Subspace Averaging in Multi-Sensor Array Processing

Ignacio Santamaría¹, Louis Scharf², Vaibhav Garg¹, David Ramírez³

 ¹Department of Communications Engineering, University of Cantabria, Spain
 ²Department of Mathematics, Colorado State University, Spain
 ³Department of Signal Theory and Communications, University Carlos III de Madrid, Spain

SIAM AG 2019, Bern, July 2019

Tuesday 9-Saturday 13 July 2019 Bern, Switzerland

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	000000	000	000

Contents

Introduction Motivation

Order estimation

Source Enumeration

Problem Statement Subspace averaging (SA) for source enumeration

Results

Conclusions

Introduction	Order estimation	Source Enumeration	Results	Conclusions
●000	000000	000000	000	000

Subspaces as data objects

- In many signal processing problems data sets are high dimensional, but their intrinsic dimension is much smaller than the dimension of the ambient space
- Data objects admit a subspace representation
- ► Example: Image, video processing & computer vision

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	000000	000	000

Subspaces in wireless communication problems

Non-coherent MIMO communications

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	000000	000	000

Subspaces in wireless communication problems

Multi-sensor array processing: source enumeration

Introduction 0000	Order estimation	Source Enumeration	Results 000	Conclusions 000

Problem

Given a sequence of experimentally derived subspaces

$$\langle \mathbf{V}_r \rangle \in \mathbb{G}(q_{V_r}, n), \quad r = 1, \dots, R$$

1. to obtain a central subspace and estimate its dimension

- to apply the resulting algorithm as a method for source enumeration in array processing under the challenging conditions of
 - high-dimensional data (massive MIMO)
 - few snapshots (small sample regime)

Introduction	Order estimation	Source Enumeration	Results	Conclusions
000●	000000	000000	000	000

Subspace averaging

► The Karcher mean or Riemannian center of mass is

$$\langle \mathbf{U} \rangle = \operatorname*{argmin}_{\langle \mathbf{U} \rangle \in \mathbb{G}(s,n)} \quad \frac{1}{R} \sum_{r=1}^{R} \sum_{i=1}^{\min(s,\dim(\mathbf{V}_r))} \theta_{r,i}^2$$

► The extrinsic mean is

$$\langle \mathbf{U} \rangle = \operatorname*{argmin}_{\langle \mathbf{U} \rangle \in \mathbb{G}(s,n)} \quad \frac{1}{2R} \sum_{r=1}^{R} \| \mathbf{P}_{\mathbf{V}_r} - \mathbf{P}_{\mathbf{U}} \|_{F}^{2}$$

Closed-form solution $\mathbf{U}_{s}^{*} = (\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{s}) = \mathbf{F}_{s}$ where \mathbf{F}_{s} is a matrix containing the *s* largest left eigenvectors of the average projection matrix

$$\overline{\mathbf{P}} = \frac{1}{R} \sum_{r=1}^{R} \mathbf{P}_{r} = \frac{1}{R} \sum_{r=1}^{R} \mathbf{V}_{r} \mathbf{V}_{r}^{H}$$

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	●00000	000000	000	000

Order estimation problem

The proposed order estimation criterion is

$$(s^*, \mathbf{P}^*_s) = \operatorname*{arg\,min}_{\substack{s \in \{0, 1, \dots, n\}\\ \mathbf{P} \in \mathbb{P}(s, n)}} \quad \frac{1}{2R} \sum_{r=1}^R \|\mathbf{P} - \mathbf{P}_r\|_F^2,$$

where $\mathbb{P}(s, n)$ denotes the set of rank-s projection matrices

• Writing $\mathbf{P} = \mathbf{U}\mathbf{U}^H$ and expanding the cost function we obtain

$$\min_{\mathbf{U}\in\mathbb{S}(s,n)} \quad \mathrm{tr}\left(\mathbf{U}^{H}(\mathbf{I}-2\overline{\mathbf{P}})\mathbf{U}\right),$$

where $\overline{\mathbf{P}} = \frac{1}{R} \sum_{r=1}^{R} \mathbf{P}_{r}$ with eigenvalues $0 \le k_{i} \le 1$

