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ABSTRACT

This paper addresses the problem of source enumeration for ar-
bitrary geometry arrays in the presence of spatially correlated noise.
The method combines a sparse reconstruction (SR) step with a sub-
space averaging (SA) approach, and hence it is named sparse sub-
space averaging (SSA). In the first step, each received snapshot is
approximated by a sparse linear combination of the rest of snapshots.
The SR problem is regularized by the logarithm-based surrogate of
the `0-norm and solved using a majorization-minimization approach.
Based on the SR solution, a sampling mechanism is proposed in the
second step to generate a collection of subspaces, all of which ap-
proximately span the same signal subspace. Finally, the dimension
of the average of this collection of subspaces provides a robust es-
timate for the number of sources. Our simulation results show that
SSA provides robust order estimates under a variety of noise models.

Index Terms— Array processing, source enumeration, sparse
representation, subspace averaging.

1. INTRODUCTION

Detecting the number of signals received by an array of sensors is a
crucial problem in many applications, such as wireless communica-
tions, radar, and biomedical and geophysical signal processing [1,2].
In array processing, this order estimation problem is known as source
enumeration and boils down to the estimation of the array manifold
dimension. Most common order estimation approaches are based
on information-theoretic criteria [3–6], which minimize functions of
the eigenvalues of the sample covariance matrix (SCM) penalized by
a term that quantifies the model complexity. Many variants of these
methods, based on random matrix theory, have been introduced to
address the problem in the small sample regime where the number
of observations is on the order of or smaller than the number of sen-
sors [7–9]. These methods, however, are typically designed for spa-
tially white noise and do not perform well under non-white or corre-
lated noise. Source enumeration techniques when the noise samples
have an unknown covariance matrix have recently been proposed
in [10, 11], but these methods require that the noise be sufficiently
weaker than the signal.

Recently, [12, 13] proposed a source enumeration technique for
white noise based on subspace averaging (SA). The method was de-
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veloped for uniform linear arrays (ULAs), as it exploits the shift in-
variance property (SIP) to generate multiple subspaces. In particular,
the SIP allows us to extract submatrices from the SCM that span the
same signal subspace in noiseless conditions. Then, averaging these
subspaces is a mechanism that enhances the signal subspace, while
cancelling out the noise subspace. In the end, the dimension of the
average subspace yields an estimate the number of sources. In [14],
we extended the technique to account for independent but not identi-
cally distributed (non-iid) noise models. However, this method still
exploits the SIP, and it is therefore only applicable to ULAs. More-
over it entails a large computational cost.

This paper extends the SA enumeration technique to arrays with
arbitrary geometry, referred to here as non-uniform linear arrays
(NULAs), and to noise with arbitrary covariance matrix. The method
first approximates each snapshot by a sparse linear combination of
the rest of the received snapshots. In a noiseless situation, the num-
ber of nonzero coefficients of the sparse expansion would directly
reveal the signal subspace dimension. In a noisy situation, the sparse
expansions can be used to generate a collection of subspaces that,
when averaged, will provide the order estimate using the SA method
in [13]. This method, which combines sparse reconstruction with
subspace averaging, is termed sparse subspace averaging (SSA).

The sparse reconstruction (SR) problem is solved by generaliz-
ing to complex-valued signals the well-known logarithm-based sur-
rogate of the `0-norm [15]. Using the majorization-minimization
(MM) framework [16], we show that the SR problem amounts to
solving a reweighted regularized least squares (LS) problem. Based
on the SR solution, a sampling mechanism is proposed to generate
a collection of random subspaces, all of which approximately span
the same signal subspace. Finally, an average or central subspace
is estimated as in [13], and the dimension of this average provides
a robust estimate for the number of sources impinging on the array.
Sparse reconstruction approaches have been used before in array sig-
nal processing, but mainly for direction-of-arrival (DOA) estimation
problems [17–19]. Differently from these works, in this paper we
use sparse reconstruction methods as a means to generate multiple
approximations to the signal subspace that, when averaged, provide
accurate estimates of the underlying signal subspace rank.

Our simulation results show that SSA provides robust order es-
timates under a variety of noise models, ranging from uncorrelated
noise with different variances to noise with arbitrary covariance ma-
trices. Moreover, unlike the method in [13], SSA can be applied to
any array geometry, not necessarily a ULA.



2. PROBLEM STATEMENT

Let us consider K narrowband signals impinging on an array of ar-
bitrary geometry composed of M antennas. The received signal is

x[n] = Hs[n] + e[n], (1)

where H is the M × K unknown multiple input multiple output
(MIMO) channel. The signals are assumed to be uncorrelated and
are modelled as s[n] ∼ CNK(0,Ψ), where Ψ is a diagonal ma-
trix and the noise is e[n] ∼ CNM (0,Rn), where Rn is the noise
covariance matrix. In this paper, we do not assume any particular
structure (scale identity, diagonal) for the noise covariance matrix
Rn.

