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This paper deals with the selection of the training dataset in kernel-based methods for function recon-
struction, with a focus on kernel ridge regression. A functional analysis is performed which, in the ab-
sence of noise, links the optimal sampling distribution to the one minimizing the difference between the
kernel matrix and its low-rank Nystrom approximation. From this standpoint, a statistical passive sam-
pling approach is derived which uses the leverage scores of the columns of the kernel matrix to design a
sampling distribution that minimizes an upper bound of the risk function. The proposed approach con-
stitutes a passive method, able to select the optimal subset of training samples using only information
provided by the input set and the kernel, but without needing to know the values of the function to be
approximated. Furthermore, the proposed approach is backed up by numerical tests on real datasets.
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1. Introduction

Machine learning predicts labels by applying decision rules pre-
viously learned on a training dataset, which consists of a set of in-
put samples and their labels. The training objective is to obtain a
model that can generalize to previously unseen or unlabeled in-
puts. While in learning applications the focus is usually on achiev-
ing a small prediction error, which is heavily influenced by the
choice of the training set, there is also the cost of label acquisition
for training. This cost might be comparable or even superior to the
prediction cost. For instance, in recommender systems, a request is
sent to a user to rate an item; but this does not even guarantee
a rating since the request might be ignored. In other areas such
as sensor networks, medicine, or any scenario with human anno-
tators, the time to label an input is also non-negligible. Hence, the
design of optimal sample selection strategies is of paramount im-
portance to improve algorithm performance both in terms of ac-
curacy and cost. The existing sample selection strategies may be
divided into active and passive, with the difference between them
requiring labeled inputs or not.
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Active sampling schemes allow to choose the most promising
set of inputs to label. They implement an iterative scheme that,
given the availability of a small starting training set, executes two
steps repeatedly: first, the function is learned or updated using the
current training set and, second, a criterion is evaluated to decide
which should be the next input to be labeled and then added to
the training set. There exist a variety of criteria for active sampling,
the most common being based on prediction uncertainty. For in-
stance, in Gaussian processes [1,2], the predictive variance serves
as an uncertainty measure.

While active sampling schemes generally provide good results,
their performance may be degraded when the samples are too
noisy or when online operation is not possible [3]. There are
also batch versions of active sampling which acquire the labels
in groups, but the issue with noisy samples still remains. More-
over, most active learning methods are designed for classification
tasks [4,5], which often have built-in uncertainty measures, while
the availability of methods for regression is more limited [6-8].

An alternative to active sampling is provided by the passive
sampling schemes. In passive sampling, the set of inputs to be
labeled is selected by observing the geometry of the input space
only. For instance, the greedy sampling approach in [3] iteratively
adds new input samples to the training set by choosing the one
with the largest distance to the set. By relying only on the input
space, passive sampling avoids iteratively recomputing the learned
function for every additional input. The selected set of inputs can
be labeled all at once when it is deemed complete. Furthermore,
the impact of noisy samples is diminished.
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This paper addresses passive sampling for function approxima-
tion in a reproducing kernel Hilbert space (RKHS), with a focus on
kernel ridge regression (KRR) [9-11]. To do so, a functional analysis
is conducted which connects the concept of optimal sampling to
the Nystrom approximation [12] - a low-rank approximation to the
kernel matrix built from a subset of its columns. Building atop this
finding, a sample selection approach is presented based on select-
ing the samples by means of the leverage scores [13] of the kernel
matrix columns. The proposed method enables passive batch sam-
pling, hence selecting the entire training set without needing any
label; only the kernel is needed. Moreover, the use of kernels en-
ables the direct application of passive sampling to any input space,
e.g., non-metric spaces, provided that a kernel function exists for
it.

The paper is organized as follows. Section 2 provides a theoret-
ical analysis of the sampling procedure in RKHSs and proves that
Nystrém-based passive sampling is optimal, in the absolute error
sense, for noiseless samples. Section 3 extends the analysis to KRR
with noisy samples. Section 4 introduces the passive sampling ap-
proach for KRR based on the leverage scores of the kernel matrix.
Finally, Section 5 presents numerical tests and Section 6 offers con-
clusions.

Notation. Boldface lower-case fonts denote column vectors,
boldface upper-case fonts denote matrices, and calligraphic upper-
case letters denote sets. The ith entry of a vector f is denoted by
f (@), the ith column of a matrix K by K(i), and the entry at row
i column j by K;;. The superscript T denotes the transpose, T the
pseudo inverse, and the hat ~ is used for estimates. The symbol I
stands for the identity matrix of appropriate size, specified by the
context, and the trace operator is Tr(-).

2. Optimal sampling and reconstruction in RKHSs

Let f: X — R be a function defined on an RKHS #y, and X =
{x;};_; be a set of sampled points in X where |X| = N. Here, we
focus on the problem of reconstructing f given a set of noiseless
observations {y;}; ; such that y; = f(%;) Vi=1,...,s.

The space Hy is a Hilbert space of R-valued functions on a
non-empty set X with inner product (., -}y, : Hy x Hy — R and
induced norm || f|l3, = (f. f)#y. A function k : X x ¥ - R is a re-
producing kernel of Hy, and Hy is a RKHS if

e Vxe X, k(-,x) € Hp,
s VXe X, Vfetn (f(). k(. X))ny = fX),

where the latter is the reproducing property. In particular, the re-
producing property implies that («(-,x),k (-, X))y, =« (x,X'). In
view of the Moore-Aronszajn theorem, one can construct the RKHS
Hy as the completion of the space of functions spanned by the set
{K(C.x)IN . ie,

N
Hy={f:f(x) =) aik(x.x), eR} (1

i=1

with an inner product given by (f. f')y, = >it; Y)y e (X, %)),
where {o;}V, and {ot;.}lf"=1 are the coefficients of f, f’ e Hy, re-
spectively. We refer to « as the kernel function that spans #y,
and to K as its kernel matrix with K;; =« (x;, x;). Note that our
RKHS definition (1) differs from the usual one with an infinite-
dimensional RKHS since |X| =N and, therefore, #y is a finite-
dimensional space [9].