The optimal order s* is the number of negative eigenvalues of the matrix

$$\mathbf{S} = \mathbf{I} - 2\overline{\mathbf{P}}$$

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	00000		000	000

A few comments

- Does not rely on any statistical model for the generated data and is free of penalty terms or tuning parameters, unlike most order determination criteria like MDL, AIC, BIC
- ► The eigenvectors of the average projection matrix whose eigenvalues are above 1/2 determine the signal subspace
- ► If all eigenvalues are smaller than 1/2 → No central subspace, noise only hypothesis
- ► The order fitting rule arises naturally when we force P to be a projection matrix (quantizing its eigenvalues to 0/1)

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	00000	000000	000	000

A probabilistic interpretation

Given a collection of subspaces \mathbf{P}_r with average $\overline{\mathbf{P}} = \mathbf{F}\mathbf{K}\mathbf{F}^H$

- ► The eigenvalues 0 ≤ k_i ≤ 1 can be interpreted as probabilities
- This allows us to define a discrete distribution D on the set of projection matrices (or subspaces) with orientation matrix
 U and concentration parameters α

$$\mathsf{P} \sim \mathcal{D}(\mathsf{U}, \boldsymbol{lpha}),$$

useful as a random subspace generation mechanism

A measure of the spread of the collection of subspaces is given by the sample entropy

$$\hat{H} = \frac{1}{n} \sum_{i=1}^{n} (-k_i \log(k_i) - (1 - k_i) \log(1 - k_i))$$

useful for subspace clustering

Subspace Averaging in Multi-Sensor Array Processing

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	000000	000	000

Robust formulation (outliers)

$$\min_{\substack{s \in \{0,1,\dots,n\}\\ \mathbf{P} \in \mathbb{P}(s,n)}} \frac{1}{R} \sum_{r=1}^{R} \rho\left(\frac{1}{2} \|\mathbf{P} - \mathbf{P}_{r}\|_{F}^{2}\right)$$

where $\rho(\cdot)$ is a smooth concave function

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	000000	000	000

Majorization-minimization (MM) algorithms

► At each iteration, use a majorizer of the objective function

• As a majorizer, we linearize the concave function $\rho(\cdot)$

$$\min_{\mathbf{P} \in \mathbb{P}(s,n)} \quad \frac{1}{R} \sum_{r=1}^{R} \rho\left(d_{r}^{2}\left(\mathbf{P}^{(k)}\right)\right) + \rho'\left(d_{r}^{2}\left(\mathbf{P}^{(k)}\right)\right) \left(d_{r}^{2}\left(\mathbf{P}\right) - d_{r}^{2}\left(\mathbf{P}^{(k)}\right)\right)$$

$$\text{where } d_{r}^{2}\left(\mathbf{P}\right) = \frac{1}{2} \left\|\mathbf{P} - \mathbf{P}_{r}\right\|_{F}^{2}$$

Introduction O	Order estimation	Source Enumeration	Results	Conclusions
0000 0	00000	000000	000	000

At each iteration we solve a weighted SA problem

$$\min_{\substack{s \in \{0,1,\dots,n\}\\ \mathbf{P} \in \mathbb{P}(s,n)}} \quad \frac{1}{2} \sum_{r=1}^{R} \bar{w}_{r}^{(k)} \|\mathbf{P} - \mathbf{P}_{r}\|_{F}^{2}$$

where

$$\bar{w}_{r}^{(k)} = \frac{\rho'\left(d_{r}^{2}\left(\mathbf{P}^{(k)}\right)\right)}{\sum_{r=1}^{R}\rho'\left(d_{r}^{2}\left(\mathbf{P}^{(k)}\right)\right)}, \quad \bar{w}_{r}^{(k)} \ge 0, \quad \sum_{r} \bar{w}_{r}^{(k)} = 1,$$

► The optimal order at iteration k + 1, s^(k+1), is the number of negative eigenvalues of the matrix

$$\mathbf{S}^{(k)} = \mathbf{I} - 2\overline{\mathbf{P}}_{w}^{(k)}.$$

where $\overline{\mathbf{P}}_{w}^{(k)}$ is now a weighted average projection matrix

$$\overline{\mathsf{P}}_{w}^{(k)} = \sum_{r=1}^{R} \bar{w}_{r}^{(k)} \mathsf{P}_{r}.$$

