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Abstract !

Sparse deconvolution is a detection plus estima.
tion problem: we split it accordingly and make use of
the discrele character of detection fo introduce Ge-
netic Algorithms in the search of the best peaks loca-
tion. We then estimate the ampliludes of these peaks
via pseudoinversion ond also with g gradient-type al.
gorithm that rapidly converges to the Moore-Penrose
pseudoinverse. Both ways arc ezplored in this paper
and contrasted with o more troditional sparse decon-
volution approach. A discussion of final resulls, sug-
geslions for smprovemenis of the propesed methods
end some open lines close this paper.

1 Introduction

Sparse deconvolution consists on the estimation
of a sparse sequence 8 from a noisy measurements
z given by '

z=Hs4n (1)

where H is a wavelet matrix and n is the measure-
ment noise. This problem is very frequent in signal
processing applications: seismic exploration, speech
modeling, synthetic aperture radar, ultrasonic explo-
ration, ete.

A number of algorithms have been proposed to
solve it: some of them are based on iterative ap-
proaches to obtain a minimum square error solution
or Wiener filtering, forcing sparseness by applying
an adaptive threshold {1]; however, these procedures

1This work has been partly supported by CICYT grancs
#T1C92-6300-C05-01 and #T1C93-0277-E )

sometimes miss small peaks in the first steps of the
algorithm, There is also the possibility of using a
saft. threshold obtained from the statistical charac-
teristics of the problem; this is the method proposed
by Godfrey and Rocca to perform blind deconvolu-
tion [2]. Other approaches use linear programming
techniques to find a minimum L;-norm solution [3};
L,-norm minimization is appropriate to obtain spiky
solutions, but these approaches have a high compu-
tational cost. An alternative approach consists on
adding a penalty term to force spiky solutions: in (4]
the penalty term used is the L;-norm of the signal
and the solution is-found using linear programming
techniques in 2 way similar to {3]. Morc elaborated
penalty terms are discussed in [5] and the solution
is found using gradient-type algorithms, thus red uc-
ing the computational cost. Finally, other methods
obtain a theoretical solution by using a compoesite
model and estimation theory [6, 7]; nevertheless, they
require that the peaks of 5 have a Gaussian distri bu-
tion: a hypothesis that is not acceptable in many
situations,

Sparse deconvolution is a detection plus estirma-
tion problem: first, we have to decide the elements
s(k) that are zero; then, Lo cstimate the value of
the nonzero components. Considering the form of
the problem, it is possible to use Genetic Algorittams
(GA’s) to solve it: this is the possibility thal we
propose in this paper. This approach has the po-
tential advantage of exploiting the parallel nature of
GA’'a.In all this study we will assnme that the nam-
ber of spikes is known.

The paper is organized as follows: in Section 2 wegive
a general outline of GA techniques, describe our so-
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ution spacc representation and the genetic operators
1sed, and finally propose a fitness function adequate
0 the problem that is implemented in two differeni
vays. In Section 3 we present simulation figures and
‘esults from the application of the methods deseribed
ast before. In Section 4 we make a brief discussion
sbout the use of a second fitness fusiction and about
2 small modification for speeding up the algorithins.
Conclusions and further research lines are commented
:n Section 5,

2 Genetic Algorithms

Genetic Algorithms (8] are global optimization
proradures guided by similar mechanisms to those
ptesent in natural environments by which populations
of different species survive and evolve, In GA’s a pop-
ulation of individuals (tested points in a search space)
is created at the initial generation in a random way.
The fitnesses of these individuals are evaluated and
the next generation is formed by randomly selecting
mdividuals from the initial one, following a probabil-
ity scheme proportional to the corresponding fitness
of each individual: highly fitted individuals will be
reproduced more probably than poorly fitted ones.
The next step is to define operators for the popula-
tion to go on cvolving so that features present in two
or more individuals may be combined in new indi-
viduals in the same fashion as a child preserve char-
acteristics from both his parents. These two policies
acting together (survival of the fittest and recombina-
tion or crossover) are the main responsible agents of
the enhancing progress of the algorithm, in very much
the same way as the Darwinian guidelines of natural
evolution of species. For those features which have
not. happened to appear in the initial generation, still
there is a chance to come up, with the operation gen-
erally known as mutation. This mechanismn systemn-
atically introduces small changes in randomly chosen
individuals of the population increasing in this way
the existing set of characteristics present in the whole
population; as a consequence this operator prevents
the population from stagnating in suboptimal solu-
tions before reaching the global optimum. The new
population is thus far evaluated and passed to repro-
duction, selection, crossover and mutation, genera-
tion after generation until some acceptable solution
is found. The term ’genetic’ comes from the coding
of the solution space: the individuals are presented
as binary strings (chromosomes) for which mutation
and crossover are simple bit operations. A real coding
of the solution space is also possible although in that
tase we would no longer be talking about GA but
rather about Evolution Strategies. The GAs as de-
scribed here appear as powerful optimizations tools,
capable of finding global optims in diffienlt domains

(non-coniinuous, non-derivative, with multiple local
optima, noisy, etc.). The paid price is a high com-
putational cost but that can always be dramatically
reduced using parallel implementations.

