G. Ramponi - Adaptive PV structure

twe Jons, 1 rar] ic s ; ] j

> extensions. The logarithmic shape is recognizable in the corre<ponding regular
o extens ' i :
merease of the cocfficient valyes.

TABLE 2: COEFFICIENTS OF THE PWL TERM AFTER ADAPTATION

L ay

2 -0.936 0.239 1.066 0.156

1 -0.847 0.194 0.557 0.823 1.034 0.262

8 | -1.261 -0.084 0.208 0.432 0.615 0.769 0.904 1.021 1.128 0.298
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Abstract

A simple iterative method to improve frequency estimates in sinusoid
detection, based in linearizing the error equations, is presented. The efficiency
of the method to reach better estimates in low noise cases is illustrated by means
of simulation examples, starting from both low and high resolution approaches.
A similar approach formulated in the autocorrelation domain is also presented
and its performance evaliated. We will finish the conmribution considering the
possibility of introducing a Wiener filtering formulation to handle high noise
situations, and discussing other open lines-and further work.

o

1. Introdugtion.

The problem of estimating the frequencies of a collection of sinusoids buried in additive
noise is one of the classical problems in Signal Processing: it is of fundamental importance in
many practical applications, such as communications, radar and sonar. A lot of esitimation
methods and algorithms have been proposed to solve this problem, as can be found in standard
texts [1] [2]. Among these algorithms, those based on the periodogram offer very limited
resolution in solving close sinusoids. Qther methods, as-those relying in signal subspace -
noise subspace separation, give higher resolution and better performance but paying in

computational burden.

"To have the opportunity of applying a straightforward method and to improve its results
by means of an also not very complicated procedure is, then, an interesting alternative; and
even better if the proposed refinement algorithm can also improve the results of more complex

initially applied techniques.

In this paper, we propose a very simple procedure of the above suggested kind, based
in assuming that we have a first approach to the result that is good enough to allow the
linearization of the error equations, and then applying gradient algorithms to reestimate the
present frequencies (as well as the new amplitudes). The resulting algorithm is remarkably
simple and very efficient for low noise situations, and particulary useful for short data
registers. We will provide practical details of this approach, verifying, by means of simulation
examples, that this procedure improves both periodogram and high resolution algorithms (we

- 265 -




have chosen the Root MUSIC algorithm to obtain the first estimate). The combination of a jow

computational complexity algerithm, as the periodogram, with the proposed method achieyes
even better estimation accuracy than a direct high resolution algorithra, saving in computaticra)
cost.

This paper is organized as follows. In Section 2 the problem of sinusoid detection is
formulated and the proposed method for improving the initial estimates s decribed. Simulation
results that show the performance of this approach are presented in Section 3. Some extensions
of this method are discussed in Section 4, and a Wiener filter formulation is suggested to reach

© better estimates in high noise cases. Finally; some conclusions and future avenues will be
presented in Section 5.

2. Problem Formulation and Proposed Method.

Assume that the data consist of preal sinusoids corrupted by noise
] P
x[m}= ¥ Ajcos{w;m+¢;]+n[m] m=0..N-1 ()
i=1

nfm] being an additive white Gaussian noise with power 62 and zero mean. The frequencies

are assumed to be constant but unknown, and must be estimated (if they are available,
amplitudes and phases can be estimated via a matrix pseudoinversion, for example).

In the present paper we suppose that P»the numbser of sinusoids, is known. Methods to
estimate p such as Akaike Information Criterion (AIC) or Minimun Description Length (MDL)
could be applied to geta value of p.

The proposed method acts as follows: let {A;°cos(w;°k+9,°)} be the estimated sinusoids

after applying a preliminary estimation: we will have
P
x[k]= 3 Afcos[(@f +Aw?)k +¢° + Ag° ]+ n[K]
i=1
{Aw;°,A¢,° )being unknow errors in the estimates ( we disregard the effect of possible {AA°}
errors); assuming that these errors are low enough, ’
cos[(@? + Aw?)k + ¢ + A7) = cos(@Pk +¢°)cos(Awtk + Ad2) —
-sen(w’k + ¢ )sen(Awlk + A¢7) = cos(wrk +¢7) - sen(wlk + Aok +A9T)

(for a better approximation, k must go from -(N-1)/2 to (N-1)/2: this change is irelevant for
the purpose of our discussion).