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	● 0 0000	000	000

Application to multi-sensor array processing

- ▶ Uniform linear array (ULA) with *M* antennas
- ► K sources
- Electrical angles: $\theta_k = \frac{2\pi d}{\lambda} \sin(\phi_k)$
- ► M >> K antennas (e.g., massive MIMO, large-scale arrays)
- ► Small-sample regime: few snapshots

Introduction 0000	Order estimation	Source Enumeration	Results 000	Conclusions 000
► Re	eceived signal			
	Γ 1	1]	$\begin{bmatrix} e_1[t] \end{bmatrix}$	

$$\mathbf{x}[t] = \begin{bmatrix} 1 & \cdots & 1\\ e^{j\theta_1} & \cdots & e^{j\theta_K} \\ \vdots & \vdots & \vdots\\ e^{j(M-1)\theta_1} & \cdots & e^{j(M-1)\theta_K} \end{bmatrix} \begin{bmatrix} s_1[t]\\ \vdots\\ s_K[t] \end{bmatrix} + \begin{bmatrix} e_1[t]\\ e_2[t]\\ \vdots\\ e_M[t] \end{bmatrix} = \mathbf{As}[t] + \mathbf{e}[t],$$

►
$$\mathbf{e}[t] \sim \mathcal{CN}_M(\mathbf{0}, \sigma^2 \mathbf{I})$$

►
$$\mathbf{s}[t] \sim \mathcal{CN}_{K}(\mathbf{0}, \mathbf{S})$$

$$\blacktriangleright \mathbf{R} = E\left[\mathbf{x}[t]\mathbf{x}^{H}[t]\right] = \mathbf{A}\mathbf{S}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$$

Source enumeration (order estimation) problem

- To estimate K from $\hat{\mathbf{R}} = \frac{1}{N} \sum_{t=1}^{N} \mathbf{x}[t] \mathbf{x}^{H}[t]$
- Typically solved by information-theoretic criteria such as MDL (penalized functions of the eigenvalues of R̂)
- These methods underperform in the small-sample regime

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	00000	000	000

Subspace averaging for source enumeration

- ► To apply SA we need a collection of subspaces to start with
- The extracted subspaces should overlap as much as possible with the true signal subspace
- But the noise portions of each subspace should be "as independent as possible"
- How can we generate a good collection of subspaces for this problem?
 - 1. Exploiting the shift-invariance property of ULAs
 - 2. Random sampling (bootstrapping)

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	00000	000	000

Shift invariance property

- Number of subarray S = M L + 1
- ► For each *L*-dimensional subarray:
 - 1. Estimate the sample covariance matrix $\hat{\mathbf{R}}_s$, $s = 1, \dots, S$
 - 2. Extract a subspace of dimension k_{max} ($K < k_{max} \ll L$)

Introduction 0000	Order estimation	Source Enumeration	Results 000	Conclusions 000

Random sampling

More than one subspace per subarray? o Draw subspaces from an appropriate distribution ${f P}\sim {\cal D}({f U},{f lpha})$

Each random subspace is iteratively constructed as follows:

- 1. Initialize $\langle \mathbf{V} \rangle = \emptyset$
- 2. While rank(\mathbf{V}) $\leq k_{max}$ do
 - 2.1 Generate a random draw $\langle {\bf G}
 angle \sim \mathcal{D}({\bf U}, {m lpha})$
 - 2.2 $\langle \mathbf{V} \rangle = \langle \mathbf{V} \rangle \bigcup \langle \mathbf{G} \rangle$

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	00000	000	000

SA algorithm

- ▶ Input: $\hat{\mathbf{R}}$, *L*, *T* and k_{max}
- **Output**: \hat{k}_{SA}
- ▶ For $s = 1, \ldots, S$ do
 - 1. Extract $\hat{\mathbf{R}}_s$ from $\hat{\mathbf{R}}$ and obtain $\hat{\mathbf{R}}_s = \mathbf{U}_s \mathbf{\Sigma}_s \mathbf{U}_s^H$
 - 2. Generate T random subspaces from $\hat{\mathbf{R}}_s$
 - 3. Compute the projection matrices $\mathbf{P}_{st} = \mathbf{V}_{st} \mathbf{V}_{st}^H$
- Compute

$$\overline{\mathbf{P}} = \frac{1}{ST} \sum_{s=1}^{S} \sum_{t=1}^{T} \mathbf{P}_{st}$$

and its eigenvalues (k_1, \ldots, k_L)