In all our GA approaches we have a population of
signals x, tentative estimations of the original signal
3. Each of these signals has an associated chromo-
some which represents the positions of its peaks. The
chromosome length is thus the length of this signal,
having ones in the non-zero positions and zeroes in
the rest. We then compose the matrix S with all
zeroes except along the main diagonal in which we
place the chromosome associated to the tested signal
x:

S(!.,]) =0, i #J;
S—( S(i,iy=1, ifa spikeisplacedini; } (2)
S(i,i) = 0, in other cases.

We incorporate the sparse character to x by in.
troducing the matrix S, i.e. x=8x. Our crossover
and mutation operations are problem specific. With
our crossover operator two offsprings are born from
two parents preserving the number of spikes (which is
considered to be known in our problem). Weplace in
parallel the chromosomes of both parents, randomly
choose a crossing site and split them by this site, Now
we fix the left part of the first parent with the right
part of the second and get the first offspring and fix
the remaining parts of both parents and get the sec.
ond offspring. We then remove or insert in random
positions as many spikes as needed of the resulted
offsprings so that the number of these spikes is pre-
served. The mutation operator simply chooses one
spike at random and changes its position also in a
randoin way.

Two different approaches are tested in this work.

2.1 Pseud.GA

Lacking any additional information, we take as the
objective function the L2 norm of the error signal

#1(z) = lell; (3)

being e=z-Hx. Given an individual k of the pop-
ulation and the matrix S, associated to its ¢chromo-
some we find the vector of amplitudes x applying the
Moore-Penrase pseudoinverse

zv = (HSy)* 2 (4)
2.2 Iter.GA

Our second apptoach also considers the L2 norm
of e as the fitness function, but this time the way
to calculate x is diffcrent as only a few steps of a
gradient-type algorithm which converges to the pseu-
doinverse are needed:
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zijs1=2zig+p(HS) (2 = HSizij)  (5)

where z) ; is the vector signal x associated to the
individual k at iteration j. From each individual
chromosoine, S, is composed and processed a few
times finding the vector of amplitudes. The great
advantsge is that the amplitudes of the parents can
be taken as the starting amplitudes of the offsprings
to begin the iterations of (5). Iter_GA needs only
a short number of iterations because convergence of
the amplitudes is achieved throughout the progress of
generation and not in every evaluation, lowing down
very significantly computational requirements: it is
therefore a convenient way of incorporating iterative
methods to GAs within the new genetic framework
called hybrid methods. Again ¢1(Zijme-) is com-
puted as the fitness function once the iterations of a
single evaluation are completed.

3 Simulations results

In this section we illustrate the performance of the
proposed method by meaas of computer simulations.
Figure 1 shows a 32 point-long sparse signal s, having
nonzero values at points s3 = 8, sg = 6.8, 514 =
~5,87; = 4.5,531 = ~3.5. The impulse response used
in this example corresponds to the first 20 points of
an ARMA filter having one zero at z = 0.6 and two
poles at z = 0.8 exp{£j57/12); this wavelet is shown
in Figure 2. The SNR used in this example is 4 dB,
and is defined as the power of Hx with respect to
the power of n, n being a zero-mean Gaussian white
noise, Figure 3 shows an observation z, and Figure 4
and Figure 5, typical convergence curves of the error
power associated to the best and average individuals
along generations for both GA methods. We run 100
independent times those GA’s described in 2.1 and
2.2,

We use a population of 50 individuals and let the
algorithms run during 100 generations. The length
of the chromosome is the same as that of the signal,
i.e., 32. The probability of crossover and mutation
are 0.9 and 0.2, respectively, and the number of times
(5) is itersted in the evaluation of each individual is
5. We also repeat another 100 times the Adaptive
Threshold (AT) algorithm described in {1]. In each
simulation we aliow 200 iterations to achieve conver.
gence, the stepsize of the adaptation being 0.2, We
impose the constraint that the number of peaks be
5, by excluding the smallest ones if there are more
than this pumber at the fina) iteration of x. Table
1 and Table 2 show the final results of all these ex-
periments. Pse.GA and lter.GA outperform the AT
method in missdetected peaks (39 and 32 against 65)

as well as in complete signal detection, i.e. experi-
ments in which the whole 5 peaks are detected (67
and 71 against 49). Also the GA methods get better
mean values for the peak amplitudes. Although we
have run the GA's for 100 generations the final res
sults are reached much earlier: Pseud.GA needs 32
generations on the average, and Iter.GA, 46.

