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ABSTRACT This paper proposes a general optimization framework to improve the spectral and energy
efficiency (EE) of ultra-reliable low-latency communication (URLLC) simultaneous-transfer-and-receive
(STAR) reconfigurable intelligent surface (RIS)-assisted interference-limited systems with finite block
length (FBL). This framework can solve a large variety of optimization problems in which the objective
and/or constraints are linear functions of the rates and/or EE of users. Additionally, the framework can be
applied to any interference-limited system with treating interference as noise as the decoding strategy at
receivers. We consider a multi-cell broadcast channel as an example and show how this framework can be
specialized to solve the minimum-weighted rate, weighted sum rate, global EE and weighted EE of the
system. We make realistic assumptions regarding the (STAR-)RIS by considering three different feasibility
sets for the components of either regular RIS or STAR-RIS. Our results show that RIS can substantially
increase the spectral and EE of URLLC systems if the reflecting coefficients are properly optimized.
Moreover, we consider three different transmission strategies for STAR-RIS as energy splitting (ES), mode
switching (MS), and time switching (TS). We show that STAR-RIS can outperform a regular RIS when the
regular RIS cannot cover all the users. Furthermore, it is shown that the ES scheme outperforms the MS and
TS schemes.

INDEX TERMS Energy efficiency, finite block length, majorization minimization, MISO broadcast
channels, reflecting intelligent surface, spectral efficiency, ultra-reliable low-latency communications.

I. INTRODUCTION
The sixth generation (6G) of wireless systems should
be able to support many different applications such as
ultra-reliable low-latency communication (URLLC), massive
machine-type communication (mMTC), enhanced mobile
broadband (eMBB) and internet of things (IoT) [1], [2],
[3], [4], [5]. These applications typically require very low
decoding error probabilities as well as very low latency
and enforce us to employ a packet size much shorter than
human type communications [6]. Additionally, there may
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exist tens of billions of various machine-type terminals
such as sensors, vehicles, drones, and robots in mMTC
and/or IoT networks [1], [6]. To fulfill these demands,
spectral and energy efficiency (EE) should be drastically
improved [1]. Recently, it has been shown that reconfigurable
intelligent surface (RIS) can be a promising technology for
enhancing the performance of various wireless networks
[7], [8], [9].

In this work, we investigate the performance of RIS (either
regular or simultaneous transmit and reflect (STAR)) in
URLLC systems with finite block length (FBL) and propose
a unified optimization framework to improve the spectral and
EE of (STAR-)RIS-assisted URLLC systems.
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A. LITERATURE REVIEW
Modern mobile communication systems are expected to
accomplish many wide applications and services in various
areas such as autonomous driving, healthcare, augmented
reality, automation in industry, and so on [10], [11], and [12].
As indicated, these application may require FBL in which
the Shannon rate may not be achievable [13]. In this case,
the achievable rate for a point-to-point system with Gaussian
independent and identically distributed (iid) signals can be
approximated as [13]

r = C − α
√
V , (1)

where C is the Shannon Rate, α is a constant value, which
is a function of the packet length and the desired decoding
error probability, and V is the channel dispersion. The
rate approximation in (1) is widely known as the normal
approximation (NA) [13]. The NA is known to be accurate
for packet lengths more than around 124 bits and decoding
error probabilities higher than 10−5 [14], [15], [16], [17].
Note that in the third generation partnership project (3 GPP),
the packet length is 32 bytes (or equivalently 256 bits), and
the error probability is ϵ = 10−5 [5, Sec. II.D]. In general,
the reliability constraint and/or packet length may vary for
different services [18]. For instance, according to [18], the
packet error probability should be in order of 10−5 for
URLLC, 10−3 for eMBB, and 10−1 for mMTC. It appears
that the NA should be accurate enough for these parameters
if we operate in moderate or high SNR regimes [14], [15].

To be able to support URLLC, one of the targets of 6G
is to improve the spectral and EE [1]. Note that the EE of a
system is defined as the ratio between the system throughput
and the total power consumption [19]. Energy efficient
techniques are very important for IoT and/or industrial IoT
(IIoT) and/or MTC since such techniques can increase the
battery life of devices and reduce the implementation and/or
maintenance expenses [1], [11]. The spectral efficiency
and/or EE of different systems with FBL has been studied
in [20], [21], [22], [23], [24], and [25]. The authors in [20]
considered the performance of non-orthogonal multiple-
access (NOMA) in a multiple-access channel (MAC) with
FBL. The paper [21] studied the delay performance of
multiple-input, single-output (MISO) broadcast channel (BC)
with imperfect channel state information (CSI) and FBL.
The authors in [23] maximized the sum-rate of a single-
cell MISO BC with orthogonal-frequency-division-multiple-
access (OFDMA)-URLLC. The paper [24] maximized the
minimum rate of a MISO URLLC BC. The authors in [25]
studied a massive multiple-input, multiple-output (MIMO)
URLLC with FBL and proposed schemes to maximize the
minimum rate and EE of the network.

To improve spectral and EE, 6G will employ some
emerging technologies such as RIS, which can enhance the
coverage and consequently, the system performance [7], [8],
[9], [26]. RIS has been employed to improve the performance
of various systems with realistic assumptions regarding the
CSI and devices [27], [28], [29], [30], [31], [32], [33], [34],

[35], [36], [37], [38], [39]. For instance, in [33] and [37],
a multi-cell MIMO RIS-assisted BC was considered and it
was shown that RIS can improve the spectral and EE of the
system. The superiority of RIS in a single-cell MISO BC was
shown in [29], [30], and [31]. In [36] and [38], NOMA was
applied to multi-cell RIS-assisted BCs and it was shown that
NOMA can enhance the system performance. The authors
in [28] showed that RIS can improve the performance of
an OFDM system. We refer the reader to [7] and [9] for an
overview of RIS.

A regular RIS can only reflect signals, which may restrict
the coverage area of the RIS. For a 360◦ coverage, a STAR-
RIS has been proposed in which each passive element can
reflect and transmit at the same time [40], [41], [42], [43],
[44], [45], [46], [47], [84]. STAR-RIS is a novel technology
and has been evaluated by experimental results [48]. Due to a
wider coverage area by STAR-RIS, it can be expected that
STAR-RIS is able to support more applications especially
when it is not possible to locate a regular RIS such that all
transceivers are in its reflection area.

All the aforementioned papers on RIS, [7], [8], [9],
[26], [27], [28], [29], [30], [31], [33], [34], [36], [37],
[38], [39], considered the performance of RIS in systems
with infinite block length. The performance of RIS in the
presence of FBL has been studied in [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], and [59]. The paper [49]
studied the performance of RIS and unmanned aerial vehicles
(UAVs) in URLLC systems and showed that RIS can be
beneficial in the system. The authors in [50] considered
NOMA in RIS-assisted single-input, single-output (SISO)
BC with two users and showed that RIS can improve
the system throughput and decrease the average decoding
error rate. The performance of RIS in MISO point-to-point
URLLC systems with a factory automation scenario was
investigated in [51], where the average data rate and decoding
error probability were obtained under different assumptions
regarding the fading and propagation of the channels. The
authors in [52] minimized the latency of a single-cell
SISO RIS-assisted URLLC BC with user grouping. The
paper [53] considered RIS-assisted URLLC systems with
FBL to transfer information and energy wirelessly. The
paper [54] proposed resource allocation schemes for RIS-
assisted single-cell BCs with the coexistence of eMBB and
URLLC services.

It is worth emphasizing that the optimal channel dispersion
in (1) is

V opt
= 1 −

1

(1 + γ )2
, (2)

where γ is the SNR. Even if we treat interference as
noise, we cannot simply replace the SNR term by signal-
to-interference-plus-noise ratio (SINR) and use the same
channel dispersion for interference-limited systems [60].
Indeed the optimal channel dispersion cannot be achieved
by Gaussian signals in the presence of interference. Unfor-
tunately, this issue is sometimes overlooked in the literature
when studying an interference-limited system. In this paper,
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TABLE 1. A brief comparison of the most related works.

we consider the channel dispersion in [60], which can be
achieved by Gaussian signals in interference-limited systems
with treating interference as noise (TIN). To the best of
our knowledge, [59] is the only work in interference-limited
RIS-assisted systems with FBL that considered the channel
dispersion in [60]. Note that [59] studied the geometric mean
of the rates. However, in this paper, we consider various utility
functions as will be discussed in the next subsection.

B. MOTIVATIONS AND CONTRIBUTIONS
The main motivation for this work is to propose a general
framework for URLLC RIS-assisted systems. In Table 1,
we provide a brief summary of the most related works
based on the considered scenario and the channel dispersion.
As can be observed, even though RIS has received many
attentions during recent years, the performance of RIS in
URLLC with FBL should be further investigated, especially
in multi-user communication systems. For instance, to the
best of our knowledge, there is no work on STAR-RIS
in URLLC with FBL. Additionally, EE metrics have not
been considered in RIS-assisted URLLC systems with FBL.
It should be emphasized that the rate expressions with FBL
are more complicated than the Shannon rates, and it is not
straightforward to modify and apply existing optimization
approaches to URLLC RIS-assisted systems with FBL. Thus,
a unified optimization framework is required to study the
performance of such systems by considering STAR-RIS and
EE metrics.

In this paper, we propose a general optimization framework
for URLLC with FBL in STAR-RIS-assisted systems. To the
best of our knowledge, this is the first work to study the
performance of STAR-RIS in URLLC systems. Our proposed
framework can be applied to any optimization problem
in which the objective and/or the constraints are linear
functions of the rates and/or EE of users. Moreover, the
framework can be applied to any interference-limited system,
using treating interference as noise (TIN) as the decoding
strategy.

We consider a multi-cell MISO RIS-assisted BC as an
illustrative example and show how the unified framework
can be specialized to solve different optimization problems.
To this end, we consider the minimum-weighted-rate,
weighted-sum-rate, global EE and minimum-weighted-EE
maximization problems. We refer to the objective function
of these optimization problems as the utility function.