► Estimate \hat{k}_{SA} as the number of eigenvalues of $\overline{\mathbf{P}}$ larger than 1/2

Introduction 0000	Order estimation	Source Enumeration	Results ●00	Conclusions 000

Simulation parameters

- K narrowband incoherent unit-power signals, with DOAs separated by Δ_θ in electrical angle
- ► ULA with *M* antennas and half-wavelength element separation
- $L = M 5 \implies$ total number of subarrays S = 6
- For each subarray we generate T = 20 random subspaces of dimension k_{max} = ⌊M/5⌋
- ▶ 120 subspaces on $\mathbb{G}(k_{max}, L)$ to average
- SNR = $10 \log_{10}(1/\sigma^2)$
- Methods under comparison:
 - ► LS-MDL criterion (Huang/So TSP 2013)
 - ► NE criterion (Nadakuditi/Edelman TSP 2008)
 - ► BIC method for large-scale arrays (Huang *et. al.* TVT 2016)

Introduction 0000	Order estimation	Source Enumeration	Results 0●0	Conclusions 000

Scenario 1

- K = 3 sources separated $\Delta_{\theta} = 2^{\circ}$
- ▶ M = 100 antennas, N = 60 snapshots, $L = \lfloor M 5 \rfloor$

Introduction 0000	Order estimation	Source Enumeration	Results 00●	Conclusions 000

Scenario 2

- K = 3 sources separated $\Delta_{\theta} = 10^{\circ}$
- M = 100 antennas, SNR = -16 dB, $L = \lfloor M 5 \rfloor$,

Introduction 0000	Order estimation	Source Enumeration	Results 000	Conclusions •00

Conclusions

- An automatic order-fitting rule for extracting the dimension of the average subspace that minimizes the extrinsic distance
 - Quantization of the average projection matrix
 - Free of penalty terms
- Scale-independent subspace modeling vs scale-dependent covariance modeling
- Application to source enumeration in array processing
 - Generation of a collection of subspaces:
 - Exploiting the shift invariance property of ULAs
 - Generating random draws from $\mathcal{D}(\mathbf{U}, \alpha)$
 - Competitive results in problems with large number of antennas (high-dimensional ambient spaces) and relatively few snapshots

Introduction	Order estimation	Source Enumeration	Results	Conclusions
0000	000000	000000	000	000

Thank you for your attention!

Introduction 0000	Order estimation	Source Enumeration	Results 000	Conclusions

References

[1] V. Garg, I. Santamaria, D. Ramirez, and L. L. Scharf, "Subspace Averaging and Order Determination for Source Enumeration", *IEEE Transactions on Signal Processing*, vol. 67, issue 11, pp. 3028-3041, June, 2019.

[2] I. Santamaria, L. L. Scharf, C. Peterson, M. Kirby, and J. Francos, "An order fitting rule for optimal subspace averaging", *IEEE Workshop on Statistical Signal Processing* (SSP), Palma de Mallorca, June, 2016.

[3] I. Santamaria, D. Ramirez, and L. L. Scharf, "Subspace Averaging for Source Enumeration in Large Array", *IEEE Statistical Signal Processing Workshop* (SSP), Freiburg, Germany, June, 2018.

[4] V. Garg, I. Santamaria, "Source Enumeration in Non-White Noise and Small Sample Size via Subspace Averaging", *European Signal Processing Conference*, La Corua, Spain, Sept. 2019.

[5] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, "Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition" *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 33, no. 11, pp. 22732286, 2011.

[6] R. Marrinan, J. R. Beveridge, B. Draper, M. Kirby, and C. Peterson, "Finding the subspace mean or median to fit your need" *Proc. of Computer Vision and Pattern Recognition* (CVPR), Columbus, OH, USA, pp. 10821089, Jun. 2014.

[7] A. Edelman, T. Arias, S. T. Smith, "The geometry of algo-rithms with orthogonality constraints", SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp. 303-353, 1998.

[8] A. Srivastava, E. Klassen, "Monte Carlo extrinsic estimatorsof manifold-valued parameters", *IEEE Trans. Signal Process.*, vol. 50, no. 2, pp. 299-308, Aug. 2002.