Letus call

ylk]=x[k}- iA? cos(@k +¢7)

i=1
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using matrix notation, we arrive to

Aw _
[kS | 8] — j+n=y ' @
Ad

where all the elements are obvious; in particular, $ is a Nxp matrix (N being the register length)
having elements
Syi =—Af cos(wk +¢7)

Rewriting (2) as
Mé+n=y 3
for simplicity, it is clear that, if n is not too high, a psendoinverse could be a reasonable

solution for &: to use one (or few) steps of a gradient algorithm could be even better in order to
decrease the error in {Aw;%,A¢;°}; i.e., to apply _
| S+ =8() +uMT[y-Mo@)] (@)
starting fromT;S_('O)=0, until arriving to 8(R). After this, we can introduce
’ O = ™ + A (R)
9" = ™ + A4 (R)

(m=0,1,...), iterating the process. In each step the amplitudes are reestimated (using a similar

technique, for example).

The low computational complexity of this approach is obvious, even moré.'if cinly one
step in expression (4) is used (in this way, the method requires 2pN real mul-tipllcanons per
iteration); and the method also provides good performance as we show in Section 3 by means
of some simulation examples (even with only one step).

3. Simulation Results.

In this section, we present some simulation results in order to evaluate the pcrformax?cc
of this new approach, starting from both low resolution (pericdogram) and hig}} res?lutlon
(Root MUSIC) algorithms. Two signal scenarios consisting of two sinusoids with different
frequency separation are considered; the SNR is defined as

pA2
SNR:lOlogw(Z%'-/ 2) (dB)
i=1

In these simulations, a 25 point data record is generated 500 times at each SNR for the:

MonteCarlo experiments. The Root MUSIC method uses the eigendecomposition of a data
covariance matrix of order M=12,
In the first experiment, we consider the example
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x[k]=cos(21t0.3k)+cos(21:0.32k+1t/4)+n[k] k=0..24

With a record length of 25, the periodogram resolution is 1/25=0.04. whick is twice the
frequency spacing of the sinusoids; so, a high resolution method is nesdeud as a first estimate.
The number of iterations empirically selected for the proposed method huis teen 15 and in each
iteration one step LMS type algorithms are used to reestimate both the frequencies and the

amplitudes. We have found that a parameter i l:lO“‘ to reestimate frequencies and ;12=10‘2 to

reestimate amplitudes give a good tradeoff between robustness and speed of
convergence.These parameters have demonstrated to be robust enough to ensure convergence
for a wide number of examples. Nevertheless, some problems of convergence have been found
when inijtial estimates are very close each other.

Figure 1 shows the performance of the method when applied to the above mentioned
example (for comparison we have included also the Cramer-Rao bound [7] for unbiased
estimators). In calculating the mean square error (MSE), the lower frequency estimate is
assigned to f;=0.30, and we assume that the estimates are unbiased, that is, the mean of the
estimates are the true frequencies.

75 f1=0.30

1:Cramer-Rao bound

701 2:Proposed Method

65+ 3:Root-MUSIC

S5+

lO*log(l/MSE)
N
S
T

45 o7

4 : L }1 : L
0 10 15 20 25 30 35

SNR (dB)
Figurel: Detection performance for Example 1
Two comments can be made. First at all, the iterative method appears to perform well
for a low noise situation. Second, for SNR levels between 10 and 15 dB, some trials diverge:
since we reject these cases to represent the corresponding curve in Figure 1, a bias appears in

the frequency estimates, which becomes clear in Figurel. However, for higher SNR s, this
phenomenon disappears: Figure 2 shows the probability of divergence defined as

T=number of cases of divergence/total number of simulations
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Figure 2: Estimated probability of divergence

Results obtained for f, are very similar. Tablel shows the statistics (mean, standard
deviate) for SNR= 10, 20, 30 dB.