From (1), the covariance matrix of the received signal is

R = E
[
x[n]xH [n]

]
= Rs + Rn,

where Rs = HΨHH is the signal covariance matrix. Note that
since the MIMO channel H is unknown, we can assume without
loss of generality that Ψ = I.

If N snapshots are collected in the data matrix X = [x[1], . . . ,
x[N ]], then the sample covariance matrix is

R̂ =
1

N

N∑
n=1

x[n]xH [n] =
1

N
XXH ,

and the source enumeration or order estimation problem consists in
estimating K from X or R̂.

3. SPARSE SUBSPACE AVERAGING

The key idea of subspace averaging for order estimation is to aver-
age subspaces that contain correlated (or ideally identical) versions
of the signal subspace, but uncorrelated portions of the noise sub-
space. For ULAs, these subspaces can be obtained from consecu-
tive subarrays by exploiting the shift invariance property [12,13,20].
When the MIMO channel H has no particular structure, however, a
different approach to generate these subspaces is needed. The SSA
method generates the subspaces from the sparse reconstructions of
each snapshot, as we describe in the following sections.

3.1. Sparse Representation

In a noiseless situation, a basis for the K-dimensional signal sub-
space can be constructed from K randomly chosen columns of the
data matrix X. This means that each snapshot can be represented
as linear combination of other K snapshots that lie in the same sub-
space. Note that the K snapshots will be linearly independent with
probability one. In a noisy situation, such an expansion will not exist
in general, but still we can find a sparse representation of each snap-
shot in terms of the rest of snapshots. The snapshots selected by the
sparse reconstruction algorithm will allow us to build (or generate)
approximate basis for the signal subspace. Note also that the num-
ber of sources is typically much smaller than the number of snap-
shots K � N . This is the idea behind the sparse reconstruction
stage in SSA. Similar ideas have successfully been applied to sparse
subspace clustering problems in [21].

The sparse expansion for each snapshot is obtained by solving

min
αn

‖αn‖0 subject to x[n] = Xnαn (2)

Algorithm 1: Sparse Reconstruction Algorithm
Input: Xn, x[n], λ, δ
Output: α̂n

Initialization: α̂n = X+
n x[n], where (·)+ is the

Moore-Penrose pseudoinverse
REPEAT
Compute D using (5)
Compute α̂n using (6)
Until Convergence = true

where Xn is the data matrix X after removing the nth column/snapshot
and αn = [αn,1, . . . , αn,N−1]T are the coefficients of the sparsest
linear combination obtained for the nth snapshot. However, the
optimization problem in (2) is NP-hard. One well-known solution to
this problem is to replace the `0-norm with the `1-norm [22], which
can be solved by the least absolute shrinkage and selection operator
(LASSO) optimization algorithm [23]. Nevertheless, the `1-norm
surrogate function can sometimes perform poorly and other proxies
for the `0-norm are preferred, such as the logarithm of the absolute
value [15]. Moreover, the equality constraint in (2) is not adequate
for low signal-to-noise-ratio (SNR) scenarios. Hence, in this paper
the SR will be obtained as the solution to

min
αn

‖x[n]−Xnαn‖22 + λ

N−1∑
i=1

log(|αn,i|+ δ) (3)

which is the Lagrangian form of (2) where we have substituted the
`0-norm by the log-surrogate and the equality by an inequality. We
propose to solve (3) by using an MM-based approach [16]. The
majorizer of the cost function in (3) is based on a first-order Taylor
series of the logarithm, that is,

N−1∑
i=1

log(|αn,i|+ δ) =

N−1∑
i=1

log
(√
|αn,i|2 + δ

)
≤

N−1∑
i=1

1

2
∣∣α(t)

n,i

∣∣2 + 2δ
∣∣α(t)

n,i

∣∣ (∣∣αn,i

∣∣2 − ∣∣α(t)
n,i

∣∣2)
where α(t)

n,i is the ith component of the solution at the tth iteration.
Hence, the solution at the (t+ 1)th iteration is computed from

min
αn

‖x[n]−Xnαn‖22 + λαH
n Dαn, (4)

where D = diag (d1, . . . , dN ), with

di =
1

2
∣∣α(t)

i

∣∣2 + 2δ
∣∣α(t)

i

∣∣+ δ
, (5)

where a small value δ has been added to the denominator to avoid
divisions by zero. Now, we can find a closed-form solution to (4) by
taking the derivative and setting it to zero, which yields

α(t+1)
n =

(
XH

n Xn + λD
)−1

XH
n x[n]. (6)

The sparse reconstruction algorithm is shown in Algorithm 1.

