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Abstract— This work presents a generalization of classical
factor analysis (FA). Each of M channels carries measurements
that share factors with all other channels, but also contains
factors that are unique to the channel. Furthermore, each channel
carries an additive noise whose covariance is diagonal, as is
usual in factor analysis, but is otherwise unknown. This leads
to a problem of multi-channel factor analysis with a specially
structured covariance model consisting of shared low-rank com-
ponents, unique low-rank components, and diagonal components.
Under a multivariate normal model for the factors and the noises,
a maximum likelihood (ML) method is presented for identifying
the covariance model, thereby recovering the loading matrices
and factors for the shared and unique components in each of
the M multiple-input multiple-output (MIMO) channels. The
method consists of a three-step cyclic alternating optimization,
which can be framed as a block minorization-maximization
(BMM) algorithm. Interestingly, the three steps have closed-form
solutions and the convergence of the algorithm to a stationary
point is ensured. Numerical results demonstrate the performance
of the proposed algorithm and its application to passive radar.

Index Terms— Block minorization-maximization (BMM) al-
gorithms, expectation-maximization (EM) algorithms, maximum
likelihood (ML) estimation, multi-channel factor analysis (MFA),
multiple-input multiple-output (MIMO) channels, passive radar.

I. INTRODUCTION

Classical factor analysis (FA) was pioneered by Spearman
in his seminal paper [1]. Spearman and others applied FA
to problems in psychology, and especially to the analysis of
the correlation of children’s scores across different academic
subjects. Later, with the work of Lawley, Anderson, and

D. Ramı́rez is with the Department of Signal Theory and Commu-
nications, University Carlos III of Madrid, Leganés, Spain and with
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others [2]–[4], a more rigorous approach was developed, which
made FA a well-established technique in multivariate statistics.
FA now finds many applications in science and engineering.
For instance, in the field of array signal processing, FA has
been applied to radio astronomy [5], [6], cognitive radio [7],
direction-of-arrival estimation [8]–[10], modal analysis [11],
[12], and detection or source enumeration [13]–[16].

In the classical FA model, measurements in a single MIMO
channel are modeled as a set of unknown factors scaling
the modes of an unknown factor loading matrix, plus a
multivariate normal noise of unknown, but diagonal, covari-
ance. The factors are typically treated as multivariate normal,
with identity covariance, so that the net effect is to posit a
multivariate normal measurement with a structured covariance
consisting of an unknown low-rank component to account
for the factor loadings plus an unknown diagonal matrix to
account for the additive noise. Thus, in second-order FA, the
problem is to estimate a low-rank plus diagonal covariance
matrix from several multivariate observations. This model has
been recently extended in [17] to consider more complicated
covariance structures, i.e., not diagonal, but this structure
needs to be sparse and known. Even another extension was
developed in [18], where the precision matrix, the inverse
of the covariance matrix, is assumed to be composed by a
low-rank component plus a sparse one. The sparsity pattern
in this model enforces relations of conditional independence
between observed variables, whereas the low-rank component
favors models explained by a reduced number of latent hidden
factors.

Common estimation approaches for the FA model are based
on the maximum likelihood (ML) criterion. Unfortunately,
even under the Gaussian assumption, the maximization prob-
lem has no closed-form solution and numerical methods must
be employed. A convergent numerical procedure for obtaining
the maximum likelihood estimates was first given by Joreskog
[19], [20] (cf. Chapter 9 in [3]). Other optimization approaches
have been investigated for this problem, ranging from steepest
descent [4] and alternating optimization methods [7], [21],
[22], to Expectation-Maximization (EM) algorithms [23], [24].
Most of the proposed techniques assumed known the number
of factors, i.e., the dimension of the low-rank component.
When this is not the case, it needs to be estimated [25].
Moreover, if we abandon the ML criterion, there are other
alternatives. For instance, the work in [26] derives a robust
technique based on the low-rank plus sparse factorization of
the precision matrix that also provides an estimate for the
number of factors as a result of the optimization procedure.
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The technique of FA has been extended to multiple channels
of multivariate observations. To the best of our knowledge,
the first generalization was developed by Tucker [27], where
he proposed the so-called inter-battery FA. In this work, the
observations of two channels are composed by linear com-
binations of common factors and independent noises without
a particular covariance structure. Additionally, he derived an
estimation algorithm based on the least squares (LS) crite-
rion, which was later related to canonical correlation analysis
(CCA) by Browne [28]. The extension of the inter-battery FA
model to more than two channels was developed in [29], [30].

The recent work in [17] also proposes a different gen-
eralization of FA to several channels, which assumes that
the factors at each channel are independent, but the noise
covariance matrix is common. This work also allows for a
number of factors in each channel that may be different. A
different generalization is presented in [31], and termed group
factor analysis (GFA). In GFA, the factors may be common
to all channels or to a subset of them. Other work related
to multi-channel factor analysis includes the parallel factor
(PARAFAC) analysis model [32] and independent vector anal-
ysis (IVA) [33]. Our model for the channel covariance differs
significantly from the channel covariance in the PARAFAC
model [32]. The multiple channels (i.e., the third dimension
in the three-way array) of PARAFAC are obtained from
displaced but otherwise identical subarrays, which induces a
shift-invariant structure in the loading matrices of the common
factors. Further, the noise covariance model in [32] is white.
Our model is different is several aspects, namely, we never
have rotational invariance, we have both common and unique
(or channel-specific) factors, and our model for the noise
covariance is diagonal with unknown variances. The standard
model in IVA accounts for the dependence of a set of common
sources or factors observed through several mixing matrices,
but it does not consider channel-specific factors or noises
whose variances are unequal [33].

This paper extends the inter-battery FA model to more
than two channels and to noise covariance structures that
account for additive noise and unique channel factors, which
are missing in the original inter-battery analysis of Tucker.
This multi-channel FA (MFA) model has many applications
in signal processing, machine learning, and communications.
In multi-view learning [34], for example, common factors
would model information that is shared among all views and
unique factors would account for effects that are specific to
each view. Similarly, MFA could be used to fuse different
modalities of brain imaging data (EEG, fMRI, and sMRI)
[35], [36], where common factors account for information con-
tained in all modalities, and unique factors are used to model
information specific to each modality. As another example,
the MFA model may have application in cellular networks
that apply coordinated multipoint (CoMP) processing, where
mobile users at the edge of a cell could be connected to several
base stations (BS) thus playing the role of common factors
in an MFA model. Each BS can also be receiving signals
from a few specific users, either in the corresponding macro-
cell or from a nearby small-cell, which would be the unique
factors in each BS channel. This and similar multi-tier signal

models are commonly used in heterogeneous cellular networks
(HetNets) [37]. Finally, the proposed model is particularly
relevant for passive radar since it accounts for leakage of a
reference channel transmission into the surveillance channel
[22]. We will describe with more detail the application of our
MFA model to passive radar in Section IV.