We make realistic assumptions regarding RIS (either
regular or STAR) bymodeling the small-scale and large-scale
fading and considering three different feasibility sets based
on the models in [7], [41], [42], [43], and [44]. We propose
three main approaches to optimize reflecting/transmitting
coefficients in STAR-RIS. First, we assume that a set of
RIS components operate only in the reflection mode, and
the remaining components operate only in the transmission
mode. This scheme is referred to as the mode switching [40].
Second, we assume that all the components simultaneously
operate in both reflection and transmission mode, which
is referred to as the energy splitting mode [40]. Third,
we assume that each time slot is divided into two sub-slots.
Then, all the components operate in the reflection mode in
the first sub-slot, while they all operate in the transmission
mode in the next sub-slot. This scheme is referred to as time
switching [40].

Through numerical examples, we show that RIS can
significantly improve the spectral or the energy efficiency
of the system when the reflecting coefficients are properly
optimized. Interestingly, it may happen in some special cases
that RIS worsen the performance if the reflecting coefficients
are chosen randomly. Additionally, we show that STAR-RIS
with mode switching and energy splitting approaches out-
performs regular RIS when the RIS cannot cover all the
users. The mode-switching scheme of STAR-RIS slightly
improves the system performance over regular RIS. However,
the energy-splitting scheme considerably outperforms the
regular RIS.

The main contributions of this work can be summarized as
follows:

• We propose a unified optimization framework to solve
a large family of optimization problems for MISO
STAR-RIS-assisted interference-limited URLLC sys-
tems. This framework can be applied to any interference-
limited system with TIN.

• We consider a multicell BC and specialize the frame-
work to solve minimum-weighted rate, weighted-sum
rate, minimum-weighted rate, and global EE maximiza-
tion problems.

• We study the performance of STAR-RIS with three
different feasibility sets and consider three schemes
for optimizing the reflecting/transmitting coefficients of
STAR-RIS. We show that STAR-RIS may outperform
regular RIS if the regular RIS cannot cover all the users.

VOLUME 11, 2023 70835



M. Soleymani et al.: Spectral and EE Maximization of MISO STAR-RIS-Assisted URLLC Systems

TABLE 2. List of frequently used notations.

FIGURE 1. A multicell broadcast channel with RIS.

• We show that RIS can substantially improve the spectral
and EE of RIS-assisted URLLC systems by considering
different utility functions and feasibility sets for RIS
components.

C. PAPER OUTLINE
The rest of the paper is organized as follows. Section II
presents the system model and formulate the considered
problem. Section III presents the generalized optimization
framework for the systems without RIS. Section IV states
the extension of the proposed optimization framework to
URLLC (STAR-)RIS-assisted systems. Section V provides
some numerical results. Section VI concludes the paper.
Finally, we provide some proofs in appendices.

II. SYSTEM MODEL
Our unified optimization framework can be applied to a
large class of interference-free and/or interference-limited
URLLCMISO (STAR)-RIS-assisted systems with TIN. Such
systems include, for instance, various multi-user interfer-
ence channels, cognitive radio systems, broadcast channels,
multiple-access channels, device-to-device communications,
and so on. For the sake of illustration, we consider a mul-
ticell broadcast channel with L multi-antenna base stations
(BSs) in which each BS has NBS antennas and serves K

FIGURE 2. Channel model in a typical RIS-assisted system.

single-antenna users. We assume that there are M ≥ L
RISs with NRIS reflecting elements in the system to assist
the BSs. Note that a multicell BC is a practical scenario,
which is considered in many work such as [33], [36], [39],
and [46]. In a multicell BC, intercell interference may highly
degrade the system performance especially for cell-edge
users, which should be handled by a joint optimization of
transmit parameters at BSs.

We assume perfect, global and instantaneous channel state
information (CSI) at all transceivers similar to many other
works on RIS (either STAR or regular) such as [27], [29],
[30], [31], [33], [34], [36], [62], [63], [64], [65], [66], and
[44]. Additionally, it should be noted that in this work,
we focus on resource allocation for URLLC systems in which
it is common to assume perfect, global and instantaneous
CSI [23], [24], [58], [67], [68], [69], [70]. Investigating the
performance of RIS with perfect CSI can show the main
tradeoffs in the system design and provide an upper bound for
the system performance. Indeed, studying the performance
of RIS with perfect CSI is useful to show whether/how
(STAR-)RIS provides any benefit in URLLC systems. If the
benefits of RIS are minor with perfect CSI, then it may
suggest that RIS cannot be beneficial in more realistic
scenarios. We also assume that BSs use short-length packets
to transmit data to the users. Without loss of generality,
we consider a symmetric scenario with the same number of
BS antennas or users per cell. However, our work can be
easily extended to an asymmetric scenario in which each BS
has a different number of antennas/associated users.

A. RIS MODEL
In this paper, we consider both regular and STAR-RISs.
Here, we briefly describe the model here and refer the
readers to [33], [37], [7, Sec. II] or [44] for a detailed
description/review on the features of RIS and/or STAR-RIS.

1) REGULAR RIS
As shown in Fig. 2, the channel between BS i and user k
associated to BS l, i.e., ulk , is

hlk,i ({2}) =

M∑
m=1

flk,m2mGmi︸ ︷︷ ︸
Links through RIS

+ dlk,i︸︷︷︸
Direct link

∈ C1×NBS , (3)
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FIGURE 3. A typical STAR-RIS-assisted system.

where dlk,i is the direct link between BS i and ulk , Gmi is the
channel matrix between BS i and RIS m, flk,m is the channel
vector between RIS m and ulk , and 2m is

2m = diag
(
θm1, θm2, · · · , θmNRIS

)
, (4)

where θmis for all m, i are the reflecting coefficients.
Hereafter, we drop the dependency of the channels with
respect to {2} for notational simplicity.

The channels can be optimized only through the reflecting
coefficients θmi, which are complex-valued parameters. There
are different assumptions for modeling the reflecting coeffi-
cients. In this paper, we consider three different feasibility
sets for θmis based on the models in [7, Sec. II]. An upper
bound for RIS performance can be achieved by considering
the amplitude and phase of θmis as independent random
variables, which results in the following feasibility set
[7, Eq. (11)]

TU =

{
θmn : |θmn |

2
≤ 1 ∀m, n

}
. (5)

A more common feasibility set is

TI = {θmi : |θmi| = 1 ∀m, i} , (6)

which has been widely used in the literature [7], [9], [27],
[30], [31], [33], [34]. Another practical feasibility set is [71]

TC ={θmi : |θmi| = F( ̸ θmi), ̸ θmi ∈ [−π, π]∀m, i}. (7)

In this model, the amplitude of each RIS element is a
deterministic function of its phase as [71]

F( ̸ θmi) = |θ |min+(1−|θ |min)
(
sin (̸ θmi−φ)+1

2

)α

, (8)

where |θ |min, α, and φ are non-negative constant values.

2) STAR-RIS
In a regular RIS, each RIS component can only reflect the
signals. However, STAR-RIS allows each component to not
only reflect, but also transmit signals simultaneously, as its
name suggests. Thus, a STAR-RIS can cover a larger area
as shown in Fig. 3. Indeed, there are two spaces for each
RIS: reflection space (RS) and transmission space (TS),
while a regular RIS can only reflect [40]. Note that in this
paper, we consider only passive STAR-RIS in which each

STAR-RIS element cannot amplify the signal power neither
in the RS nor in TS.

In STAR-RIS-assisted systems, each user belongs to either
RS or TS [40]. We represent the reflecting and transmit
coefficients of the i-th component of the m-th RIS by,
respectively, θ rmi and θ tmi. In case of STAR-RIS, the channel
between BS i and ulk is [40, Eq. (2)]

hlk,i =

M∑
m=1

flk,m2r/t
m Gmi︸ ︷︷ ︸

Links through RIS

+ dlk,i︸︷︷︸
Direct link

,

where 2r
m = diag

(
θ rm1

, θ rm2
, · · · , θ rmNRIS

)
, and 2t

m =

diag
(
θ tm1

, θ tm2
, · · · , θ tmNRIS

)
. The upper bound for the perfor-

mance of STAR-RIS is given by the following feasibility set
[43, Eq. (2)]

TSU =

{
θ rmn, θ

t
mn : |θ rmi |

2
+ |θ tmi |

2
≤ 1 ∀m, n

}
. (9)

A more common feasibility set is [41], [42, Eq. (1)]

TSI =

{
θ rmn, θ

t
mn : |θ rmi |

2
+ |θ tmi |

2
= 1 ∀m, i

}
. (10)

In these feasibility sets, the phases of the reflection and
transmission coefficients can be independently optimized.
However, another feasibility set has been studied in [44] and
[66] in which the phases completely depend on each other.
This feasibility set can be written as [44, Proposition 1]

TSN =

{
θ rmn, θ

t
mn : |θ rmi |

2
+ |θ tmi |

2
= 1,

R
{
θ r

∗

mi θ
t
mi

}
= 0 ∀m, i

}
. (11)

Lemma 1: The two constraints |θ rmi |
2

+ |θ tmi |
2

= 1 and

R
{
θ r

∗

mi θ
t
mi

}
= 0 are equivalent to the following constraints:

|θ rmi + θ tmi |
2

≤ 1, (12)

|θ rmi − θ tmi |
2

≤ 1, (13)

|θ rmi |
2
+ |θ tmi |

2
= 1. (14)

Proof: We have the following equality

|θ rmi ± θ tmi |
2

= |θ rmi |
2
+ |θ tmi |

2
± 2R

{
θ r

∗

mi θ
t
mi

}
. (15)

Substituting |θ rmi |
2
+|θ tmi |

2 by 1, the constraints (12) and (13)

simplify to ±R
{
θ r

∗

mi θ
t
mi

}
≤ 0, which is equivalent to

R
{
θ r

∗

mi θ
t
mi

}
= 0. □

B. SIGNAL MODEL
The broadcast signal from BS l is

xl =

K∑
k=1

xlkslk ∈ CNBS×1, (16)

where slk ∼ CN (0, 1) is the message intended for the
k-th user associated to the l-th BS, denoted by ulk , and
xlk is the corresponding beamforming vectors, which is an
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optimization parameter. Note that slks for all l, k are iid
proper Gaussian signals.

