 

UNLOCKED OSCILLATOR 

C. K. Campbell, P. J. Edmonson and P. M. Smith 

ONE-SIDED BEAT SPECTRUM OF DRIVEN 

Indexinq terms. Oscillators, Amplifiers 

Amplifier saturation converts the nominal one-sided beat 
spectrum of a driven unlocked oscillator into a two-sided one 
of asymmetric amplitude. It is shown that this can be attrib- 
uted to the conversion of the circularly polarised phase- 
modulation vector to one with an elliptical component. 

signal distortion by the saturated amplifier is taken as insig- 
nificant (as in previous analyses), the phase modulation com- 

b 
Introduction: The beat spectrum phenomenon of driven 
unlocked feedback oscillators with the form of Fig, has been 
a subject of study for almost years cll, A study of such 

Fig. 2 Circularly-polarised phase modulation uector with negligible 
amplifier saturation and one-sided beat spectrum for driven unlocked 
state, withf’ >f, here (theoreticao 

1 amplifier \?.. 
filter I 

Fig. 1 Basic feedback oscillator with injection drive 

behaviour in the unlocked state is important to an under- 
standing of operation and bandwidth limitations of single- 
mode injection-locked electronic and laser oscillators [2], as 
well as multimode ones [3]. In theoretical studies reported to 
date [4, 51, the beat spectrum is derived as being ideally one- 
sided, with the carrier frequency lying between the beats and 
the injection frequency. Beat separations are dependent on the 
frequency difference between free-running and injection 
signals, and their relative amplitudes at the point of injection. 
These have previously been derived in terms of a circularly- 
polarised phase-modulation vector [ 1-51, Experimentally, 
however, a two-sided beat spectrum of asymmetric amplitude 
and equal beat frequency separations is obtained with the 
degree of amplitude asymmetry decreasing with increasing 
injection amplitude. It is shown here that this can be 
explained by the conversion of the circularly-polarised phase- 
modulation vector to a partially elliptical one, as a result of 
inherent amplifier saturation which increases with injection 
power level. 

Theory: Fig. 2u shows the vector relationships for the voltage 
components in the driven unlocked oscillator of Fig. 1. If 
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a Phase modulation vector 
b Beat spectrum 

ponent VI is circularly-polarised, with time-dependent phase 
angle a(t) given by [l] 

1 J(K2-1) B ( t - t  ) z+K tan 2 J ( K 2  - 1) a(t) = 2 tan-’ 
2 

(1)  

where Amo = (oo - 0,) = 2ncf0 -fl), fo = ‘free-running’ fre- 
quency, f, = injection frequency, Q = resonator quality 
factor, to = integration constant, B = oo Vl/2QV,,  and V3 and 
VI are loop voltage vectors shown in Fig. 1.  Under (assumed) 
negligible amplifier saturation, voltage vector V, is circularly 
polarised, with angular rotational frequency Nt). For VI < V3 
the resultant voltage response is V, 2 A . cos [o,t + a@)]. 
Note that a(t) can have clockwise or anticlockwise rotation 
depending on the sign of Amo, thus placing the beat spectra 
above or below fo. This gives the one-sided beat spectrum of 
Fig. 26, with angular beat frequency separation Amb = A o o  
cos (e), where sin (0) = K, and K i 1 in the unlocked state [ l ,  
4, 51. 

Under significant amplifier saturation, however, Vi will no 
longer have perfect circular polarisation, but will acquire an 
elliptical component as in Fig. 30. Recalling that an 
elliptically-polarised vector may be decomposed into two 
oppositely-rotating circularly-polarised components of equal 
frequency but different amplitudes [6] (as in Fig. 3b), we 
obtain V, 2 C .cos Colt + a@)] + D .  cos Colt - a@)] with 
CID > 1, and the asymmetric beat spectrum of Fig. 3c. 

Results: Fig. 4 exemplifies the experimental response for the 
driven unlocked oscillator, showing the typical asymmetric 
beat spectrum. This particular result was obtained for a 
surface acoustic wave (SAW) resonator oscillator with free- 
running frequency fo = 914.360MHz and injection at f ,  = 
914.534MHz with VJV, = -21dB. The frequency span in 
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