The iterative procedure to obtain the maximum likelihood
estimates of the multi-channel FA model developed in this
paper bears resemblance to ML estimation in the FA model,
where there also does not exist a closed-form solution. The
iterative procedure consists of three steps and was derived
following the block minorization-maximization approach [38],
[39]. In the first step, a closed-form solution for the loading
matrices of the common factors is found by maximizing the
log-likelihood. In the second step, the estimate of the loading
matrices for the uncommon factors is obtained by maximizing
a global lower bound of the log-likelihood, similarly to the EM
algorithm. The third step also returns a closed-form solution
for the estimate of the diagonal noise covariance matrices
by maximizing another minimizer obtained by linearizing the
aforementioned EM-based lower bound. We prove that this
algorithm converges to a stationary point of the log-likelihood
and demonstrate its performance on several illustrative prob-
lems.

A. Outline

The outline of this paper is as follows: Section II summa-
rizes the classical FA model, as well as an ML estimation
procedure based on an alternating optimization approach.
A brief introduction to inter-battery FA and the proposed
generalization are presented in Section III. This section also
describes the ML estimation of the unknown parameters. The
alternating optimization ML algorithm is derived in Section
III-B. Finally, in Section IV the performance of the proposed
method is illustrated by means of numerical simulations, and
the main conclusions are summarized in Section V.

B. Notation

In this paper, matrices are denoted by bold-faced upper case
letters, bold-faced lower case letters denote column vectors,
and scalars are denoted by light-face lower case letters. A real
matrix of dimension M × N is denoted A ∈ RM×N and
x ∈ RM indicates that x is a real vector of dimension M .
The superscript (·)T denotes transpose, and the determinant,
Frobenius norm and trace of a matrix A are denoted det(A),
‖A‖F and tr(A), respectively. The notation x ∼ NM (µ,R)
indicates that x is an M -dimensional Gaussian random vector
of mean µ and covariance matrix R and E[·] represents the
expectation operator. The identity matrix of size L×L is IL,
0M×N denotes the zero matrix of the dimension M ×N . We
use A1/2 to denote the symmetric square root matrix of the
symmetric matrix A. Finally, diag(A) constructs a diagonal
matrix from the diagonal of A, the operator blkdiag denotes
block-diagonal concatenation of matrices, and δ[n] denotes the
Kronecker delta.
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II. CLASSICAL FA

In single-channel (or classical) factor analysis (FA) [2]–[4],
the real-valued observations x ∈ RL are modeled as1

x = Hf + e, (1)

where f ∈ Rp contains the p factors, and H ∈ RL×p is the
factor loading matrix; p is usually much smaller than L. The
L-dimensional noise vector e is typically assumed zero mean,
Gaussian distributed and its components are independent, i.e.,
e ∼ NL(0,Σ), where the covariance matrix Σ is diagonal
with positive elements. In classical FA, the factors f are as-
sumed to be zero-mean Gaussian with identity covariance. As
a consequence, the measurements x are zero-mean Gaussian
with an L× L covariance matrix

R = HHT + Σ. (2)

That is, the covariance matrix is a positive semi-definite rank-
p matrix plus a diagonal covariance Σ = diag(σ2

1 , . . . , σ
2
L),

with σ2
i > 0. The FA model implies that, conditioned on

the factors, the observations are uncorrelated, and hence the
common factors explain all the dependence structure among
the observations.

The invariances of this model determine the identifiability
of this second-order model. The covariance model of (1) is
invariant to the transformation H −→ HQ, f −→ QT f , where
Q is any orthogonal matrix. The model is therefore unique
only up to equivalence class of frames H, denoted by the
subspace 〈H〉, which is a point on a Grassmann manifold
of dimension p. As a unique representative of this class of
equivalence, we take a loading matrix H such that its p × p
upper block is lower triangular with positive ordered diagonal
values. Clearly, this particular representative achieves the same
log-likelihood in the second-order FA model as any other
point in 〈H〉. As we shall see, the choice of this unique
representative is motivated to ensure the convergence of the
proposed algorithm to a stationary point, but is otherwise ir-
relevant. Moreover, under the aforementioned assumption, any
estimation procedure will provide a unique solution only when
the number of factors p is sufficiently small in comparison to
the dimension of the ambient space. A model is said to be
generically identified if we can find a unique FA factorization
as in (2) for almost every pair of matrices {H,Σ} viewed
as points in a parameter space of dimension (Lp + L) [40].
The non-identifiable models therefore should live in a set of
zero Lebesgue measure. According to this definition, it was
proven in [41] that a necessary and sufficient condition for a
FA model to be generically identified is

(L− p)2 − (L+ p) > 0. (3)

Other definitions of identifiability are possible. In [17], a
model is considered identifiable if the corresponding Fisher
information matrix is nonsingular. Using this definition, it
is shown in [17] that (3) is a necessary (but not sufficient)
condition for the uniqueness of the solution.

1To simplify the exposition, the case of real-valued channels is consid-
ered throughout this work, but its extension to the complex-valued case is
straightforward.

A. ML estimation in the FA model

Maximum likelihood is the most common principle for
estimation in factor analysis. However, since it is not possible
to find the ML estimates of {H,Σ} in closed-form, solutions
based on iterative procedures have been typically proposed.
These include numerical procedures by Joreskog based on
first-order or second-order derivatives [19], [20], alternating
optimization methods [7], [21], [22], and EM-type algorithms
[21], [23], [24].

In our experience, alternating optimization methods are
preferable for moderate-size problems. For instance, the al-
ternating optimization approach in [22] operates as follows.
It starts with the likelihood function for N observations of
x, x[1], . . . ,x[N ], which is to be maximized with respect to
the factor loading matrix H and the diagonal noise covariance
matrix Σ.

The likelihood of the observations is

l(H,Σ) =
1

(2π)
LN/2

detN/2(R)
exp

[
−N

2
tr(R−1S)

]
,

(4)
where

S =
1

N

N∑

n=1

x[n]xT [n], (5)

is the sample covariance matrix. The ML estimation problem
can be re-formulated as

maximize
H∈H,Σ

L (H,Σ) , (6)

where H denotes the set of structured n×p matrices such that
its p× p upper block is lower triangular with positive ordered
diagonal values and the objective function is

L (H,Σ) = − log det(HHT + Σ)− tr
[
(HHT + Σ)−1S

]
.

(7)
There is no closed-form solution to the problem (6), but it
is possible to find a local maximum of the likelihood by
applying an alternating optimization approach. Concretely,
[22] proposed an algorithm to find the estimate of the precision
matrix, which has an equivalence in terms of the parameters
of the covariance matrix. Then, defining the noise-whitened
sample covariance matrix

S̃ = Σ̂−1/2SΣ̂−1/2, (8)

and its eigenvalue decomposition (EVD)

S̃ = W̃ diag
(
λ̃1, . . . , λ̃L

)
W̃T , (9)

with λ̃i ≥ λ̃i+1, the estimate of H is

Ĥ = Σ̂1/2W̃D̃1/2Q, (10)

where Σ̂ is the previous estimate of Σ, D̃ =

diag
(
d̃1, . . . , d̃p, 0, . . . , 0

)
, with d̃i = max(λ̃i − 1, 0),

and Q is the unique orthogonal matrix that imposes the
structure of the set H. Concretely, let B be the p × p upper
block of Σ̂1/2W̃D̃1/2 and define its LQ decomposition as
LQH = B with the diagonal elements of L ordered in
decreasing absolute value, then Q is given by

Q = QT
Hsign [diag (L)] . (11)
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Fig. 1: Diagram of the proposed multi-channel factor analysis
model for M = 3 channels. The observations are represented
by xi; the loading matrices for the common factors f and for
the unique factors fi are depicted by Hi (blue) and Gi (green),
respectively; ei is the channel noise, for i = 1, . . . ,M .