3.2. Random Generation of Subspaces

In this section we develop a method to randomly generate subspaces
based on the SR obtained in Section 3.1, which follows the lines



Algorithm 2: Generation of a Random Subspace
Input: Xn, αn, µ
Initialization: X̃n = Xn, Ant = ∅, and L = N − 1
Compute γn from (7)
Compute kmax as the number of |αi,n| greater than
µmaxi(|αi,n|)

Compute γ̄n = 1
2

∑N−1
i=1 γn,i

while rank(Ant) ≤ kmax or
∑

i γn,i ≥ γ̄n do
/* Sample from D(X̃n,γn) */

g = [g1, . . . , gL]T , with gi ∼ U(0, 1)

I = {i | gi ≤ γn,i} and I = {i | gi > γn,i}
G = X̃n(:, I)
/* Append new submatrix */
Ant =

[
Ant G

]
/* Eliminate selected directions */

X̃n = X̃n(:, I), γn = γn(I), and L = |I|
Output: Projection matrix onto the subspace

Pnt = Ant(A
H
ntAnt)

−1AH
nt

in [13]. In noisy conditions, it is important for the SA method that
the extracted subspaces contain a large common portion of the signal
subspace and independent portions of the noise subspace. This trans-
lates into an averaging procedure that enhances signal coordinates
while averaging out noise coordinates. Concretely, the subspace as-
sociated to the nth snapshot is constructed by randomly selecting
columns from Xn, with probabilities proportional to the sparse co-
efficients αn as

γn,i =
|αn,i|∑N−1

j=1 |αn,j |
. (7)

This process can be interpreted as sampling from a discrete dis-
tribution that we denote as D(Xn,γn), where γn = [γn,1, . . . ,
γn,N−1]T in (7) are the concentration parameters of the distribution.
To shed some light on this distribution, let us explain the experiment
that determines D. Let us take for example the snapshot n = N
and let XN = [x[1], . . . ,x[N − 1]] be the matrix with snapshots
n = 1, . . . , N − 1. Solving the SR problem, we get the coefficients
αN of the sparse expansion of x[N ] in terms of the rest of snap-
shots. The sparse coefficients, when properly normalized, give us
the probabilities (γN,1, . . . , γN,N−1). The sampling experiment to
generate a random subspace is as follows. Draw 1 includes x[1] with
probability γN,1, and excludes it with probability (1−γN,1); draw 2
includes x[2] with probability γN,2, and excludes it with probability
(1 − γN,2); and so on. With the choice for D(Xn,γn), the proba-
bility of picking the ith snapshot from Xn is proportional to |αn,i|.
Therefore, the snapshots associated to the higher values of |αn,i|
should be chosen more often. For more details, on this interpretation
we refer the reader to [13].

Finally, the subspaces are the column spaces of the matrices iter-
atively constructed as shown in Algorithm 2. This algorithm consid-
ers two thresholds: 1) kmax, which is the maximum dimension of the
signal subspace (in practice an overestimate ofK), and is selected as
the number of |αi,n| greater than µmaxi(|αi,n|), with 0 < µ < 1;
and 2) γ̄n, which is a minimum value for the probabilities in γn, and
is chosen as γ̄n = 1

2

∑N−1
i=1 γn,i.

Algorithm 3: Sparse Subspace Averaging
Input: X, dmax

Output: Order estimate K̂SSA

for n = 1, . . . , N do
Find Xn by removing the nth column from X
Compute α̂n using Algorithm 1
Generate T random projection matrices using

Algorithm 2

Compute P using (8)
Obtain K̂SSA using (9)

3.3. Subspace Averaging (SA) Criterion

The random generation procedure can be repeated T times to gener-
ate T subspaces for each value of αn, n = 1, . . . , N . Therefore, we
get a total of N T orthogonal projection matrices to be used in the
SA procedure. The average projection matrix is

P =
1

NT

N∑
n=1

T∑
t=1

Pnt, (8)

Once we get P, its eigenvalues 1 ≥ k1 ≥ k2 ≥ · · · ≥ kdmax

are used to determine number of sources as

K̂SSA = argmax
1≤k≤dmax

kk − kk+1. (9)

Basically, the criterion in (9) detects the gap between the signal and
noise eigenvalues. It is noted here that to avoid numerical issues and
to save computational cost, we are considering only the largest dmax

eigenvalues of P, where dmax � K is an overestimation of K. A
summary of the proposed method is shown in Algorithm 3.