4 Discussion

Most of the GA etrors come from solutions which
yield an Lj-norm of the error signal lower than that
obtained applying the pseudoinverse to the solutions
with the right positions of the peaks: this only means
that without any further information of the problemn
and with this fitness function, we reach the theoretic
limit of performance; it is not the same for the Adap-
tive Threshold Algorithm as its performance is sig-
nificantly smaller.

No better results could be obtained by including
information about the noise power: a fitness function
of the form

2(2) = |llell; — Nof’ (6)

increases errors and amplitnde misadjustment and
dispersion with respect to the previcus one. In the
whole search space there are many solutions of x with
an error variance as large as the noise power: our
GA will randomiy get one of these, but the prob-
ability that this one is a 5-peak detection is small.
Moreover, provided we have successfully completed
the detection, there is a 5-dimensional solution space
of amplitudes, 3 whole subset of which are roots of
(6). Only one of these roots is s and if we make the
GA mipimize (6) it will most probably find a solu-
tion of amplitudes different from s. As we can infer
from experimentsl results, the estimated amplitudes
are on the average more distant from the sought ones
than that obtained via pseudoinversion.

lo a different respect, we inspected several ad-hoc
refinements of our GA’s in the search of solutions with
slighter computational needs : one of the possible
ways to accelerate the convergence of the algorithms
is to take advantage from the fact that all three al-
gorithms examined here are many times trapped (at

~ least for a good while) in local minima, correspond-

ing to eituations in which four spikes are placed cor-
rectly and erroneously the last one. We get an impor-
tant computational reduction by exhaustively chang-
ing the smallest peak of the best individual so as to
find the best position for it, in the case of no improve-
ment of performance of this best one during the few
last generations.
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5 Conclusions and further lines

We have presented two GA approaches to deal
with sparse deconvolution using the Lj-norm of the
error signal as the fitness function. The first one
{Pseud.GA) makes use of the Moore-Penrose pseu-
doinverse to find the amplitudes of the peaks, while
the second one (Iter.GA) includes a gradient-type al-
gorithm 1o find thase peaks. Both achieve better per-
formance in peak detection and amplitude estimation
when compared with other classical methods such as
the Adaptive Threshold of {1]. The main drawhack of
onr GA approach is computational load, which may
be alleviated by means of parallel implementations.
In any case, Iter .GA is much faster than Pseud_GA as
it avoids pseudoinversion and only needs a few steps
of the gradient-type algorithm every evaluation. Dif-
ferent modifications can be introduced trying to de-
crease computation (adaptive number .of iterations
per evaluation, memory tables to access to the last
most repeated individuals in order of avoiding to re-
peat identical operations for different chromosomes,
Evolution Strategies [9] to obtain the amplitudes of
the sparse signal, etc.). When the register length
increases, the computational cost of the proposed de-
tectors becomes prohibitive. If we have an a priori
knowledge of the spike amplitudes, we can obtain
from the ohservation vector an estimate of the am-
plitudes following a convenient criterion (Minimum
Variance Deconvolution, for example (6}): then, we
can use these amplitudes at the positions of each
inspected individual, without having to recalculate
them, taking again ¢,(z) as the fitness function.

These and similar lines are promising in order to
make more practical the kind of approach we are pre-
senting here.

Detected Adaptive

Spikes Psend_GA | Iter_.GA | Threshold

Algerithm
spikel 100 100 99
spike2 a9 99 938
spike3 97 96 39
spiked 86 93 79
spikes 79 80 70
S-peaks 67 - 71 49

_detection

Table 1: Number of detected spikes

Adaptive

Amp(var) | Pseud GA Iter_GA Threshold
Algorithm

spikel 8.06(1.18) | 7.95(1.20) | 6.83(1.43)
spike? 6.89(1.47) | 6.795(1.25) [ 5.77(0.93)
spiked | -5.104(1.08) [ -5.044(1.13) [ -4.90(1.20)
spiked 4.68(1.25) | 4.54(0.88) | 4.33(1.11)
pikeh .3.70(1.66) | -3.83(0.94) | -3.80(0.66)

Table 2: Amplitudes and variances of the spikes
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Figure 3: Observation signal z

Figure 4: An example of the convergence of {le{], for
the best and the average individuals along genera-
tions (ltcr_GA)
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Figure 5: An example of the convergence of |le||, for
the best and average individuals along generations
{Pseud_GA)
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Figure 6: An example of the final estirmated signal x
after 100 iterations of (1ter.GA)