Now, given Ĥ, the estimate of Σ is

Σ̂ = diag
(
S− ĤĤT

)
. (12)

Since each step of the above procedure obtains the unique
minimum of the the cost function, this alternating algorithm is
ensured to attain a stationary point of the log-likelihood [42].

III. MULTI-CHANNEL FACTOR ANALYSIS

The first generalization of FA to more than one channel was
introduced by Tucker in the fifties [27]. This generalization,
known as inter-battery FA, aims at extracting factors f com-
mon to two sets of variables (or batteries), and is based on the
generative model

x1 = H1f + e1,
x2 = H2f + e2,

(13)

where the covariance matrices of the noise vectors does not
have any further structure besides being arbitrary positive
definite matrices. In the work of Tucker, a solution is proposed
based on a least squares (LS) criterion, which results in the
singular value decomposition (SVD) of the sample cross-
covariance matrix between the two data sets. Interestingly, a
few decades later, Browne presented a connection between the
inter-battery FA and canonical correlation analysis (CCA) in
[28]. The extension of the inter-battery FA model to more than
two channels was developed in [29], [30].

We propose the following generalization of inter-battery FA
analysis. We consider M ≥ 2 channels with noise covariance
matrices that have further structure to account for the existence
in each channel of a factor component that is unique to the
channel. The generative model is

xi = Hif + Gifi + ei, i = 1, . . . ,M, (14)

where Hi ∈ RLi×p is the loading matrix in channel i for the
common factors f and Gi ∈ RLi×pi is the loading matrix
in channel i for the unique factors fi; ei ∼ NLi

(0,Σi)
is the noise in channel i. This model is illustrated in Fig.
1 for M = 3. The noise covariance matrices, Σi, are
diagonal and invertible, and the noises at different channels
are uncorrelated: E[eie

T
j ] = Σiδ[i − j]. Moreover, common

and specific factors are uncorrelated: E[f fTi ] = 0p×pi ,∀i, and
E[fif

T
j ] = 0pi×pj , for i 6= j. In this multi-channel generative

model, the common factors explain the inter-channel depen-
dence structure, whereas the unique factors explain the intra-
channel dependence structure. Further, conditioned on both the
common and unique factors, the multi-channel observations
are uncorrelated. This structure makes our model different
from other multi-channel models assumed in PARAFAC [32],
IVA [33] or multiset CCA [43], [44].

As with single-channel FA, only the subspaces 〈H〉 and
〈Gi〉 can be identified. Thus, without loss of generality, we
consider the factors to be normalized as follows: E[f fT ] = Ip
and E[fif

T
i ] = Ipi .

Assuming a multivariate normal model for common and
uncommon factors, the composite vector x = [xT1 · · ·xTM ]T is
distributed as NL(0,R) with a structured covariance matrix
that is

R = HHT + E. (15)

Here, the composite loading matrix is H = [HT
1 · · ·HT

M ]T ∈
RL×p, with L =

∑M
i=1 Li. The unique-factors-plus-noise

covariance matrix is

E = blkdiag[E1,E2, . . . ,EM ] = GGT + Σ, (16)

where the composite loading matrix for the uncommon factors
and the composite noise covariance matrix are, respectively,

G = blkdiag[G1,G2, . . . ,GM ], (17)

and
Σ = blkdiag[Σ1,Σ2, . . . ,ΣM ]. (18)

Moreover, Ei = GiG
T
i + Σi, with Gi ∈ RLi×pi and Σi ∈

RLi×Li .
The identification of a second-order MFA model is not

unique due to the problem invariances. However, as explained
in Sec. II, we can choose unique representives for the loading
matrices for the common and unique factors as follows. The
unique solution for H is such that its p×p upper block is lower
triangular with positive ordered diagonal elements and, simi-
larly, the pi×pi upper block of Gi is also lower triangular with
positive ordered diagonal elements. We will denote the sets of
matrices with this structure by H and Gi, respectively, and G
denotes the set of matrices G = blkdiag[G1,G2, . . . ,GM ],
with Gi ∈ Gi. These constraints yield unique solutions
for the loading matrices, and are necessary to ensure the
convergence of the alternating optimization algorithm to a
stationary point. Moreover, as in single-channel FA, the MFA
model is not identifiable without a constraint on the number
of parameters to be identified. In the following, we present
a necessary condition on the largest number of common and
specific factors that yield a unique solution for the covariance
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matrix. To do so, we need to count how many knowns and
unknowns the model has. The number of knowns is given by
the number of different elements of the sample covariance
matrix, which are L(L + 1)/2. The number of unknowns
is slightly more involved to compute. Let us start with the
number of unknowns in Ei, which are those of the classical
FA model, i.e., Li + Lipi − pi(pi − 1)/2. Finally, since the
number of unknowns in HHT is Lp − p(p − 1)/2, for the
solution to be unique it is required that

L(L+ 1)

2
− Lp+

p(p− 1)

2

−
M∑

i=1

(
Li + Lipi −

pi(pi − 1)

2

)
> 0. (19)

Additionally, after removing the common factors each single-
channel FA model must be also identifiable, which adds the
following conditions

(Li − pi)2 − (Li + pi) > 0, i = 1, . . . ,M. (20)

A. ML estimation in the MFA model
In this section, we present the ML estimation of the

unknown parameters in the MFA model. In particular, as-
suming that N observations of each channel are available,
xi[1], . . . ,xi[N ], i = 1, . . . ,M , the goal is to estimate the
composite common-factor loading matrix H, the composite
channel-specific loading matrix G, and the composite diagonal
noise covariance matrix Σ that maximize the log-likelihood.
Hence, the ML estimates of H,G, and Σ are obtained by
solving the maximization problem

maximize
H∈H,G∈G,Σ

L (H,G,Σ) , (21)

where the objective function is

L (H,G,Σ) = − log det(R)− tr
(
R−1S

)
, (22)

with R given in (15) and the sample covariance matrix given
in (5) with the vector of multi-channel observations x[n] =
[xT1 [n] · · ·xTM [n]]T .

The maximization problem in (21) does not have a closed-
form solution. In this work, we propose therefore to use
an alternating optimization approach, as described in the
following section.