The received signal for the user ulk is

ylk =

L∑
i=1

hlk,i
K∑
j=1

xijsij + nlk (17a)

= hlk,lxlkslk︸ ︷︷ ︸
Desired signal

+ hlk,l
K∑

j=1,j̸=k

xljslj︸ ︷︷ ︸
Intracell interference

+

L∑
i=1,i̸=l

hlk,ixi︸ ︷︷ ︸
Intercell interference

+ nlk︸︷︷︸
Noise

,

(17b)

where hlk,l ∈ C1×NBS is the channel between BS l and
ulk , and nlk ∼ CN

(
0, σ 2

)
is additive white Gaussian

noise. As can be easily verified through (17), the received
signal and the interference term are proper Gaussian signals.
Furthermore, the noise, interference and desired signals are
independent from each other. Note that there exists two
types of interference in the received signal ylk : intracell and
intercell interference. Intracell interference at ulk is caused by
BS l, while intercell interference is caused by the other BSs.

C. RATE AND ENERGY EFFICIENCY EXPRESSIONS
Each user decodes its own message, treating all other signals
as noise. Thus, the rate of ulk is [13], [25, Eq. (8)]

rlk = log (1 + γlk)︸ ︷︷ ︸
Shannon Rate

−Q−1(ϵc)

√
Vlk
nt︸ ︷︷ ︸

δlk ({x},{2})

, (18)

where Vlk is the channel dispersion for decoding slk at ulk ,
nt is the packet length, Q−1 is the inverse of the Gaussian
Q-function, ϵc is an acceptable decoding error probability,
which indicates that one out of 1/ϵc short-length packets may
experience outage, and γlk is the corresponding SINR given
by

γlk =
|hlk,lxlk |2

σ 2 +
∑

ij̸=lk |hlk,ixij|2
, (19)

where∑
[ij]̸=[lk]

|hlk,ixij|2 =

∑
ij

|hlk,ixij|2 − |hlk,lxlk |2. (20)

We represent the gap between the Shannon rate and the
FBL by δlk ({x}, {2}, ϵc) = Q−1(ϵc)

√
Vlk/nt , which is a

function of the channel dispersion. Note that ϵc is related to
the reliability constraint, and the gap between the Shannon
rate and the FBL increases with the reliability. In other
words, to ensure a more reliable communication (lower ϵc),
we should transmit data at a rate lower than the Shannon rate.
The optimal channel dispersion is [13]

V opt
lk = 1 −

1

(1 + γlk)
2 =

γlk

1 + γlk

(
1 +

1
1 + γlk

)
. (21)

However, it is not achievable by iid Gaussian signals when
there exists interference. In [60], the authors proposed a

FIGURE 4. f (γ ) versus γ for a = 0.2185. It represents rl,k / ln 2 as a
function of γl,k for nt = 200, and ϵ = 10−3.

simple and practical scheme, which is not dispersion optimal.
The channel dispersion for the scheme in [60] is

Vlk = 2
γlk

1 + γlk
= 2

(
1 −

1
1 + γlk

)
. (22)

Note that it can be easily verified that the dispersion in (22)
is an upper bound for (21). Additionally, it should be noted
that the FBL rate, Shannon rate, channel dispersion and δ are
a function of ϵc, {x} and 2. However, due to a notational
simplicity, we drop this dependency in the equations unless it
causes confusion. In the following lemma, we take a look at
the structure of (18), which provides an insight for optimizing
over the FBL rates by the NA.
Lemma 2: Consider the function

f (γ ) = ln (1 + γ ) − a
√

γ

1 + γ
,

where γ ≥ 0 is a variable, and a > 0 is a given and constant
parameter. Then, f (γ ) is minimized at γ ⋆, where f (γ ⋆) < 0.
Moreover, f (γ ) is strictly decreasing in 0 ≤ γ < γ ⋆, and
strictly increasing for γ > γ ⋆ (see Fig. 4). Additionally, f (γ )
has two root given by γ = 0, and γ = γ (0).

Proof: The derivative of f (γ ) with respect to γ is

∂f
∂γ

=
1

1 + γ
−
a
2

(
γ

1 + γ

)−
1
2
(

1
1 + γ

)2

,

which can be simplified as

∂f
∂γ

=
1

1 + γ

[
1 −

a
2

1
√

γ (1 + γ )

]
.

The function 1
√

γ (1+γ )
is strictly decreasing in γ and takes

values ∞ for γ = 0 and 0 for γ = ∞, which proves the
lemma. □
The achievable rate with FBL in (18) is a difference of two
terms, which are functions of γlk . It should be emphasized
that the expression in (18) is indeed an approximation for the
actual achievable rate and may not be accurate in very low
SINR regimes and/or for a very short packet length and/or
low decoding error probability [14], [15], [16], [17], [72].
According to Lemma 2, rlk can be negative for very low
γlk (see Fig. 4), which implies that (18) is not an accurate
approximation for γlk ≪ 1, which is also confirmed by the
results in [72]. We refer the reader to [13, Sec. IV.C] for
detailed discussions on the accuracy of the NA with different
parameters.
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The EE of a user is defined as the ratio between its data rate
and the power consumption for transmitting the data as [19]

elk =
rlk

pc + ηxHlkxlk
, (23)

where η−1 is the power efficiency of each BS, and pc is the
constant power consumption in the network for transmitting
data to a user, which is given by [37, Eq. (27)]. Another
metric for EE is the global EE (GEE), which considers the
performance of the whole network. The GEE is defined as
ratio between the total achievable rate and the total power
consumption of the network, i.e., [19]

GEE =

∑
lk rlk

LKpc + η
∑

lk x
H
lkxlk

. (24)

D. PROBLEM STATEMENT
We consider a general optimization problem, which includes
a large variety of optimization problems. This general
optimization problem can be formulated as

max
{x}∈X ,{2}∈T

f0({x},{2}) s.t. fi ({x},{2}) ≥ 0, ∀i, (25a)

rlk ≥ r th, ∀l, k, (25b)

where X and T are, respectively, the feasibility sets for {x}
and {2}. The feasibility set X is

X =

{
{x} :

∑
∀k

xHlkxlk ≤ pl, ∀l, k

}
, (26)

where pl is the power budget for BS l. The constraint (25b)
is related to the latency constraint of the system. If the
maximum tolerable latency is tc seconds, then the minimum
achievable rate of each user per bandwidth unit should be
greater than r th =

nt
tcw

, where w is the channel bandwidth
in Hz, and nt is the packet length in bits. Moreover, fis
for all i are linear functions of rates/EEs. Note that fi
can also include some other linear/quadratic/convex/concave
constraints in beamforming vectors/channels such as an
energy harvesting constraint and/or the so-called interference
temperature. However, due to a space restriction, we do not
consider such constraints in this work and leave them for a
future study.

In this paper, we aim at proposing a unified optimization
framework to solve the general optimization problem (25),
which includes, for example, maximization of weighted-
sum rate, maximization of minimum-weighted rates, global
EE, and maximization of the minimum-weighted EE. Note
that it could be possible to focus on a specific optimization
problem and provide a detailed solution for it with different
approaches, each with a different behavior in terms of
complexity and optimality. However, it is also very important
to concentrate on a general methodology for solving various
problems with different utility/cost functions. In this work,
we prefer to choose the second approach especially since
the performance of RIS (either regular or STAR) should
be further investigated in FBL regimes, and a general
optimization framework can provide an effective tool to do
so.

III. GENERALIZED OPTIMIZATION FRAMEWORK FOR
SYSTEMS WITHOUT RIS
In this section, we consider the optimization of the beam-
forming vectors {x} for systems without RIS. Note that the
algorithms in this section can be applied to RIS-assisted
systems when the reflecting coefficients are fixed. The
considered optimization problem in this section is

max
{x}∈X

f0 ({x}) s.t. fi ({x}) ≥ 0, ∀i, (27a)

rlk ≥ r th, ∀l, k, (27b)

Unfortunately, (27) is not convex since the rates are not
concave in {x}. To solve (27), we employ majorization
minimization (MM), which is an iterative algorithm that
consists of two steps in each iteration: majorization and
minimization [61]. In the majorization step, the non-convex
constraints (and/or objective function) are approximated by
suitable surrogate functions. Note that the surrogate functions
in MM algorithms should fulfill three specific conditions
mentioned in, e.g., [73, Sec. III]. In the minimization
step, the corresponding surrogate optimization problem is
solved. Note that MM has many applications not only
in communications, but also in machine learning, signal
processing, and other research areas [61]. In this paper,
we specialize MM to solve (27) in the context of STAR-
RIS-assisted URLLC systems. In general, MM starts with a
feasible initial point and converges to a stationary point of the
considered optimization problem, which meets the first order
optimality constraint and satisfies the Karush-Kuhn-Tucker
(KKT) conditions [74]. Since we employ MM, our proposed
framework for systems without RIS converges to a stationary
point of (27). The final point of MM-based algorithms may
depend on the initial point, which should be feasible and can
be chosen either randomly or heuristically [75]. As indicated
in Section II-C, the rates in (18) may not be accurate for very
low SINR, i.e, γlk ≪ 1. Additionally, the latency constraint
in (27b) may not be satisfied for a random initial point. Thus,
to obtain a feasible and suitable initial point, we can employ
the approach in Appendix A, which takes the solution of the
maximization of the minimum SINR of users as an initial
point.