Table l.a
f1 (o) 12 (o)
SR
1048 0.2879 (0.0072) 0.3213 {0.0069)
20dB 0.2897 (0.0023) 0.3204 (0.0024)
30d8 0.3000 (8.7°a-4) 0.3200 (8.8"¢-4)
Table I.b
f1 (o1 f2 (o2}
SR
10d8 0.2983 (0.0056) 0.3213 {0.0056}
20dB 0.2999 (0.0021) 0.3203 (0.0022)
30dB 0.3000 (8.1°e-4) 0.3200 (8.5°e-4)

Statistics from 500 simulations for the first example. Mean and the mms (in brackets): 1.a) Root-MUSIC
1.b) Proposed Method

For the second experiment we have selected
x[k] = cos(2n0.3k) + cos(2r0.34k + = / 4) + n[k] k=0..24
In this example the frequency spacing is higher: a Fourier based method can be used to
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reach a first estimate. An 1024 point FFT is used to compute the periodogram, the frequency-
bin space being smaller than 0.001, which. usually is accurate enough for most applications,
The frequency estimates are chosen as the two largest samples of the FFT. For the selected
case, the sinusoids are not orthogonal in the observation interval: due 1o this fact, the first
estimation (that obtained with the periodogram) is strongly biased: we will see thar the
proposed algorithm works in this case reducing this large bias, although increasing the variance
(the grid established by the FFT produces a very small variance in the estimates).

The results obtained applying (60 iterations) our method are illustrated in Figure 3, that
shows how the bias is the dominant error in the MSE for the first estimate obtained with the
periodogram: that is the reason because the MSE for the initial estimate remains near constant.
The iterative method in this case tends towards alleviating the bias, producing a nearly efficient
estimator for some SNR values.

Statistics (mean, standard deviate) for 5,10 and 20 dB are presented in Table 2.
Results obtained for f;=0.30 are very similar to these.

£2=0.34

701  1:Cramer-Rao bound
2:Proposed method
3:Periodogram

60}

oy
(2]
Z 500 i
2 3
& 401 [ i J
30
20 J
0 5 10 15 20 25 30 35 40

SNR (dB)

Figure3: Delection performance for Example 2

Table 2.a

f1 (o) 12 (02)

5dB 0.2935 (0.0023) 0.3476 (0.0022)

10d8 0.2936 (0.0013) 0.3476 (0.0012)

20dB 0.2937 (3.5%e-4) 0.3477 (0)
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Table 2.b
R 11 (o) f2 (02)
5dB 0.2990 (0.0047) 0.3411 (0.0050)

10dB 0.2995 (0.0028) 0.3405 (0.0030)

2008 | 0.2996 (3.77¢-4) 0.3405 (9.5%-4)

Statistics from 500 simulations for the second example. Mean and the rms (in brackets): 2.2) Periodogram
2.b) Proposed Method

Figure 4 shows the improvement obtained with the proposed method (starting from the
periodogl:am), and compares its results with those of a Root-MUSIC, for the second example
(from 10 10 30 dB). In Table 3 the results obtained with the Root-MUSIC are presented in
order to corﬁp@xrc them with those presented in Table 2.b. It is clear that the proposed algorithm
provides a béfter performance: in spite of the 60 iterations needed to reach a good estimate, the
computational burden of the proposed method is much lower than that of Root-MUSIC.

f2=0.34
IProposed Method

70

55 2RooLMUSIC

g 60}
= 55
g
£ 50
45
40
10 15 20 25 30

SNR(dB)

Figure 4: Comparison detection performance for Example 2
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Table 3
’7 i
SR f1 (o) 12 (o2)
5dB 0.2987 (0.0074) 0.3410 (0.0081)
100B 0.3001 (0.0041) 0.3397 (0.0043)
20dB 0.3000 (0.0018) 0.3400 (0.0016)

Statistics from 500 simulations for the second examiple. Mean and the rms (in brackets) of the estimates
obtained with the Root-MUSIC

4. Some_ Extensions and Improvements of the Algorithm.

The same linearization procedure can be used in the autocorrelation domain. Following
the same steps as those detailed in Section 2, we arrive to a very similar expression

[Slaw=y ()

y being a column vector of dimension T with elements

042
ylk] = Ep: (Azi) cos[a)iok] - Iy[k] k=1.T
i=1

and S, a Txp matrix with elements
0y2

Sk.i = sen[miok]
For simplicity we can rewrite (5) as
Md=y
and now, we can apply the above described procedure.
The effect of the noise is alleviated by rejecting the term 1, [0]. On the other side, the

number of estimates T of the autocorrelation function has to be carefully selected to get accurate
estimates of r,, , since a bad estimate in r,, degrades the method.

This approach has been tested against that working in the time domain, showing that it
requires longer data lengths (to get good estimates of I,,). This approach has proved to be less
robust, and critical with respect 1o the selection of T (the number of samples ofr,,).