B. Alternating Optimization Algorithm
We propose a cyclic alternating-optimization algorithm for

maximizing the log-likelihood function in (22) subject to the
constraints that ensure the uniqueness of the loading matrices
for common and unique factors. The procedure applies three
steps in a cyclic fashion, which are derived using the block
minorization-maximization (BMM) framework [38], [39]. At
each of the three steps, a subset of variables is optimized
by maximizing a global lower bound of the cost function,
while the remaining variables are fixed at previously estimated
values. The fixed parameters at the (k+ 1)th iteration are de-
noted by Ĥ(k), Ĝ(k), and Σ̂(k), whereas the parameters to be
optimized are denoted without a hat. That is, L(H, Ĝ(k), Σ̂(k))
is the objective function at the (k + 1)th iteration for fixed
values of G and Σ.

a) Step 1: Estimation of H: The first step of the proposed
method consists in estimating H, assuming that G and Σ are
fixed. Thus, the optimization problem at the (k+1)th iteration
is

(P1) maximize
H∈H

L
(
H, Ĝ(k), Σ̂(k)

)
. (23)

In this case, it is possible to obtain a closed-form solution by
maximizing the log-likelihood directly, that is, no lower bound
is necessary. To do so, we may define

Ê = Ĝ(k)Ĝ(k)T + Σ̂(k), (24)

which is fixed since Σ̂(k) and Ĝ(k) are fixed at their values
of the kth iteration. The whitened sample covariance matrix
and its eigenvalue decomposition are

S̃ = Ê−1/2SÊ−1/2 = W̃Λ̃W̃T (25)

where Λ̃ = diag(λ̃1, . . . , λ̃L) with λ̃i ≥ λ̃i+1.
From the original result of Anderson [45], the solution to

(23) is
Ĥ(k+1) = Ê1/2W̃D̃1/2Q, (26)

where di = max(λ̃i − 1, 0), p is the number of common
factors, and Q is an orthogonal matrix selected to impose the
structure of the set H, which is obtained as in Section II-A.
A consequence of this result is that the value of HHT that
maximizes the log-likelihood is

Ĥ(k+1)Ĥ(k+1)T = Ê1/2W̃D̃W̃T Ê1/2.

b) Step 2: Estimation of G: In this step, the channel-
specific loading matrices, Gi, for fixed H and Σ, are esti-
mated. The optimization problem at the (k + 1)th iteration
is

(P2) maximize
G∈G

L
(
Ĥ(k+1),G, Σ̂(k)

)
, (27)

which has no closed-form solution. Following the BMM
framework, we propose to find a global lower-bound based
on the EM approach and maximize this bound. Interestingly,
we will show that this step amounts to removing the loading
matrix for the common factors Ĥ(k+1) from the corresponding
block in the diagonal of the sample covariance. Then, apply
Anderson’s result [45] and select the unique loading matrix
with the required structure.

Here is the idea. After marginalization with respect to
the Gaussian factors f , the model for the measurement x is
x ∼ NL(0,HHT + GGT + Σ). The problem is to find joint
ML estimates for {H,G,Σ} in this model. We might say we
started with the joint distribution for {x, f}, with x normally
distributed, conditioned on f , and f normal. The distribution of
f is conjugate with respect to the conditional distribution of x,
so the marginalization of the joint distribution of {x, f} is easy,
producing the second-order normal distributionNL(0,HHT+
GGT + Σ). But the maximization of the likelihood in this
second-order model with respect to G is intractable, even in
an alternating maximization with H and Σ fixed at their most
recent estimates.

So, we replace the modelNL(0,HHT+GGT+Σ) with the
conditional first-order model NL(Hf ,GGT+Σ), treating f as
an unmeasured random effect, and proceed with an EM-based
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lower bound in this first-order model, which is maximized
to actually find a Ĝ that increases the log-likelihood in the
second-order model x ∼ NL(0,HHT +GGT +Σ), for fixed
{H,Σ}.

Now, we will compute the lower bound by only assuming
that H is fixed. We do not consider fixed Σ as the bound
derived here will be also useful in the next step. Then, let us
rewrite the log-likelihood for fixed H as follows

L
(
Ĥ(k+1),G,Σ

)
=

N∑

n=1

log l (x[n]|G,Σ) (28)

where l (x[n]|G,Σ) is the likelihood of x[n] for H fixed to
Ĥ(k+1), and the equality is up to constant terms that do not
modify the optimization problem. The factors f [n], with f [n]
denoting the nth realization of f , are considered unmeasured
random effects, or hidden data, so the augmented data is
{x[n], f [n]} [21], [23], [24]. For this choice of the augmented
data set, the lower-bound on L

(
Ĥ(k+1),G,Σ

)
is

L
(
Ĥ(k+1),G,Σ

)
≥ Q (G,Σ) + C, (29)

where C is a constant and

Q (G,Σ) =
N∑

n=1

E
[
log l

(
x[n]|f [n],G,Σ, Ĥ(k+1), Ĝ(k), Σ̂(k)

)]
. (30)

The conditional distribution of x[n] given f [n] and the param-
eters of the previous iteration is

x[n]|f [n] ∼ NL
(
Ĥ(k+1)f [n],E

)
, (31)

where E = GGT +Σ. Then, the expectation in (30) becomes
(up to constant terms)

E
[
log l

(
x[n]|f [n],G,Σ, Ĥ(k+1), Ĝ(k), Σ̂(k)

)]
=

− 1

2
x[n]TE−1x[n] + x[n]TE−1Ĥ(k+1)f̂ [n]

− 1

2
log det (E)− 1

2
tr
(
Ĥ(k+1)TE−1Ĥ(k+1)C[n]

)
, (32)

where

f̂ [n] = E [f [n]|x[n]] = Wx[n], (33)

is the expected value of the factors, which is the minimum
mean squared estimator (MMSE) of f [n] given x[n], and

C[n] = E
[
f [n]f [n]T |x[n]

]
= Wx[n]xT [n]WT

+
(
I + Ĥ(k+1)T Ê−1Ĥ(k+1)

)−1
, (34)

is the second order moment of the factors given the observa-
tions. In (33) and (34), the MMSE matrix W is

W = Ĥ(k+1)T
(
Ĥ(k+1)Ĥ(k+1)T + Ê

)−1
, (35)

where Ê is defined in (24). Plugging now (33) and (34) into
(30) yields

Q (G,Σ) = −N
2

log det (E)

−N
2

tr
[
E−1

((
I− 2Ĥ(k+1)W

)
S + Ĥ(k+1)C̄Ĥ(k+1)T

)]
,

(36)

where

C̄ =
1

N

N∑

n=1

C[n] =
(
I + Ĥ(k+1)T Ê−1Ĥ(k+1)

)−1
+WSWT .

(37)
Exploiting the block-diagonal structure of E, Q (G,Σ) can
be written as

Q (G,Σ) = −N
2

M∑

i=1

[
log det

(
GiG

T
i + Σi

)

+ tr
((

GiG
T
i + Σi

)−1
Ti

)]
, (38)

where Ti is the ith block of the appropriate dimensions in the
diagonal of

T =
(
I− 2Ĥ(k+1)W

)
S + Ĥ(k+1)C̄Ĥ(k+1)T . (39)

The following lemma allows a further simplification of the
expected log-likelihood function.