In the proposed framework, we firstly approximate the
rates by suitable concave lower-bound surrogate functions
and then, solve the corresponding surrogate optimization
problem. To this end, we employ the lower-bounds in the
following lemma.
Lemma 3: A concave lower bound for rlk is

rlk ≥ r̃lk = alk +

2R
{(

hlk,lx
(t−1)
lk

)∗

hlk,lxlk
}

σ 2 +
∑

[ij]̸=[lk]

∣∣∣hlk,ix(t−1)
ij

∣∣∣2
+

2Q−1(ϵc)√
ntV

(t−1)
lk

σ 2
+
∑

[ij]̸=[lk] R
{(
hlk,ix

(t−1)
ij

)∗

hlk,ixij
}

σ 2 +
∑

ij

∣∣∣hlk,ix(t−1)
ij

∣∣∣2
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− blk
σ 2

+
∑

ij

∣∣hlk,ixij∣∣2
σ 2 +

∑
ij

∣∣∣hlk,ix(t−1)
ij

∣∣∣2 , (28)

where t is the number of the current iteration, alk , and blk are
constants and, respectively, give by

alk = log
(
1 + γ

(t−1)
lk

)
− γ

(t−1)
lk

−
Q−1(ϵc)

√
nt


√
V (t−1)
lk

2
+

1√
V (t−1)
lk

 ,

blk = γ
(t)
lk +

ζ
(t−1)
lk Q−1(ϵc)√
ntV

(t−1)
lk

,

where γ
(t−1)
lk and V (t−1)

lk are, respectively, obtained by
replacing {x(t−1)

} in (19) and (22). Moreover,

ζ
(t−1)
lk =

σ 2
+
∑

[ij]̸=[lk] |hlk,ix
(t−1)
ij |

2

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2

.

The concave lower bound in (28) is quadratic in {x}, and is
obtained by deriving a concave lower bound for the Shannon
rate as well as by finding a convex upper bound for δlk .

Proof: Please refer to Appendix C. □
Note that the concave lower-bound rates r̃lk for all l, k are
quadratic in xij for all i, j. Substituting r̃lks in fis gives
the surrogate functions f̃is and consequently, the following
surrogate optimization problem

max
{x}∈X

f̃0 ({x}) s.t. f̃i ({x}) ≥ 0, ∀i, (29a)

r̃lk ≥ r thlk , ∀l, k. (29b)

This optimization problem is convex for spectral efficiency
metrics, which can be efficiently solved by numerical tools.
However, (29) is not convex if we consider EEmetrics. In this
case, we can obtain the global optimal solution of (29) by
Dinkelbach-based algorithms [19]. Note that the proposed
framework converges to a stationary point of (25) since it falls
into MM. In the following subsections, we will discuss the
solutions of (29) with different utility functions. To this end,
we select the minimum-weighted rate, weighted-sum rate,
global EE, and minimum-weighted EE as utility functions
since they are among the most important metrics in practice
as well as in the literature either with Shannon rate or in FBL
regimes [23], [24], [25], [39], [76], [77], [78], [79], [80], [81].

A. MINIMUM-WEIGHTED RATE MAXIMIZATION
The maximization of the minimum-weighted rate can be
written as

max
{x}∈X ,r

r s.t. rlk ≥ max
(
λlkr, r th

)
∀l, k, (30)

where λlks are the weights corresponding to the priorities
assigned to the users. Employing the lower bounds in

Lemma 3, we have the following surrogate optimization
problem

max
{x}∈X ,r

r s.t. r̃lk ≥ max
(
λlkr, r th

)
∀l, k, (31)

which is convex and can be efficiently solved.

B. WEIGHTED-SUM RATE MAXIMIZATION
The weighted-sum-rate maximization problem is

max
{x}∈X

∑
lk

λlkrlk s.t. rlk ≥ r thlk ∀l, k, (32)

where r thlk is the minimum required rate for ulk . The
problem (32) is not convex, but can be solve by the proposed
optimization framework. That is, we replace the rates by the
surrogate functions in Lemma 3, which yields the following
convex problem

max
{x}∈X

∑
lk

λlk r̃lk s.t. r̃lk ≥ r thlk ∀l, k. (33)

C. GLOBAL ENERGY EFFICIENCY MAXIMIZATION
The GEE maximization problem can be written as

max
{x}∈X

∑
lk rlk

LKpc + η
∑

lk x
H
lkxlk

s.t. rlk ≥ r thlk ∀l, k. (34)

Replacing the rates by the lower bounds in Lemma 3, we have
the following surrogate function

max
{x}∈X

∑
lk r̃lk

LKpc + η
∑

lk x
H
lkxlk

s.t. r̃lk ≥ r thlk ∀l, k, (35)

which is non-convex and falls into fractional-programming
problems. We can obtain the global optimal solution of (35)
by the Dinkelbach algorithm since the numerator of the
objective function is concave in xlk while its denominator is
convex in xlk [19]. The global optimal solution of (35) can be
obtained by iteratively solving [19]

max
{x}∈X

∑
lk

r̃lk − µ(t,q)

(
LKpc + η

∑
lk

xHlkxlk

)
(36a)

s.t. r̃lk ≥ r thlk ∀l, k, (36b)

and updating µ(t,q) as

µ(t,q)
=

∑
lk r̃lk

(
x(t,q)lk

)
LKpc + η

∑
lk x

(t,q)H
lk x(t,q)lk

, (37)

where x(t,q)lk is the initial point at the q-th iteration of the
Dinkelbach algorithm, which is the solution of the previous
step. We refer the readers to [19] for a detailed survey on
fractional programming and the Dinkelbach algorithm.
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D. MINIMUM-WEIGHTED ENERGY EFFICIENCY
MAXIMIZATION
The minimum-weighted EE maximization can be written as

max
{x}∈X ,e

e s.t. elk ≥ e ∀l, k, (38a)

rlk ≥ r thlk ∀l, k. (38b)

Employing the optimization framework, we have the follow-
ing surrogate optimization problem

max
{x}∈X ,e

e s.t. ẽlk =
r̃lk

pc + ηxHlkxlk
≥ e ∀l, k, (39a)

r̃lk ≥ r thlk ∀l, k, (39b)

which is non-convex, but its global optimal solution can be
obtained by the generalized Dinkelbach algorithm (GDA)
since ẽlk has a concave numerator and convex denominator.
Applying GDA, the global optimal solution of (39) can be
obtained by iteratively solving

max
{x}∈X

e (40a)

s.t. r̃lk − µ(t,q)
(
pc + ηxHlkxlk

)
≥ αlke ∀l, k, (40b)

r̃lk ≥ r thlk ∀l, k, (40c)

and updating µ(t,q) as µ(t,q)
= minlk

{
ẽlk
(
x(t,q)lk

)}
, where

x(t,q)lk is the initial point at the q-th iteration of the Dinkelbach
algorithm, which is the solution of the previous step.

IV. EXTENDING THE OPTIMIZATION FRAMEWORK TO
(STAR-)RIS-ASSISTED SYSTEMS
In this section, we extend the framework in Section III
to solve (25) by MM and alternating optimization (AO)
for RIS-assisted systems. To this end, at the t-th iteration,
we first fix the reflecting coefficients to {2(t−1)

} and
optimize over the beamforming vectors to obtain {x(t)}.
We then fix the beamforming vectors {x(t)} and update the
reflecting coefficients as {2(t)

}.We iterate the procedure until
the solution converges. Note that our proposed framework
converges since it produces a non-decreasing sequence in the
objective function f0. If the feasibility set T is convex, the
framework falls into MM and converges to a stationary point
of (25). For the initial point of the schemes, we can employ
the scheme in Appendix A, similar to Section III. In the
following subsections, we provide the solutions for updating
{x} and {2}.

A. OPTIMIZING THE BEAMFORMING VECTORS
In this subsection, we assume that the reflecting coefficients
are fixed to {2(t−1)

}, and we optimize over {x}, which results
in

max
{x}∈X

f0
(
{x},{2(t−1)

}

)
s.t. fi

(
{x},{2(t−1)

}

)
≥0, ∀i,

(41a)

rlk ≥ r thlk , ∀l, k. (41b)

This problem can be solved similar to the framework
in Section III. Since it is straightforward to modify the
framework in Section III to solve (41), we do not repeat the
solution here.

B. OPTIMIZING THE REFLECTING COEFFICIENTS
In this subsection, we assume that the beamforming vectors
are fixed to {x(t)}, and we optimize only over the reflecting
coefficients {2}. In other words, we want to solve

max
{2}∈T

f0
({
x(t)
}
, {2}

)
s.t. fi

({
x(t)
}
, {2}

)
≥0, ∀i, (42a)

rlk ≥ r thlk , ∀l, k, (42b)

where fis are linear functions of the rates for both spectral and
energy efficiency metrics since the beamforming vectors are
fixed. To solve (42), we first obtain suitable concave lower
bounds for the rates. We then mention how to transform T
into a convex problem if T is not a convex set. The rates
have the same structure in the channels as in the beamforming
vectors {x}. Thus, we can employ a similar concave
lower bound for the rates. To avoid notational confusions,
we restate the lower bounds for the rates in the following
corollary.
Corollary 1: A concave lower bound for rlk is

rlk ≥ r̂lk = alk +

2R
{(

h(t−1)
lk,l x(t)lk

)∗

hlk,lx
(t)
lk

}
σ 2 +

∑
[ij]̸=[lk]

∣∣∣h(t−1)
lk,i x(t)ij

∣∣∣2
+

2Q−1(ϵc)√
ntV

(t−1)
lk

σ 2
+
∑

[ij]̸=[lk] R
{(
h(t−1)
lk,i x(t)ij

)∗

hlk,ix
(t)
ij

}
σ 2 +

∑
ij

∣∣∣h(t−1)
lk,i x(t)ij

∣∣∣2
− blk

σ 2
+
∑

ij

∣∣∣hlk,ix(t)ij ∣∣∣2
σ 2 +

∑
ij

∣∣∣h(t−1)
lk,i x(t)ij

∣∣∣2 , (43)

where the parameters are defined as in Lemma 3.
Note that the concave lower bound in Corollary 1 is quadratic
in {2}. Plugging the concave lower bound r̂lk into (42),
we have the following surrogate optimization problem

max
{2}∈T

f̂0
({
x(t)
}
,{2}

)
s.t. f̂i

({
x(t)
}
, {2}

)
≥ 0, ∀i, (44a)

r̂lk ≥ r thlk , ∀l, k. (44b)