4. SIMULATION RESULTS

In this section, the performance of the proposed method is compared
with some representative methods for different noise models. As
a figure of merit we use the probability of correct detection (PD),
which is the probability that K̂SSA = K. For all simulations we
assume thatK uncorrelated narrowband equal-power signals are im-
pinging on a NULA with M antennas. The signal-to-noise-ratio is
defined as SNR = 10 log tr(Rs)

tr(Rn)
, and 2000 Monte Carlo simulations

are averaged for all the results. We found that λ = M
2N

, T = 20,
µ = 0.1, and dmax = M

5
provide in general good performance over

a wide range of scenarios. Since δ is a small constant that is used to
avoid numerical issues, we select a δ = 10−15.

In the first experiment, we assume that the noise is uncorrelated
across antennas with different variances at each sensor. Therefore,
the noise covariance matrix is Rn = diag

(
σ2
1 , σ

2
2 , . . . , σ

2
M

)
, where

σ2
m is the noise variance at the mth sensor. The noise variances

are modeled as uniformly distributed independent random variables:
σ2
m ∼ U [σ2(1 − ε), σ2(1 + ε)], where σ2 is a common noise vari-

ance and 0 ≤ ε ≤ 1 allows us to control the spatial non-whiteness
of the noise. Note that noise would be white for ε = 0. As meth-
ods for comparison, we select LSMDL [8] and BIC [9], which are
designed for white noise, the MDL criterion adapted to uncorre-
lated noises [14, 24–26] (labeled in the figures as MDL-unc), and
the linear-regression method designed for colored noise in [10]. Fig.
1 shows the PD vs. ε for M = 70, N = 100, K = 5, and SNR
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Fig. 1: PD vs. ε for diagonal noise in a scenario with M = 70,
N = 100, K = 5, and SNR = −2 dB.
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Fig. 2: PD vs. ρ for exponentially correlated noise in a scenario with
M = 20, N = 80, K = 3, and SNR = 10 dB.

= −2 dB. In this example SSA provides robust and accurate detec-
tion results over the entire range of variation of ε. Since LSMDL
and BIC are originally designed for white noise, their performances
degrade for higher values of ε. The performance of the linear regres-
sion method in [10] also degrades for higher values of ε. Finally,
MDL-unc provides good results for higher values of ε, but its perfor-
mance degrades when the noise is nearly spatially white.

In the second experiment, we consider an exponentially cor-
related noise model whose noise covariance matrix is defined as
[Rn]i,j = ρ|i−j|, where 0 ≤ ρ ≤ 1 is the correlation coefficient.
Fig. 2 shows PD vs. ρ for an array with M = 20 antennas, N = 80
snapshots, K = 3 sources, and SNR= 10 dB. For this noise model,
we are comparing the results of MDL-unc, the method in [10] and
the method in [27], which applies a rank-reduction preprocessing
step followed by an order estimation criterion based on canonical
correlation analysis (CCA). As Fig. 2 suggests, the proposed SSA
method again provides a robust solution for the whole range of ρ.
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Fig. 3: PD vs. N for an arbitrary noise model in a scenario with
M = 100, K = 4, and SNR = 15 dB.

All other methods fail when ρ increases.

In the last experiment, we consider Gaussian noise with arbi-
trary unknown covariance matrix, that is, the noise covariance ma-
trix is drawn from a complex Wishart distribution with M degrees
of freedom and scale matrix proportional to I. The scenario has
M = 100 antennas, K = 4 sources, and the number of snapshots
N varies upto 100, so that we are in the small sample regime. The
SNR for this experiment is chosen as SNR = 15 dB, because when
the noise covariance matrix is arbitrary, the SNR must be sufficiently
high for any method to work. Since CCA and method in [10] do not
usually provide good results with few snapshots, we are considering
N ≥ 15 for these methods, however, lower values of N are consid-
ered for SSA. As it is shown in Fig. 3, CCA does not perform well
for this noise model in the small sample regime, while the method
in [10] provides good results for sufficiently large N . Finally, SSA
performs satisfactorily even when N/M is around 0.1.

5. CONCLUSIONS

In this work we have presented an order estimation technique for
arbitrary geometry arrays and noise with unknown spatial correla-
tion. The method borrows from subspace averaging techniques for
source enumeration, originally proposed for uniform linear arrays
and white noise. The key idea to generate a collection of subspaces
to be averaged is obtaining a sparse representation of each snapshot
as a linear combination of the others. To perform this sparse recov-
ery (SR) problem, we proposed a generalization of the log-surrogate
of the `0-norm, which is solved using the majorization-minimization
approach. Then, based on the sparse coefficients of the reconstruc-
tion, a sampling mechanism is presented to obtain projection matri-
ces that share a large common portion of the signal subspace. Fi-
nally, the eigenvalues of an average projection matrix are then used
to estimate the number of sources. It is illustrated by some simu-
lation examples that the proposed sparse subspace averaging (SSA)
method performs robustly for a wide range of noise models in the
small sample regime.
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