Lemma 1: The matrices T and P = S − Ĥ(k+1)Ĥ(k+1)T

are identical.
Proof: Using (26), T can be written as

T = Ê1/2Ŵ∆ŴT Ê1/2, (40)

where
∆ = diag

(
δ1, . . . , δp, λ̃p+1, . . . , λ̃L

)
, (41)

with δj = min(λ̃j , 1). On the other hand, substituting
Ĥ(k+1)Ĥ(k+1)T = Ê1/2W̃D̃W̃T Ê1/2 into P, we obtain

P = S− Ĥ(k+1)Ĥ(k+1)T

= Ê1/2Ŵ
(
Λ̃− D̃

)
ŴT Ê1/2

= Ê1/2Ŵ∆ŴT Ê1/2 = T, (42)

which proves the lemma.

From this result, we finally find that the expected log-
likelihood function can be written as

Q (G,Σ) = −N
2

M∑

i=1

[
log det

(
GiG

T
i + Σi

)

+ tr
((

GiG
T
i + Σi

)−1
Pi

)]
, (43)

where
Pi = Si − Ĥ

(k+1)
i Ĥ

(k+1)T
i (44)

and Si is the sample covariance matrix of the ith channel. The
interesting point from this derivation is that maximizing the
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lower bound can be decoupled into M standard FA problems,
that is,

Q (G,Σ) =
M∑

i=1

Qi (Gi,Σi) (45)

where

Qi (Gi,Σi) = −N
2

log det
(
GiG

T
i + Σi

)

+ tr
((

GiG
T
i + Σi

)−1
Pi

)
, (46)

is identical to (7). To obtain the low-rank component Gi that
models the loading matrix for the unique factors, we have
to maximize Qi

(
Gi, Σ̂

(k)
i

)
for fixed Σ̂

(k)
i . To this end, we

proceed as before. Defining the whitened version of Pi and
its EVD as

P̃i =
[
Σ̂

(k)
i

]−1/2
Pi

[
Σ̂

(k)
i

]−1/2
= W̃iΛ̃iW̃

T
i (47)

where Λ̃i = diag(λ̃i,1, . . . , λ̃i,Li) with λ̃i,j ≥ λ̃i,j+1, the
value of Gi that maximizes the lower bound is found from
the fundamental result of Anderson [45]:

Ĝ
(k+1)
i =

[
Σ̂

(k)
i

]1/2
W̃iD̃

1/2
i Qi. (48)

Here, D̃i = diag (di,1, . . . , di,pi , 0, . . . , 0), with di,j =
max(λ̃i,j−1, 0) and pi is the number of specific factors in the
ith channel. In addition, the orthogonal matrix Qi is computed
like in Step 1 to ensure that Ĝ

(k+1)
i ∈ Gi.

c) Step 3: Estimation of Σ: The last step of the proposed
algorithm is to estimate Σ as the solution to the optimization
problem

(P3) maximize
Σ

L
(
Ĥ(k+1), Ĝ(k+1),Σ

)
. (49)

The problem (P3) does not admit a closed-form solution,
and neither does the maximization of the lower bound
Qi

(
Ĝ

(k+1)
i ,Σi

)
, derived in the previous step. Neverthe-

less, it is possible to find yet another lower bound on
Qi

(
Ĝ

(k+1)
i ,Σi

)
, which admits a closed-form maximizer, as

follows.
Defining Φi = Σ−1i , we may rewrite Qi

(
Ĝ

(k+1)
i ,Σi

)
as

Qi

(
Ĝ

(k+1)
i ,Φ−1i

)
= R1(Φi)−R2(Φi), (50)

where
R1(Φi) = tr (log Φi)− tr (PiΦi) (51)

and

R2(Φi) =

pi∑

j=1

log(max(β̃i,j , 1))−max(β̃i,j , 1) + 1 (52)

with log denoting the matrix logarithm and β̃i,j being the jth
eigenvalue of Φ

1/2
i PiΦ

1/2
i . Clearly, R1(Φi) and R2(Φi) are

both concave functions, but their difference is not concave.
Khamaru and Mazumder in [46] propose a global lower-bound

of Qi
(
Ĝ

(k+1)
i ,Φ−1i

)
based on the linearization of R2(Φi)

using the subgradient at Σ̂
(k)
i , which yields

Q̄i

(
Ĝ

(k+1)
i ,Φ−1i

)
= tr (log Φi)− tr (PiΦi) + tr (AiΦi) ,

(53)
where the subgradient with respect to Φi is

Ai = diag

([
Σ̂

(k)
i

]1/2
W̃iΞ̃iW̃

T
i

[
Σ̂

(k)
i

]−1/2
Pi

)
, (54)

with
Ξi = diag (ξi,1, . . . , ξi,pi , 0, . . . , 0) , (55)

and ξi,j = max(1− 1/λ̃i,j , 0). Thus, we have that

L
(
Ĥ(k+1), Ĝ(k+1),Σ

)

≥ Q
(
Ĝ(k+1),Σ

)
+ C ≥ Q̄

(
Ĝ(k+1),Σ

)
+ C, (56)

where

Q̄
(
G(k+1),Σ

)
=

M∑

i=1

Q̄i

(
Ĝ

(k+1)
i ,Φ−1i

)
. (57)

Finally, the maximizer of (53) is given by

Φ̂−1i = diag (Pi −Ai) . (58)

After some straightforward manipulations, we may rewrite the
subgradient in (54) as

Ai = diag
(
Ĝ

(k+1)
i Ĝ

(k+1)T
i

)
, (59)

which yields

Σ̂
(k+1)
i = diag

(
Pi − Ĝ

(k+1)
i Ĝ

(k+1)T
i

)
. (60)

or, equivalently,

Σ̂(k+1) = diag
(
S− Ĥ(k+1)Ĥ(k+1)T − Ĝ(k+1)Ĝ(k+1)T

)
.

(61)
The non-negativity of the elements in the diagonal of Σ has
not been imposed. However, taking into account (48), it is easy
to show that the elements of Σ̂i are indeed non-negative.

C. Initialization and convergence

The algorithm for ML multi-channel factor analysis, or
ML-MFA, is initialized at Σ̂(0) = IL and Ĝ

(0)
i = 0Li×pi ,

respectively. A smarter initialization of Σ, which could achieve
faster convergence for small signal-to-noise ratios [4], is
Σ̂(0) = diag (S). A summary of the ML-MFA algorithm is
presented in Algorithm 1.

The following theorem proves the convergence of the ML-
MFA algorithm to a stationary point of (21).

Theorem 1: Denote by

{Θ̂(k)} = {Ĥ(k), Ĝ(k), Σ̂(k)} (62)

the sequence of iterates generated by Algorithm 1. Then,
assuming that the problem is identifiable and that the solution
at each iteration has positive noise variances (i.e., the so-
called Heywood cases [4] are excluded), the sequence {Θ̂(k)}
converges to a stationary point Θ̂∗ of (21).

Proof: See Appendix I.
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Algorithm 1 ML-MFA algorithm.

1: Initialize: k = 0, Σ̂(0) = IL and Ĝ
(0)
i = 0Li×pi

2: repeat
3: Step 1: Estimate Ĥ(k+1) according to (26)
4: Cancel out the effect of the common factors using (44)
5: Step 2: Estimate Ĝ

(k+1)
i following (48)

6: Step 3: Estimate Σ̂
(k+1)
i as in (60)

7: k = k + 1
8: until convergence
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Fig. 2: Convergence of the ML-MFA algorithm.