The optimization problem (44) is convex if the feasibility set
T is convex, i.e., when considering TU for regular RIS and
TSU for STAR-RIS. In this case, the proposed framework
converges to a stationary point of (25). Unfortunately,
the feasibility sets TI , TC , TSI , and TSN are not convex.
To convexify them, we employ a suboptimal approach as
described in the following. It should be emphasized that
although the convergence of our proposed framework is
guaranteed for all the RIS feasibility sets, we do not make any
claim on the optimality of our framework for the non-convex
RIS feasibility sets.
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1) FEASIBILITY SET TI
In this case, we have the non-convex constraint |θmn| = 1 for
all m, n, which can be rewritten as

|θmn|
2

≤ 1, (45)

|θmn|
2

≥ 1, (46)

for all m, n. The constraint (45) is convex. However, the
constraint (46) makes the problem (44) non-convex since
|θmn|

2 is a convex function, rather than being concave.
Thus, we employ convex-concave procedure (CCP) and
approximate (46) by a linear constraint as in [38, Eq. (38)].
We then also relax the constraint in [38, Eq. (39)] by
introducing ϵ > 0 as

|θmn|
2
≥|θ (t−1)

mn |
2
− 2R{θ (t−1)∗

mn (θmn − θ (t−1)
mn )}≥ 1−ϵ, (47)

for all m, n. Plugging (45) and (47) into (44), we have the
following convex optimization problem

max
{2}

f̂0
({
x(t)
}
, {2}

)
s.t. f̂i

({
x(t)
}
, {2}

)
≥0, ∀i, (48a)

r̂lk ≥ r thlk , ∀l, k, (48b)

(47), (45) ∀m, n. (48c)

Since (48) is convex, it can be solved efficiently by numerical
tools. Let us call the solution of (48) as {2̂}. Although the
relaxation in (47) makes the convergence of our framework
faster, it may make {2̂} infeasible. To obtain a feasible point,
we project {2̂} to TI by normalizing {2̂} as {2̂

new
}, i.e.,

θ̂newmn =
θ̂mn

|θ̂mn|
, ∀m, n. (49)

To ensure the convergence of our scheme, we update {2} as

{2(t)
} =


{2̂

new
} if f

({
P(t)

}
, {2̂

new
}

)
≥ f

({
P(t)

}
, {2(t−1)

}
)

{2(t−1)
} Otherwise.

(50)

This updating rule guarantees convergence by generating a
sequence of non-decreasing objective functions.

2) FEASIBILITY SET TC
To convexifying TC , we first relax the relationship between
the phase and amplitude of reflecting components. In other
words, we consider them as independent optimization
parameters. This relaxation yields (45) and

|θmn|
2

≥ |θ |
2
min, (51)

for all m, n. Now, the problem is similar to convexifying the
feasibility set TC . That is, we employ CCP to find a suitable
linear lower bound for |θmn|

2 as

|θ (t−1)
mn |

2
+ 2R

(
θ (t−1)
mn (θmn − θ (t−1)

mn )∗
)

≥ |θ |
2
min, (52)

which results in the following convex surrogate optimization
problem

max
{2}

f̂0
({
x(t)
}
, {2}

)
s.t. f̂i

({
x(t)
}
,{2}

)
≥0, ∀i, (53a)

r̂lk ≥ r thlk , ∀l, k, (53b)

(52), (45) ∀m, n. (53c)

Due to the relaxation of the dependency of the amplitude
and phase of reflecting components, the solution of (53), i.e.,
{2(⋆)

} may be infeasible. To generate a feasible solution,
we project {2(⋆)

} into TC as

{2̂
new

} = F (̸ {2(⋆)
}), (54)

where F is defined as in (8), and update {2} according
to (50), which guarantees the convergence of the algorithm.

3) STAR-RIS WITH MODE SWITCHING AND FEASIBILITY SET
TSI OR TSN
In our proposed mode switching (MS) approach, we ran-
domly divide the reflecting components into two sets:
reflecting set and transmitting set. This scheme converts each
STAR-RIS into two regular RISs. Thus, the MS scheme
can be obtained similar to considering two RISs with the
feasibility set TI , instead of each STAR-RIS.

4) STAR-RIS WITH TIME SWITCHING AND FEASIBILITY SET
TSI OR TSN
In our proposed time switching (TS) approach, we divide
each time slot into two sub-slots. In the first sub-slot, all
the RIS components operate in the reflection mode, while
in the second sub-slot, they all operate in the transmission
mode. In both sub-slots, each STAR-RIS operates similar to
a regular RIS with feasibility set TI . Thus, we can employ the
proposed algorithm for regular RIS with TI to update the RIS
components in each sub-slot.

5) FEASIBILITY SET TSI (STAR-RIS WITH ENERGY splitting)
In the energy splitting (ES) approach, each RIS component
can simultaneously reflect and transmit, which makes it
impossible tomodel STAR-RIS as a set of regular RISs. Thus,
we have to directly tackle the constraint |θ tmn|

2
+ |θ rmn|

2
= 1,

which can be rewritten as

|θ tmn|
2
+ |θ rmn|

2
≤ 1, (55)

|θ tmn|
2
+ |θ rmn|

2
≥ 1. (56)

The former constraint is convex, but the latter is not since
|θ tmn|

2 and |θ rmn|
2 are convex functions. Thus, we can employ

CCP to approximate (56) by a linear constraint similar to the
feasibility set TI . To make the convergence faster, we also
relax (56) by introducing a positive variable ϵ as

|θ r
(t−1)

mn |
2
+ 2R

(
θ r

(t−1)

mn (θ rmn − θ r
(t−1)

mn )∗
)

+ |θ t
(t−1)

mn |
2

+ 2R
(
θ t

(t−1)

mn (θ tmn − θ t
(t−1)

mn )∗
)

≥ 1 − ϵ. (57)

Substituting (55) and (57) in (44), we have the following
convex surrogate optimization problem

max
{2}

f̂0
({
x(t)
}
, {2}

)
s.t. f̂i

({
x(t)
}
, {2}

)
≥0, ∀i, (58a)

r̂lk ≥ r thlk , ∀l, k, (58b)
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(55), (57) ∀m, n. (58c)

Due to the relaxation in (57), the solution of (57), i.e., 2r (⋆)
m

and 2t (⋆)
m , may not be feasible. Thus, we first project 2r (⋆)

m
and 2t (⋆)

m into TSI as

θ̂ tmn=
θ t

(⋆)

mn√
|θ t

(⋆)
mn |2 + |θ r

(⋆)
mn |2

, θ̂ rmn=
θ r

(⋆)

mn√
|θ t

(⋆)
mn |2 + |θ r

(⋆)
mn |2

, (59)

for all m, n. Finally, we update 2r
m and 2t

m as

{2r (t), 2t (t)
}=


{2̂

r
, 2̂

t
} if f

({
P(t)

}
, {2̂

r
, 2̂

t
}

)
≥ f

({
P(t)

}
, {2(t−1)

}
)

{2(t−1)
} Otherwise,

(60)

where {2(t−1)
} = {2r (t−1)

, 2t (t−1)
}. This updating rule

ensures the convergence.

6) FEASIBILITY SET TSN (STAR-RIS WITH ENERGY splitting)
The feasibility set TSN is a subset of TSI . In other words,
TSN includes the two convex constraints in (12) and (13),
in addition to the constraint |θ tmn|

2
+ |θ rmn|

2
= 1. Since (12)

and (13) are convex constraints, we should handle only the
non-convex constraint |θ tmn|

2
+ |θ rmn|

2
= 1, which can be

done similar to our algorithm for the feasibility set TSI . That
is, we have to solve the following convex surrogate problem:

max
{2}

f̂0
({
x(t)
}
, {2}

)
s.t. f̂i

({
x(t)
}
, {2}

)
≥0, ∀i, (61a)

r̂lk ≥ r thlk , ∀l, k, (61b)

(12),(14), (55), (57)∀m,n. (61c)

The solution of (61) might be infeasible because of the
relaxation in (57). Thus, we normalize the solution according
to (59) and update 2r

m and 2t
m according to the rule in (60)

to ensure the convergence.

C. DISCUSSIONS ON DIFFERENT STAR-RIS MODES
It can be expected that the ES approach outperforms the MS
and/or TS approaches since it includes the MS and/or TS

Algorithm 1 Our Algorithm for MWRM With STAR-RIS
and TSN

Initialization
Set ϵ, t = 1, {x} = {x(0)}, and{2} = {2(0)

}

While

(
min
lk

r(t)lk
λlk

− min
lk

r(t−1)
lk
λlk

)
/min
∀l,k

r(t−1)
lk
λlk

≥ ϵ

Optimizing over {P} by fixing {2(t−1)
}

Obtain r̃ (t−1)
lk based on (28) in Lemma 3

Compute {x(t)} by solving (31)
Optimizing over {2} by fixing {P(t−1)

}

Obtain r̂ (t−1)
lk based on (43) in Corollary 1

Compute 2r(⋆)
m and 2t(⋆)

m by solving (61)
Update {2(t)

} based on the rule in (60)
t = t + 1

End (While)
Return {P⋆

} and {2⋆
}.

approaches as special cases. In the ES approach, each RIS
component can simultaneously reflect and transmit signals,
while in the MS and/or TS approaches, each RIS component
either transmits or reflects at a time. In other words, the
solutions of the MS and/or TS schemes are feasible, but
possibly suboptimal for the ES scheme. Indeed, in the
ES scheme, it may happen that a set of RIS components
work only in the transmission mode while the remaining
components operate in the reflection mode, which is the same
as in the MS approach. Additionally, if we allow time slot
sharing as it is the case in the TS approach, it may happen
that in the ES approach, all RIS components operate in the
transmission mode in the first time slot, while they all operate
only in the reflection mode in the next time slot, which is
the same as in the TS approach. As a result, an optimal ES
approach never performs worse than any MS/TS scheme.