One of the main drawbacks of the gradient type algorithm proposed in Section 2 is its
degraded performance in high noise situations. To apply an iterative version of the Wiener filter

seems a simple and straightforward possibility to handle these cases. These techniques have
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been extensively applied to the problem of bandlimited signal extrapolation (all of them bein ga

generalization of the algorithm proposed in [3]).

The equivalence between the problem of harmonic extrapolation and sinusoid detection
allows us to apply an identical approach..From this point of view, we can rewrite the problem

of sinusoid detection as
Bz+n=x

where z is the data register without noise and B is the band defining operator
. B=F!pF
here, F is a DFT matrix, P is a selection matrix (having only some nonzero values, just unity,
at its diagonal: those corresponding to the present frequencies). We can try to estimate z by
means of a Wiener ﬁltcripg of x
2= Wx

where W is selected to minimize the mean square value of

e=Bz-2=Bz-Wx
the Orthogonality Principle leads to the Wiener solution given by
. ’J: W= E[Bsz]E_l[xxH]
E indicates mean value and H Hermitian transpose. Writing B as before, and accepting that

“spectral lines are uncorrelated, we arrive to

2=F~'PF[F'PF + E[nnH]]_lx )

In practical simations, P is unknow: therefore we need to determine it in solving the
equation. That is accomplished using the Wiener filter in combination with the iterative
bandwith thresholded technique [4] [5] [6]. In this way, we can use (introducing the spectral
vector Z=Fz)

P, = diag{T, 12."]} %)
where the su‘bindex n refers to iteration and T, is the iterative threshold introduced in [3]. If we
use a frequency version, we can rewrite (6) in the form

-1
7,0 =diag{T,,[|z,,|2]}1=[F“diag{Tn[]znf]}F+E[nnH]] x ()

This approach avoids the need for assuming a priori knowledge of the number of
sinusoids. Once the filtered version of x is obtained, we can apply directly the proposed
method of this paper refining the estimates. This method achieves better results in high noise
situations and, therefore, can be used as a first estimate in these cases. However, more
extensive simulations are needed before presenting conclusions.
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5. Conclusions.

Based on linearizing the error equations starting from a first estimate, a simple method
to improve frequency estimates in sinusoid detection is presented. The tesulting algorithm is
simple and useful for short data registers and low noise situations. It is shown by simulations
that the method improves slightly the estimates obtained with a high resolution method as Root-
MUSIC, for low noise cases. However, this approach is more useful for methods that impose
a pre-specification of possible frequencies, such as periodogram and band-limited
extrapolation. The combination of a low computational complexity algorithm, as the
periodogram, with the proposed method achieves lower variance than a high resolution
algorithm.

Finally, to avoid the effect of noise, a Wiener filtered version of the data is proposed as
a first estimate. This approach achieves better results in high noise situations.
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Abstract: This paper approaches the problem of frequency estimation in environments with
large and non-stationary Doppler. Data-dependent techniques based on the
adaptive GSLC concept are applied to the Dual Filter Detector scheme to improve
its performance in terms of sensibility to the noise, image spectrum and

interferences.

1- INTRO‘QUCTION

The estlmahon of the frequency error in digital communication is a process prior to any other
synchronism and parameter recovery step. This problem is specially important in polar or
sunsynchronous orbit satellites, where both the Doppler shift and the Doppler rate can have very

stringent specifications.
Several techniques have been described for frequency estimation, but most of them cannot cope with

frequency errors greater than the symbol rate. Among the techniques availzble one seems well
suited for error frequency detection and correction: the one based in the Dual Filters Detectors first

introduced by Alberty and Hespelt [1].

This technique applies a closed loop architecture for frequency correction: a freguency crror detector
(the DFD) generates an error signal (e) which is weighted to input an NCO.in a fcedback loop to
bring the signal to the desired frequency:

fxco = fnco *He (1)

In this paper, a new scheme based in the DFD's is suggested. The error function and the filter design
are modified to improve the performance of the system.

2.- THE DUAL FILTER DETECTOR.

The Dual Filter Detector or DFD is a non-linear algorithm that follows the block diagram of fig.1.
It consists of two filters w; and wo; one operating at frequencies higher than the desired central
frequency and the other one operating at frequencies below it. Both filters have mirror frequency
responses with respect to the central frequency fo.
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