IV. NUMERICAL RESULTS

A. Demonstrating convergence

In the first example, we study the convergence of Algorithm
1 by considering M = 3 channels of dimensions L1 =
20, L2 = 15, and L3 = 10. The number of observations is
N = 100, and the number of common and unique factors are,
respectively, p = 2 and p1 = 4, p2 = 3, and p3 = 2. Moreover,
the power ratio explained by the common, unique, and noise
components for the ith channel with respect to the total power
are given by

ηc = tr(HiH
T
i )/ tr(Ri) = 0.3, (63)

ηs = tr(GiG
T
i )/ tr(Ri) = 0.3, (64)

ηn = tr(Σi)/ tr(Ri) = 0.4, (65)

where Ri is the covariance matrix of the ith channel:

Ri = HiH
T
i + GiG

T
i + Σi. (66)

Note that, for simplicity, the power ratios for all channels are
identical, although it is straightforward to extend the model to
unequal power ratios.

The results for this example are shown in Fig. 2, where
the convergence curves for 15 runs of the proposed method
are plotted. The loading and covariance matrices are randomly
generated. That is, the model is different in each run. Conse-
quently the value of achieved log-likelihood varies from run-
to-run.

0 50 100 150 200

−2

0

2

C
om

m
on

fa
ct

or

0 50 100 150 200
−4

−2
0

2

4

6

U
nc

om
m

on
fa

ct
or

in
x
1 True factor

Estimated factor

Fig. 3: Estimated and true factors.

B. Estimating the common and unique factors

In the second example, the identification of the composite
covariance matrix for all channels is used in uncoupled MMSE
estimates of common and unique factors:

f̂ [n] = ĤT R̂−1x[n], (67)

f̂i[n] = ĜT
i R̂−1i xi[n], (68)

where R̂i is the ith block in the diagonal of R̂. The results are
shown in Fig. 3 for an experiment with p = pi = 1 factors,
which are now AR(1) signals,2 and N = 1000. The remaining
parameters of the measurement model are those in the previous
example. As can be seen in Fig. 3, the estimated factors in this
scenario are nearly identical to the true factors.

C. Mean-squared error of the estimated covariance model

The next example compares the performance of the MFA
method, a naive method that applies a single-channel FA
algorithm whose solution for H is projected afterwards onto
the set of matrices with the structure in Fig. 1, and a two-step
method that consists on first applying MAXVAR-CCA [43]
to estimate the common factors, then cancel out their effect
using (44), and finally applying single-channel FA to each
Pi. This combined CCA+FA approach may be interpreted as
a variation of the proposed ML-MFA method, where only one
iteration of Step 1 is taken. Moreover, we also include in the
comparison the group factor analysis (GFA) model proposed
in [31]. GFA learns a structured sparse FA model so that the
factor loading matrix is group-wise sparse. Sparsity in GFA
is enforced by assuming independent gamma distributions
as the precision parameter of the prior distribution for the
elements of the loading matrix, and approximate inference is
performed using the mean-field variational approximation. A
final point to mention is that, while MFA, CCA+FA, and the
naive method need an estimate of the number of common and
unique factors, GFA only needs to know the total number of
factors, K, and the variational optimization procedure finds

2The temporal correlation induced by the AR(1) model is only used for
visualization purposes and not exploited in the estimation algorithm, which
still considers independent and identically distributed observations.
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Fig. 4: NMSE in the estimate of R for the MFA, block-sparse
FA, CCA+FA, and GFA models.

the most adequate group-wise sparse structure for the multi-
channel loading matrix. As a figure of merit, we use the
normalized mean-squared error in the estimate of R, which
is defined as

NMSE = E




∥∥∥R− R̂
∥∥∥
2

F

‖R‖2F


 ,

estimated by averaging 1000 Monte Carlo trials for each value
of N .

We generate data according to the proposed MFA model
with M = 4 channels of dimensions L1 = 6, L2 = 8, L3 =
10, and L4 = 12, p = 2 common factors and pi = 1
specific factor in each channel, and the proportion of variance
explained by the common factors, the specific factors, and the
noise are, respectively,

ηc = 0.1, ηs = 0.5, ηn = 0.4. (69)

Fig. 4 shows the NMSE for the MFA, CCA+FA, and the
GFA models as a function of the sample size N , as well
as for two versions of the proposed naive method. In the
first one, labeled as sparse-FA I, the projection is performed
after convergence of the FA algorithm, whereas in the second
one, labeled as sparse-FA II, the projection is performed after
each iteration. For the MFA, block-sparse FA, and CCA+FA,
we use the correct number of common and unique factors,
while for the GFA we use the correct number of total factors
K = p + p1 + p2 + p3 + p4 = 6. As Fig. 4 shows, the gain
obtained by properly enforcing the right sparsity structure in
the composite loading matrix (cf. Fig. 1) increases with the
number of samples. Moreover, imposing this structure using
the naive approach results in a very poor performance. Thus,
we will discard this method in the next experiment.

This is admittedly a rigged experiment, as the measurements
are generated from a model matched to the MFA structure
assuming that the exact number of common factors, p, and
the exact number of unique factors, pi, are known. In the
next example we evaluate the NMSE performance of MFA,
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Fig. 5: Robustness of MFA, CCA+FA and GFA against
mismatched models.
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CCA+FA, and GFA against mismatched models using the
parameters of the last experiment. Let us recall that the true
number of common factors is p = 2, and the unique factors for
the 4 channels are pi = 1. Fig. 5a shows that the performance
of MFA is rather insensitive to an overestimation of either
the number of common or unique factors. However, MFA is
sensitive to underestimation of the number of unique factors.
The same behavior can be observed for the CCA+FA model
as can be seen in Fig. 5b. Finally, the GFA model experiences
also a similar behavior, as Fig. 5c shows: it is robust against
an overestimation of the total number of factors present in the
true model, but sensitive to under-estimation of the number
of factors. In fact, this example suggests that GFA is more
sensitive to model order underestimation than is MFA or
CCA+FA.

So far, we have not commented on the computational
complexity of the MFA, CCA+FA, and GFA models. Here,
the computational complexity is measured only by the most
expensive operations (matrix factorizations and inverses). First,
we will compute the computational complexity of the MFA
algorithm per iteration. Step 1 of the algorithm requires the
computation of Ê1/2 and Ê−1/2, which can be computed
using the EVD with a cost of

∑M
i=1O(n3i ), where O(·) is

the Landau’s big O notation. Moreover, in Step 1, the EVD
of S̃ is computed, which has a complexity of O(n3), as well
as the LQ decomposition of B, which has a complexity of
O(p3). In Step 2, after we have removed the effect of the
common factor (with a negligible complexity), it is necessary
to compute the EVDs of P̃i, i = 1, . . . ,M, which amounts to
a complexity of

∑M
i=1O(n3i ) and the LQ decompositions of

the corresponding blocks with a complexity of
∑M
i=1O(p3i ).