We can also compare ES,MS and TS based on the coverage
of STAR-RIS. The ES and MS can simultaneously provide
a 360◦ coverage. However, the TS approach can cover only
a subspace (either reflection or transmission spaces), which
may restrict the practicality of the TS mode especially in
URLLC systems in which each user constantly requires an
ultra-reliable communication with a very low latency. Indeed,
since the STAR-RISwith the TSmode can cover only a subset
of users in each sub-slot, some users may not receive any
signal from the STAR-RIS at a time slot. This issue is more
critical when the users are close to the cell edge, which means
that they may have a very weak link, and they would be
in outage without the assistance of the STAR-RIS. In such
scenarios and in the presence of a very stringent latency
constraint, the TS approach may not be a feasible option.
However, if the latency constraint is more relaxed and/or the
users are not in outage without the assistance of STAR-RIS,
the TS approach can be still beneficial. Another drawback
of the TS mode is that we have to solve the corresponding
optimization problems twice for the coherence time of the
channels, which results in inefficient TS mode in fast fading
systems.

D. DISCUSSIONS ON COMPUTATIONAL COMPLEXITIES
In this subsection, we provide a discussion on the compu-
tational complexity of our proposed algorithms. Note that
our schemes are iterative, and their actual computational
complexities may highly depend on the implementation of the
algorithms. Here, we provide an approximated upper bound
for the number of multiplications to obtain a solution for our
proposed schemes.

The proposed schemes are iterative, and each iteration
consist of two steps. In the first step, we obtain beamforming
vectors {x(t)}, and in the second step, we compute the
(STAR-)RIS coefficients {2(t)

}. In the following, we com-
pute an upper bound for the number of multiplications
to obtain a solution for the MWRM problem with the
feasibility set TSU , which considers STAR-RIS. Since it
would be very straightforward to extend the analysis to other
optimization problems, we do not provide such analysis
for all the considered optimization problems. To update the
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FIGURE 5. System topology in simulations.

beamforming vectors in one iteration of theMWRMproblem,
we have to solve the convex optimization problem in (31).
To solve it, the total number of the Newton steps grows
with the square root of the number of inequality constraints
in the problem [82, Chapter 11], which is equal to LK
for the optimization problem in (31). Moreover, for each
Newton step, we have to compute the surrogate functions
for the rates. The number of multiplications to compute each
surrogate rate function grows with LKNBS . Therefore, the
computational complexity for solving (31) can be approx-
imated as O

(
NBSL2K 2

√
KL
)
. Additionally, to update the

(STAR-)RIS coefficients for the MWRM, we have to solve
the convex optimization problem in (44). Similarly, it can be
shown that the computational complexity for solving (44) can
be approximated as O

(
NBSL2K 2√KL +MNRIS

)
. Finally,

setting the maximum number of the iterations to N , the
computational complexity of our proposed scheme for
the MWRM problem with the feasibility set TSU can be
approximated as O

(
NBSL2K 2

(√
KL +MNRIS +

√
KL
))

.

V. NUMERICAL RESULTS
In this section, we present some numerical results for the
considered optimization problems. We consider a two-cell
BC with K users in each cell as shown in Fig. 5, unless it
is mentioned otherwise. We consider one RIS in each cell
since it has been shown that a distributed implementation of
RIS can outperform a collocated implementation [37]. The
heights of BSs, RISs and users are, respectively, 25, 15, and
1.5 meters. The BSs are located at (0, 0, 25) and (400, 0, 25)
while RISs are located close to the users at (140, 0, 15) and
(260, 0, 15). The K users, in each cell, are located in a square
with a side 20 meters exactly in front of the RIS.We represent
the power budget of BSs with P. We assume that the channels
through RISs are line of sight (LoS), while the direct channels
are non-LoS (NLoS). It means that the links through RISs
follow the Rician fading, but the direct links experience a
Rayleigh fading. The propagation parameters are chosen as
in [37].

As indicated, to the best of our knowledge, there is no
other work that considers EE metrics and/or STAR-RIS in
RIS-assisted URLLC systems with FBL. Thus, we consider
the following schemes in the simulations:

• S-RIS refers to the Shannon rate in RIS-assisted systems
with the feasibility set TI .

• RIS refers to the proposed scheme for RIS-assisted
systems with the feasibility set TI .

• RISU (or RISC ) refers to the proposed scheme for
RIS-assisted systems with the feasibility set TU (or TC ).

• N refers to the scheme without RIS.
• R-RIS refers to the proposed scheme for RIS-assisted
systems with random reflecting coefficients.

• ST-RISEX refers to the proposed scheme for STAR-RIS-
assisted systems with energy splitting and the feasibility
set TSX , where X can be U , I and N for modeling the
feasibility set TSU , TSI , and TSN , respectively.

• ST-RISM (or ST-RIST ) refers to the proposed scheme
for STAR-RIS-assisted systems with mode (or time)
switching and the feasibility set TSI .

In the following, we consider the maximization of the
minimum rate, sum rate, global EE and minimum EE of
users in separate subsections. Through numerical examples,
we investigate the impact of various parameters on the
performance of RIS and/or STAR-RIS. These parameters are
the power budget of BSs, number of BS antennas, number of
users per cell, packet length, and decoding error probability.
We discuss how these parameters may affect on the FBL rate
as well as on the gap between the FBL rate and the Shannon
rate.

A. MINIMUM-WEIGHTED RATE MAXIMIZATION
In this subsection, we provide some numerical results for
maximizing the minimum rate by considering the effect of
different parameters. We call the minimum rate of users as
the fairness rate since all users mostly achieve the same rate
if we maximize the minimum rate.

1) IMPACT OF POWER BUDGET
Fig. 6 shows the average fairness rate versus the power budget
of BSs for NRIS = 20, L = 2, K = 4, M = 2, nt = 256,
ϵc = 10−5, and different number of BS antennas. As can be
observed, RIS can significantly increase the average fairness
rate for the considered NBSs if the reflecting coefficients
are optimized properly. Interestingly, we can observe that
RIS performs worse than the systems without RIS when the
reflecting coefficients are chosen randomly. This indicates
the importance of optimizing RIS components. Additionally,
the performance gap between the achievable rate with FBL
and the Shannon rate decreases with NBS when the other
parameters are fixed. It happens since the SINR may be
improved by increasing the number of transmit antennas.
It means that the performance gap is expected to be higher
when we operate in [highly] overloaded systems, i.e., when
the number of users per cell is equal to or higher than the
number of BS antennas.

2) IMPACT OF TRANSMIT ANTENNAS
Fig. 7 shows the average fairness rate versus NBS for P =

20dB, NRIS = 20, L = 2, K = 2, M = 2, nt = 200, and
ϵc = 0.001. As expected, the average fairness rate increases
with the number of BS antennas. We can also observe that
RIS can considerably increase the average minimum rate of
users, and the benefits of RIS slightly increase with NBS .
Interestingly, we observe that the benefits of optimizing the
reflecting coefficients decreasewithNBS even though they are
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FIGURE 6. The average fairness rate versus P for NRIS = 20, L = 2, K = 4,
M = 2, nt = 256 bits, and ϵc = 10−5.

FIGURE 7. The average fairness rate versus NBS for P = 20dB, NRIS = 20,
L = 2, K = 2, M = 2, nt = 200, and ϵc = 0.001.

still significant. The reason is that, the effective channel gains
may be more dependent on the reflecting coefficient when
NBS is low. Furthermore, we observe that the gap between
the Shannon rate and the FBL rate slightly decrease with
NBS , which is in line with the results in Fig. 6. Moreover,
we observe that the performance gap between the Shannon
rate and the FBL rate is much lower than when ϵ = 10−5

(see Fig. 6), which implies that we should expect higher
performance loss comparing to the Shannon if we require
ultra-reliable communication.

3) IMPACT OF NUMBER OF USERS PER CELL
Fig. 8 shows the average fairness rate versusK for P = 20dB,
NRIS = 20, L = 2, NBS = 8, M = 2, nt = 200, and
ϵc = 0.001. As can be observed, the fairness rate significantly

FIGURE 8. The average fairness rate versus K for P = 10dB, NRIS = 20,
NBS = 8, L = 2, K = 2, M = 2, nt = 200, and ϵc = 0.001.

FIGURE 9. The average fairness rate versus nt for ϵ = 10−3, NRIS = 20,
L = 2, K = 4, M = 2, P = 100, and NBS = 4.

decreases with K . RIS can improve the system performance
considerably when K ≤ 4. However, the benefits of RIS
decrease with K and become almost negligible for K = 6 in
this particular example. The reason is that, the number of RIS
components per user decreases when there are more users
in the system. Thus, we have to increase the number of RIS
components to compensate for the increment of the number
of users. Furthermore, we observe that optimizing over the
reflecting coefficients is more important when the number
of users increases. Indeed, RIS with random reflecting
coefficients may even perform much worse than the systems
without RIS when K grows. Finally, we also observe that the
relative mismatch between the Shannon rate and the FBL rate
increases with K . The mismatch is around 3% for K = 2,
7% for K = 4, and 12% for K = 6. As indicated before,
it happens since the effective SINR decreases with K , which
in turn yields the further decrements in the FBL rate. Note that
the gap increase if we reduce nt and/or ϵc as discussed in the
following.

4) IMPACT OF PACKET LENGTHS
Fig. 9 shows the average fairness rate versus nt for NBS = 4,
NRIS = 20, L = 2, K = 4, M = 2, P = 100, and
ϵc = 0.001. As can be observed, by increasing the packet
length, the gap between the Shannon rate and achievable rate
by (18) decreases. Of course, nt is not the only important
parameter, and there are other effective parameters such as ϵc

and SINR that can have a high impact on the performance and
accuracy of the normal approximation in (18) as discussed
before.
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FIGURE 10. The average fairness rate versus ϵ for nt = 200, NRIS = 20,
L = 2, K = 4, M = 2, P = 10, and NBS = 4.

FIGURE 11. The average fairness rate versus P for NBS = 6, NRIS = 60,
L = 1, K = 6, M = 1, nt = 200, and ϵc = 0.001.

5) IMPACT OF ϵc

Fig. 10 shows the average fairness rate versus ϵc for nt = 200,
NRIS = 20, L = 2, K = 4, M = 2, and NBS = 4. As can be
observed, the average rate increases with ϵc. In other words,
the lower the decoding error probability is, the lower the
average rate is. Thus, if we work on ultra-reliable regime
with FBL, we have to tolerate some performance loss in the
data rate. The more reliable the communication is, the less
data rate we can achieve. We can also observe in Fig. 10 that
RIS can significantly increase the average fairness rate of the
system and consequently, for a given date rate, it can highly
improve the reliability of the communication link.

6) STAR-RIS
Now we compare the performance of a regular RIS with a
STAR-RIS. To this end, we consider a single-cell BC with
K users. We assume that the regular RIS can assist only a
half of users. In other words, only K/2 users are covered
by the regular RIS, and the other K/2 users do not receive
a signal from the regular RIS. However, the STAR-RIS can
assist all users since it provides a 360◦ coverage. We assume
that K/2 users are in the reflection space of the STAR-RIS,
while the other K/2 users are in the transmission space of the
STAR-RIS. We assume that both the regular and STAR-RIS
have the same number of components, i.e.,NRIS . We consider
three different strategies for the STAR-RIS. First, half of the
RIS components operate only in the reflection mode, and the
other half operate only in the transmission mode. We refer to

this scheme as the mode switching, similar to [40]. Second,
we assume that all RIS components operate simultaneously
in the transmission and reflection modes, which is referred
to as the energy splitting mode. Third, we divide each time
slot into two sub-slots and assume that all RIS components
operate in reflection mode in the first sub-slot, while they all
operate in transmission mode in the next sub-slot, which is
referred to as the time switching mode.

Fig. 11 shows the average fairness rate versus P for NBS =

6, NRIS = 60, L = 1, K = 6, M = 1, nt = 200,
and ϵc = 0.001. As can be observed, the regular RIS can
highly improve the system performance even though it assists
only a half of users. The average fairness rate for systems
without RIS slightly increases with power budget; however,
the fairness rate of RIS-assisted systems (either STAR or
regular) almost linearly increases with the power budget.
The reason is that the system is interference-limited, and the
power budget increment is not necessarily equivalent to SINR
improvement. Since the system is not highly overloaded,
RIS can manage part of interference, which significantly
improves the effective SINR. Additionally, the users are in
the cell edge, which implies that they have a relatively weak
direct link. Thus, RIS can considerably improve the channel
gain, which in turn provide a significant gain, especially when
the power budget is high.
We also observe that the STAR-RIS can outperform the

regular RIS with both the MS and ES schemes. However, the
STAR-RIS with TS cannot provide any benefit over regular
RIS in this particular example since the TS mode covers
only reflection or transmission spaces at each time sub-slot,
which implies that the TS mode can assists only a half of
users in each sub-slot, similar to the regular RIS. Indeed, the
TS mode cannot provide a 360◦ coverage simultaneously,
which restricts its applicability in this particular scenario.
Moreover, we observe that the STAR-RISwith the ES scheme
and different feasibility sets outperforms theMS scheme with
the feasibility set TSI . The reason is that the MS scheme can
be seen as a lower bound for the performance of STAR-RIS
with the ES scheme since the ES scheme encompasses the
MS scheme. Finally, we observe that the ES scheme with the
feasibility set TSI performs very close to the ES scheme with
the feasibility set TSU , which can be considered as an upper
bound for the system performance.

7) IMPACT OF THE FEASIBILITY SETS
Fig. 12 shows the average fairness rate versus P for NBS = 8,
NRIS = 40, L = 2, K = 2,M = 2, nt = 256, and ϵc = 10−5.
As expected, the feasibility set TU outperforms the other
feasibility sets. However, the feasibility set TI performs very
close to the upper bound performance of a passive RIS,
which is given by TU . Note that our proposed scheme for
the feasibility set TU converges to a stationary point of the
original problem. Thus, the gap between the upper bound
with TU and our proposed scheme with TI can be seen as
an upper bound for the mismatch between our proposed
algorithm and a scheme, which attains a stationary point of
the original problem.
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FIGURE 12. The average fairness rate versus P for NBS = 8, NRIS = 40,
L = 2, K = 2, M = 2, nt = 256, and ϵc = 10−5.

FIGURE 13. The average fairness rate versus the number of iterations for
P = 20dB, NBS = 8, NRIS = 40, L = 2, K = 2, M = 2, nt = 256, and
ϵc = 10−5.

FIGURE 14. The average sum rate versus P for NBS = 10, NRIS = 20,
L = 2, K = 2, M = 2, nt = 200, and ϵc = 0.001.

8) CONVERGENCE BEHAVIOR
Fig. 13 shows the average fairness rate versus the number of
iterations for P = 20dB, NBS = 8, NRIS = 40, L = 2, K = 2,
M = 2, nt = 256, and ϵc = 10−5. As can be observed, the
proposed scheme for RIS-assisted systems outperforms the
final solution of the other schemes after a few (less than 10 in
this example) iterations. Moreover, the schemes converge in
about 25 iterations. This figure shows a trade-off between
optimality and complexity. Indeed, if there is a very strict
latency constraint, the algorithms can be stopped before their
convergence when a desired performance has been achieved.

B. WEIGHTED-SUM RATE MAXIMIZATION
In the previous subsections, we consider the impact of
different parameters in the system performance. It can be

FIGURE 15. The average GEE versus pc for NBS = 4, NRIS = 20, L = 2,
K = 2, M = 2, nt = 200, and ϵc = 0.001.

FIGURE 16. The average fairness EE versus pc for NBS = 4, NRIS = 20,
L = 2, K = 2, M = 2, nt = 200, and ϵc = 0.001.

expected the we observe a similar behavior if we change
the objective function. Thus, in this subsection, we provide
only one numerical example. Fig. 14 shows the average sum
rate versus P for NBS = 10, NRIS = 20, L = 2, K = 2,
M = 2, nt = 200, and ϵc = 0.001. As can be observed,
RIS can significantly increase the sum rate of the system.
Even an RIS with random components can highly improve
the system performance. We also observe that there is a small
gap between the rate with FBL and the Shannon rate, and
the gap decreases with the power budget. The reason is that,
the mismatch between the rate in (18) and the Shannon rate
decreases with SINR, and the increment in power budget
may result in SINR enhancement since the system is not
overloaded. Note that the gap is expected to increase if we
employ a shorter packet length or operate in a lower decoding
error probability.

C. GLOBAL ENERGY EFFICIENCY MAXIMIZATION
Fig. 15 shows the average GEE versus pc for NBS = 4,
NRIS = 20, L = 2,K = 2,M = 2, nt = 200, and ϵc = 0.001.
In this figure, we assume that the power consumption of each
RIS is 1W. Thus, the effective pc for users in systems without
RIS is actually pc − 1/K W. Note that pc is the constant
power consumption by the devices and is different from the
transmission power. We can observe through Fig. 16 that
RIS can highly increase the average GEE of the system if
the RIS components are properly optimized. However, if the
RIS components are randomly chosen, it may happen that
RIS may worsen the system performance in this particular
example, which is in line with the results in Fig. 6a.

D. MINIMUM-WEIGHTED ENERGY EFFICIENCY
MAXIMIZATION
Fig. 16 shows the average fairness EE versus pc for NBS = 4,
NRIS = 20, L = 2,K = 2,M = 2, nt = 200, and ϵc = 0.001.
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FIGURE 17. The average fairness EE versus number of iterations for
NBS = 4, NRIS = 20, L = 2, K = 2, M = 2, nt = 200, and ϵc = 0.001.

FIGURE 18. The average fairness EE versus ϵc and nt for NBS = 4,
NRIS = 20, L = 2, K = 2, M = 2.

Similar to Fig. 15, we consider the power consumption of
each RIS as 1 W. As can be observed, RIS can significantly
improve the EE of the system if the reflecting coefficients
are properly optimized. Note that RIS with random reflecting
coefficients may not provide any benefits in this particular
example, which shows the importance of optimizing the
reflecting coefficients. We also observe this show in Fig. 6a
and Fig. 15.
Fig. 17 shows the average fairness EE versus the number

of iterations for NBS = 4, NRIS = 20, L = 2, K = 2,
M = 2, nt = 200, and ϵc = 0.001. As can be observed, RIS
with random components performs worse than the algorithm
for systems without RIS. However, when RIS components
are properly design, RIS can highly improve the system
performance. Additionally, the algorithm for systems without
RIS converges with only a few iterations, while the algorithm
for RIS-assisted systems require more iterations to converge.
Note that the initial point of the algorithms is given by the
solution of the maximization of the minimum rate to ensure
that the initial point is feasible.

Fig. 18 shows the average fairness EE versus ϵc and nt for
NBS = 4, NRIS = 20, L = 2, K = 2, M = 2. As can be
observed, RIS can provide a significant gain for a wide range
of variables if the RIS components are properly optimized.
As we also observe in Section V-A with the average fairness
rate as the performance metric, the system performance is
improved by increasing nt and ϵc. Indeed, the EE decreases
if we employ a shorter packet length or if we want to operate
with a more reliable link.