Moreover, the complexity of Step 3 can be neglected. To sum
up, the complexity per iteration of the MFA is

Comp.MFA = O(n3)+O(p3)+

M∑

i=1

O(n3i )+

M∑

i=1

O(p3i ). (70)

The complexity of the CCA+FA approach can be obtained
similarly. Keep in mind that, as we have pointed out before,
this method can be seen as a specialization of our algorithm
where only one iteration of Step 1 is taken. Thus, the computa-
tion complexity is O(n3)+

∑M
i=1O(n3i ) due to CCA and then

that of FA, which is
∑M
i=1O(n3i )+

∑M
i=1O(p3i ) per iteration.

Admittedly, the complexity of the MFA algorithm is higher
due to the multiple iterations of Step 1. However, as the results
have shown, this higher complexity can be worth to improve
the performance.

The most expensive operations performed by the GFA
model in each of its iterations are the updates of its latent
variables and projection matrices. These require the inversion
of M + 1 matrices of size K×K, where M is the number of
channels and K = p +

∑
i pi is the total number of factors.

Thus, the complexity per iteration is (M + 1)O(K3). Since
the involved matrices are fairly small, these operations are
rather inexpensive and performing a single iterate is relatively
fast. Nevertheless, the convergence of GFA in Figs. 4 and
5c required several hundreds up to thousands of iterations,
which is up to two orders of magnitude more than MFA.

The GFA implementation of [31] also includes a variational
approximation scheme to solve the rotational disambiguity of
the solution, which adds an important computational burden
to each iteration. Since this operation is not required to
estimate the covariance matrix, it was not performed in our
experiments.

D. Application to Passive Radar
A passive radar is equipped with both surveillance and

reference antenna arrays [47]. The detection problem is to test
H1 : target present vs H0 : target absent:

H1 :

{
x1[n] = H1f [n] + G1f1[n] + e1[n],

x2[n] = H2f [n] + G2f2[n] + e2[n],

H0 :

{
x1[n] = G1f1[n] + e1[n],

x2[n] = H2f [n] + G2f2[n] + e2[n].

(71)

Here, x1[n] and x2[n] are respectively the surveillance and
reference observations, f [n] is the unknown signal transmitted
by the opportunistic illuminators, and H1 and H2 correspond
to the channels between the illuminators and the surveillance
and reference antennas. The factor f [n] is common when
there is a target present to reflect the direct path signal, and
the scanning surveillance channel comes into synchrony with
the reference channel. The factors f1[n] and f2[n], and their
channels G1 and G2, model the local interference at the
surveillance and reference antenna arrays. Local interference
in the surveillance channel models the direct path signal to
the surveillance channel, and local interference in the refer-
ence channel allows for the modeling of multipath from the
transmitter. We assume that the number of common and unique
factors is known, which is not unrealistic for this application.

In [22], the model in (71) has been studied under differ-
ent assumptions on the composite covariance matrix for the
surveillance and direct channels. One of these assumptions is
that there is no channel specific interference in the surveillance
and reference channels, and that the covariances for the noises
e1 and e2 are positive definite, but not diagonal. In this case,
[22] derived the generalized likelihood ratio test (GLRT):

T (x[1], . . . ,x[N ]) =

p∏

i=1

1

1− k2i
H1

≷
H0

η, (72)

where η is a properly selected threshold and ki is the ith
canonical correlation between the surveillance and reference
channels. That is, ki is the ith singular value of C =

S
−1/2
11 S12S

−1/2
22 , with Sij the ijth block of S. The statistic

may be termed a coherence statistic, as C is a coherence ma-
trix. The statistic 1−1/T (x[1], . . . ,x[N ]) makes the coherence
interpretation more clear:

1− 1

T (x[1], . . . ,x[N ])
= 1−

p∏

i=1

(1− k2i ). (73)

Let us compare the GLRT in (72) with the GLRT statistic
for the problem (71)

G (x[1], . . . ,x[N ]) =

max
H1,H2,G,Σ

l(H1,H2,G,Σ)

max
H2,G,Σ

l(H2,G,Σ)

H1

≷
H0

η.

(74)
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Fig. 6: Probability of missed detection (pm) for varying SINR
and fixed probability of false alarm pfa = 10−3.

Here l(·) is the Gaussian likelihood function. The maximiza-
tion in the numerator is identical to that in Section III and we
can therefore solve it using the ML-MFA algorithm. Under
H0, the measurement model is

x1[n] = G1f1[n] + e1[n],
x2[n] = H2f [n] + G2f2[n] + e2[n],

(75)

which is equivalent to two (independent) FA problems. Thus,
the computation of the compressed likelihood under the null
hypothesis H0 may be carried out by solving two FA problems
as in Section II.

To evaluate the performance of the statistics
G (x[1], . . . ,x[N ]) and T (x[1], . . . ,x[N ]), let us construct
the following experiment. The noise covariance matrices
are generated as Σi = diag(σ2

i,1, . . . , σ
2
i,Li

) with σ2
i,j

uniformly distributed between 0 and 1, and the elements of
the common and uncommon loading matrices are generated
as independent complex normals with zero mean and unit
variance; the common loading matrices are scaled to achieve
the desired signal-to-interference-plus-noise ratio (SINR). The
surveillance and reference channels are both equipped with
Li = 10 antennas, the number of antennas at the illuminator
is p = 3, the interferers have both pi = 1 antenna, and the
number of available samples is N = 200. The results for
this scenario are shown in Figure 6. This figure shows the
probability of missed detection (pm) for fixed probability of
false alarm pfa = 10−3 and varying SINR, which is defined
as

SINR (dB) = 10 log10

(
tr(HiH

H
i )

tr(GiGH
i + Σi)

)
. (76)

As we can see, the proposed detector in (74) outperforms
the detector T (x[1], . . . ,x[N ]) in (72) because it exploits
the additional structure induced by the low-rank interferers,
which is to say the statistic G (x[1], . . . ,x[N ]) is matched to
the measurement model and the statistic T (x[1], . . . ,x[N ]) is
mismatched.

V. CONCLUSIONS

This paper reports an extension to factor analysis (FA) for
several MIMO channels that share factors and also contain
unique factors. One important application of these results is
to the problem of target detection in passive radar. Compared
to other multi-channel generalizations of FA, such as inter-
battery FA, the model proposed in this paper allows for shared
and unique factors in each channel. The net of this model is
to produce a multivariate Gaussian distribution for the set of
MIMO channels in which a composite covariance matrix is
structured in a very special way. The maximum likelihood
problem is to identify this structured covariance matrix from
a sequence of multi-channel measurements. Since there is
no closed-form solution, we report an iterative algorithm,
consisting of a sequence of three steps, which are derived using
the block minorization-maximization framework. We prove
the convergence of the algorithm to a stationary point and
demonstrate its performance with numerical experiments on
illustrative problems. In the theory developed here, the number
of factors must be known for each channel, suggesting further
refinements for order determinations in each channel.