E. SUMMARY
We show that RIS can significantly improve the spectral and
EE of a multi-cell RIS-assisted BC with FBL and different
parameters. Moreover, we show that the FBL rate is very
close to the Shannon rate for underloaded systems when
packet lengths are higher than 200 bits and ϵ is higher than
10−3. This is also in line with the results in [13, Sec. IV.C].
Note that in underloaded systems, the number of BS antennas
is higher than the number of users. Thus, the effective SINR
of users is expected to be higher in underloaded systems,
comparing to overloaded systems, which decreases the gap
between the FBL rate and the Shannon rate [13]. In particular,
our main findings can be summarized as follows:

• For a fixed NRIS , the benefits of RIS is decreasing in K
since the number of RIS components per user decreases
with K . To compensate for that, we have to increase the
number RIS components.

• The gap between the Shannon rate and the rate by FBL
decreases with SINR. It means that the gap increases
with K and decreases with NBS and P.

• RIS can significantly increase the data rate and EE of
the system. Equivalently, for a target data rate, RIS
can highly improve the reliability of the system by
decreasing the error probability.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a general optimization framework
to solve a variety of optimization problems in URLLC
RIS-assisted networks with FBL. This framework can
solve any optimization problem in which the objective
and/or constraints are linear functions of the rates/EE of
users. Additionally, the framework can be applied to any
interference-limited systemwith TIN.We considered amulti-
cell STAR-RIS-assisted BC, as an illustrative example, and
specialized the framework to solve the minimum-weighted-
rate, weighted-sum-rate, global-EE, andminimum-weighted-
EE maximization problems. We made realistic assumptions
regarding RIS (either regular or STAR-RIS). We showed
that RIS can considerably improve the spectral and EE
of a multi-cell MISO RIS-assisted BC with FBL if RIS
components are properly optimized. Furthermore, we showed
that wemay operate close to the Shannon rate with a relatively
short packet if the decoding error probability is not very low.
Finally, we showed that a STAR-RIS can outperform a regular
RIS if the regular RIS cannot cover all the users.

As future work, it can be interesting to investigate the
performance of RIS in URLLC systems with small signaling
overheads. Moreover, the global optimal solution of the
considered problems is not known, which can be another
challenging line for future studies. It is also interesting to
compare the performance of our techniques with machine-
learning-based and/or other data-driven techniques.

APPENDIX A
INITIAL POINTS FOR THE OPTIMIZATION FRAMEWORK
In this appendix, we propose a scheme to heuristically
obtain suitable initial points for the proposed optimization
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framework. As indicated in Section II-C, the rate rl,k is
negative for 0 ≤ γl,k ≤ γ (0), which means that γl,k ≤ γ (0) is
not a feasible point. Additionally, rl,k is strictly increasing in
γl,k for all feasible practical points, i.e., γl,k ≥ γ (0). To avoid
infeasible initial point and get a better performance, we set
the solution of the maximization of the minimum SINR as
an initial point for our framework. The maximization of the
minimum SINR can be formulated as

max
{x}∈X ,{2}∈T ,γ

γ s.t. γlk ≥ γ ∀l, k. (62)

Note that for the systems without RIS, we need to optimize
only over {x}. However, in this appendix, we consider the
most general case. The optimization problem (62) is not
convex, but we can obtain a suboptimal solution of (62)
by MM, AO and the GDA since it falls into fractional
programming and each fraction has a quadratic numerator
and denominator [19], [83]. That is, we first optimize over the
beamforming vectors {x} and obtain {x(t)}while the reflecting
coefficients {2} are fixed to {2(t−1)

}. Then we alternate and
optimize over {2} while {x} is fixed to {x(t)}. Due to a space
restriction, we do not provide the optimization over {x} since
the problem has a structure similar to optimizing over {2}.
For a given {x(t)}, the problem (62) can be written as

max
{2}∈T ,γ

γ s.t.
|hlk,lxlk |2

σ 2+
∑

∀[ij]̸=[lk] |hlk,ixij|2
≥ γ ∀l, k, (63)

which is a multiple-ratio FP problem in which both the
numerator and denominator are quadratic functions of the
channels. To solve (63), we first employ CCP to approximate
the numerator of γlk for all l, k with a linear lower bound since
it is a convex function. That is

|hlk,lxlk |2 ≥ ŝlk
(
hlk,i

)
≜ |h(t−1)

lk,l x(t)lk |
2

+ 2R
{
h(t−1)
lk,l x(t)lk

(
hlk,lx

(t)
lk−h(t−1)

lk,l x(t)lk
)}

. (64)

Substituting (64) in (63), we have the following surrogate
optimization problem

max
{2}∈T ,γ

γ s.t.
ŝlk
(
hlk,i

)
σ 2 +

∑
∀[ij]̸=[lk] |hlk,ixij|2

≥ γ ∀l, k,

(65)

which is non-convex, but can be solved by GDA. That is,
we iteratively solve

max
{2}∈T ,γ

γ (66a)

s.t. ŝlk (·)−µ(t,m)

σ 2
+

∑
∀[ij]̸=[lk]

|hlk,ixij|2

≥γ, ∀l, k,

(66b)

and update µ(t,m) as

µ(t,m)
= min

l,k

 ŝlk
(
h(t,m)lk,i

)
σ 2 +

∑
∀[ij]̸=[lk] |h

(t,m)
lk,i xij|2

 ,

where h(t,m)lk,i is the initial point at the m-th iteration of (66),
which is the solution of the previous step. The optimization
problem (66) is convex when T is a convex set, i.e., when we
consider TU for regular RIS and TSU for STAR-RIS. We can
convexify TI , TC , TSI , and TSN similar to Section IV-B. Since
it is straightforward to do so, we do not repeat them here.

APPENDIX B
USEFUL INEQUALITIES
In this appendix, we provide some inequalities, which are
widely used in this work. Consider real and positive variables
x, x̄, y and ȳ. Then, the following inequality holds for all
x, y, x̄, ȳ [24, Eq. (75)]

√
xy ≤

√
x̄

2
√
ȳ
y+

√
ȳ

2
√
x̄
x, (67)

For the case that y = ȳ = 1, we have

√
x ≤

√
x̄
2

+
x

2
√
x̄
. (68)

Additionally, the following inequality holds for all feasible
x, y, x̄, ȳ [24, Eq. (76)]

x2

y
≥
x̄
ȳ

(
2x −

x̄
ȳ
y
)

. (69)

When x and x̄ are complex, (69) is modified to

|x|2

y
≥

2R{x̄∗x}
ȳ

−
|x̄|2

ȳ2
y. (70)

Now, consider positive real-valued variables y and ȳ,
and complex-valued variables x and x̄. Then, the following
inequality holds for all feasible y, ȳ, x, x̄ [37, Lemma 2]

ln
(
1 +

|x|2

y

)
≥ ln

(
1 +

|x̄|2

ȳ

)
−

|x̄|2

ȳ

+
2R{x̄∗x}

ȳ
−

|x̄|2

ȳ
|x|2 + y
|x̄|2 + ȳ

. (71)

APPENDIX C
PROOF OF LEMMA 3
The rate of users consists of two parts: the Shannon rate and
the term related to the channel dispersion. We first obtain
a concave lower-bound for the Shannon rate. To this end,
we employ the inequality in (71), which gives us

rs,lk ≥ r̂ (t−1)
s,lk = log

(
1 + γ

(t−1)
lk

)
− γ

(t−1)
lk

+

2R
{(

hlk,lx
(t−1)
lk

)∗

hlk,lxlk
}

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2 − |hlk,lx

(t−1)
lk |2

− γ
(t)
lk

σ 2
+
∑

ij |hlk,ixij|
2

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2

. (72)

Now, we obtain a concave lower-bound for −δlk , which
is equivalent to finding a convex upper bound for

√
Vlk .
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Applying the inequality (68), we have

√
Vlk ≤

√
V (t)
lk

2
+

γlk√
V (t)
lk (1 + γlk)

.

Replacing γlk by (19), we have

δlk =
Q−1(ϵc)

√
nt

√
Vlk ≤ δ̃lk =

Q−1(ϵc)
√
V (t)
lk

2
√
nt

+
Q−1(ϵc)√
ntV

(t)
lk

1 −
σ 2

+
∑

[ij]̸=[lk] |hlk,ixij|
2

σ 2 +
∑

ij |hlk,ixij|2︸ ︷︷ ︸
ζlk

 . (73)

Unfortunately, δ̃lk is not a convex function since ζlk is not
concave. However, we can apply (70) to obtain a concave
lower bound for ζlk (or equivalently a convex upper bound
for δ̃lk ) as

ζlk ≥ 2
σ 2

+
∑

[ij]̸=[lk] R
{(

hlk,ix
(t−1)
ij

)∗

hlk,ixij
}

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2

− ζ
(t−1)
lk

σ 2
+
∑

ij |hlk,ixij|
2

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2

. (74)

Substituting (74) into (73), we have

δlk ≤ δ̃lk ≤ δ̂lk =

Q−1(ϵc)
√
V (t)
lk

2
√
nt

+
Q−1(ϵc)√
ntV

(t)
lk

−
2Q−1(ϵc)√
ntV

(t)
lk

σ 2
+
∑

[ij]̸=[lk] R
{(

hlk,ix
(t−1)
ij

)∗

hlk,ixij
}

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2

+
Q−1(ϵc)ζ (t−1)

lk√
ntV

(t)
lk

σ 2
+
∑

ij |hlk,ixij|
2

σ 2 +
∑

ij |hlk,ix
(t−1)
ij |2

. (75)

Finally, the concave lower bound for rlk is

rlk ≥ r̃ (t−1)
lk = r̂ (t−1)

s,lk − δ̂
(t−1)
lk . (76)

If we substitute the values for r̂ (t−1)
s,lk and δ̂

(t−1)
lk , and simplify

the equations, we can easily obtain (28).
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