APPENDIX I
PROOF OF THEOREM 1

The proposed algorithm is a block minorization-
maximization (BMM) algorithm [38], also known as
block successive minimization algorithm [39], with a cyclic
selection rule. BMM algorithms are a generalization of the
well-known block coordinate ascend methods [42], where
instead of maximizing the objective function with respect to
each block of variables, global lower bounds are maximized.
This allows for more flexible algorithms that still guarantee
convergence to a stationary point. Concretely, Razaviyayn,
Hong, and Luo established in [39] the conditions under which
BMM algorithms converge to a stationary points. Hence, the
objective of this appendix is to show that these conditions
are met for our particular problem. The conditions to ensure
convergence of BMM algorithms are [39]:
(C1) Each block of variables belongs to a convex set.
(C2) The maximizer of the global lower bounds is unique for

at least 2 blocks.
(C3) The global lower bounds satisfy the regularity conditions

given by [39, Assumption 2].
(C4) The level set, defined as

X (0) = {H,G,Σ | L(H,G,Σ) ≥ L(H(0),G(0),Σ(0))},
(77)

is compact.
(C5) The log-likelihood is regular at any point in X (0).

Before proceeding, let us note that Algorithm 1 is a spe-
cial case of a BMM algorithm since the estimate of H is
obtained by directly maximizing the log-likelihood (i.e., the
original cost function) and no lower-bound is required. On
the other hand, the estimates for G and Σ are obtained by
maximizing the global lower-bounds Q

(
G, Σ̂(k)

)
+ C and

Q̄
(
Ĝ(k+1),Σ

)
+ C, respectively.
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The matrices H ∈ H, G = blkdiag[G1, . . . ,GM ], where
Gi ∈ Gi, and Σ = blkdiag[Σ1, . . . ,ΣM ], where Σi is a diag-
onal matrix with positive elements, clearly belong to convex
sets. Therefore, the condition (C1) is satisfied. Moreover, as
we have seen in Section III, the maximizer for Σ of the lower
bound is unique, and the maximizers for H and G of the lower
bounds are also unique when the lower triangular structure in
the upper blocks of H and G is imposed, which can be safely
done due to the invariances of factor analysis. Thus, condition
(C2) is also met since all the maximizers of the lower bounds
are unique.

Since the Gaussian log-likelihood is a smooth function,
using [39, Proposition 2], it is easy to check that the regu-
larity conditions of (C3) are satisfied for Q

(
G, Σ̂(k)

)
+ C.

Similarly, and taking into account that Q̄
(
Ĝ(k+1),Σ

)
+ C

was obtained by linearizing Q
(
G, Σ̂(k)

)
+ C, the regularity

conditions are also satisfied for this lower bound.
To prove that the level set is compact, we shall use the

Heine-Borel theorem, which states that a subset S of Rs (with
the usual metric) is compact if and only if it is closed and
bounded. In our problem, the solutions {H,G,Σ} belong to
a subset of RLp+

∑
i Lipi+L, and therefore the Heine-Borel

theorem applies. First, we study the closedness of the level
set. Any point in X (0) satisfies

L(H(0),G(0),Σ(0))} ≤ L(H,G,Σ) ≤ L(H?,G?,Σ?),
(78)

where {H?,G?,Σ?} is the global maximum. It is easy to
show that the log-likelihood at the global maximum is bounded
above by the log-likelihood for the unstructured estimate of R,
i.e., R̂ = S, given by

− log det(S)− L, (79)

which is finite with probability one for N ≥ L, implying
that the set defined in (78) is closed. Then, since the log-
likelihood is continuous for proper solutions (solutions with
positive noise variances), the inverse image of the set in (78)
must be closed. That is, the level set is closed.

To study the boundedness of X (0), we shall decompose the
covariance matrix as

R = HHT + GGT + Σ = aR̃, (80)

with a positive and tr(R̃) = tr(R(0)). Here,

R̃ = H̃H̃T + G̃G̃T + Σ̃, (81)

with

tr(R̃) = ‖H̃‖2 +
M∑

i=1

‖G̃i‖2 + tr(Σ̃) = tr(R(0)). (82)

Therefore, the set
{

H̃, G̃, Σ̃

∣∣∣∣∣‖H̃‖
2 +

M∑

i=1

‖G̃i‖2 + tr(Σ̃) = tr(R(0))

}
, (83)

is bounded since tr(R(0)) is finite, which implies that X (0)

is bounded if a is bounded. Thus, we need to show that the
values of a fulfilling

− log det(R̃)− n log a− 1

a
tr(R̃−1S)

≥ − log det(R(0))− tr([R(0)]−1S), (84)

are finite. Since we consider identifiable systems and proper
solutions, we have that Σ̃ � 0 and therefore R̃ � 0. Now, if
we can find a finite a that fulfills

log a+
tr(S)

nρ̃mina
≤ log det(R(0)) + tr([R(0)]−1S)− n log ρ̃min

n
,

(85)
where ρ̃min > 0 is the smallest eigenvalue of R̃, the values
of a fulfilling (84) are also finite. For a > tr(S)/nρ̃min, the
function on the left-hand side of (85) is increasing, and there
must therefore exist a finite a0 such that

log a0 +
C

na0
=
B

n
, (86)

which proves that a is bounded for any point in X (0). Hence,
the level set is bounded. Then, since the level set is closed
and bounded, it is compact.

Finally, we study the regularity of the log-likelihood func-
tion according to the definition in [39]. Concretely, the log-
likelihood is regular at a point {H,G,Σ} in its domain if

`(H,G,Σ, H̄, Ḡ, Σ̄) ≤ 0, (87)

such that `(H,G,Σ, H̄,0,0) ≤ 0, `(H,G,Σ,0, Ḡ,0) ≤ 0,
and `(H,G,Σ,0,0, Σ̄) ≤ 0. Here, the directional derivative
in direction {H̄, Ḡ, Σ̄} is defined as

`(H,G,Σ, H̄, Ḡ, Σ̄) =

lim inf
τ→0

L(H + τH̄,G + τḠ,Σ + τΣ̄)− L(H,G,Σ)

τ
.

(88)

Defining
R = HHT + GGT + Σ, (89)

and

R̄ = τ2H̄H̄T + τ2ḠḠT + τHH̄T + τH̄HT

+ τGḠT + τḠGT + τΣ̄, (90)

the first term in the numerator of (88) may be rewritten as

L(H + τH̄,G + τḠ,Σ + τΣ̄) =

− log det(R + R̄)− tr((R + R̄)−1S). (91)

Since τ → 0, which implies R̄ → 0, we may substitute the
functions in (91) by their first-order approximations, which
yields

`(H,G,Σ, H̄, Ḡ, Σ̄) = lim inf
τ→0

tr((R−1SR−1 −R−1)R̄)

τ
.

(92)
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Now, taking the limit and noticing that the trace is a continuous
function we find that

`(H,G,Σ, H̄, Ḡ, Σ̄) = 2tr
(
H̄T (R−1SR−1 −R−1)H

)

+ 2tr
(
ḠT (R−1SR−1 −R−1)G

)

+ tr
(
Σ̄(R−1SR−1 −R−1)

)
. (93)

Each of the three terms in the right-hand side of (93)
corresponds to `(H,G,Σ, H̄,0,0), `(H,G,Σ,0, Ḡ,0), and
`(H,G,Σ,0,0, Σ̄), respectively. Thus, if all three terms are
negative, (87) is fulfilled and, therefore, the log-likelihood is
regular.

To conclude, the proof follows since conditions (C1)-(C5)
are satisfied.
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