In order to motivate the passive sampling approach introduced
in Section 4, this section builds on the functional analysis approach
to the signal reconstruction process from [14] and derives results
valid for any algorithm operating in a RKHS.
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The recovery of f from the observation set can be thought of as
the “inversion” of

f=Af (2)

where f=[f(%)...., f(%)]T, and A: Hy — RS is a sampling op-
erator evaluating f at {;}?_,. Leveraging the reproducing property,
the sampling operator is defined as

Af=2(f,K(-,)2n)>HNen (3)
n=1

where ey, is the nth vector of the standard basis, i.e., the nth col-
umn of the s x s identity matrix. Let #; C Hy be the subspace
of dimension s spanned by {x(-,Xn)}}_;. Then, f = fs + fi-, where
fs is the projection of f onto s and f; is the projection onto
the subspace orthogonal to #s, denoted by Hi c Hy, such that
(fi- k(%)) =0 VX e X. Thus, for X e X,

f&) = fs(0) + [ = (foo ke Ry + (S5 K (X))
= (fo. k(. X))y = f5(®). (4)

Since fs € Hs, it can be written as Y5 _; &nk (-, %) for some real co-
e_rfﬁcients {an}S_;- In turn, f(X) = Y 5_; @nk (X, Xy). Therefore, since
f@) := f(X;), A maps f into a new RKHS Hs € R’ defined as

Hs = {f: F(i) =Y @k (% %), Gn € R} (5)
n=1

with kernel matrix K e RS where K; ; = k (%, %;) so that f = Ka,
where & = [&1, ..., as]T, and (f, ]'/)@S = fTIT1f/ for f, f €7, as-
suming that K is invertible. With A : #y — #, its adjoint operator
is A* : Hs — Hy, and by definition it satisfies for any f” € Hy and
f/ € Hs that
-/ -/

(A", g, = (" A )y (6)
Particularizing (6) for f” = f and f = f, with f in (2), we obtain

S

Ok &) wven. £,

n=1

(Af. Pz,

s

YAk &)Yy (e, P,

n=1

= (£. ) (en. Fak (. %))y (7)
n=1
This leads to the definition
Af =" (en, fkc (. %n) = @nk (-, Rn) (8)
n=1 n=1

where (ey. f)7, = 'R e, = @y. The operator A* maps f back
into Hy using only the basis functions in Hs, hence reversing
the sampling in (2) and yielding an estimate for f. Moreover,
the sampled values f(%;);_, are not modified by .A*. Hence, since
AA*f = f, we have that AA* =T; this can be seen by substitut-
ing (8) into (3).

After the sampling operator and its adjoint have been defined,
the reconstruction of a function in Hy from its samples can be
achieved through the consecutive application of each operator, i.e.,
f=A*Af. Hence, P = A*A is an orthogonal projector onto H;
since it is a self-adjoint operator, i.e., {Pf., f'), = (f. Pf')ny, and
it satisfies PP = P. Then, using (8) the estimate f is

f=Pf=AF=Y aw(.%)=f 9)
n=1



P. Giménez-Febrer, A. Pagés-Zamora and I. Santamaria

Since an orthogonal projection onto a space yields an element with
minimum distance to the original function, the reconstruction er-
ror at x € X is upper bounded by

|f(x) _Pf(x)| = |(f7K('7X)>HN - (pva('1X)>'HN|

g |(fﬂ K(‘,X))HN - <f’ ,PK('ﬂX)>HN|
= |(f7K('9X) - PK("X)>HN|

2 1 il Nl G %) = Pic (-, %) [l (10)

where (a) uses the self-adjoint property of P, and (b) uses the
Cauchy-Schwarz inequality. It can be seen that the error upper
bound at x depends on the distance between the kernel function
k(-,x) and its projection onto Hs. Note that zero error is obtained
at the sampled points since Pk (-, X) =« (-,X) VXe X. For x ¢ X,
the error can only be zero if x(-,x) € Hs; this is the case when
a kernel function is duplicated such that « (-, %;) = « (-, x;) where
X € X and x; ¢ X. This might happen, for instance, in a recom-
mender system where two different users have identical tastes; the
kernel function evaluated at each of the two users has identical
value as well. Assuming no such duplicities exist,

ifxeX

ifxe¢ X (1

0
Il il Nl G %) = P (X 34y

The absolute error over the function estimate is denoted by |f —
fl= ZL | f(x;) — f(x,-)|, and (11) shows that it can only be zero
when f € Hs so that Pf = f. Therefore, in order to have zero error
for any f € Hy, then Hy = Hs must be true.

The second norm in the last inequality of (10) provides the dis-
tance in Hy between a kernel function and its closest approxima-
tion built with the functions in Hs. Alternatively, this difference
can be written in terms of .4 as shown in the lemma below, which
will be used later.

|f() = PfOO| < {

Lemma 1. The distance between k(-,x) and its projection onto
Hs Vx € X is equal to the difference between the norm of x (-, x) in
Hy and its sampled counterpart in Hs,

llic %) = Prec (20 N3, = llie (2 gy = AR G %) I, (12)

Proof. Let us expand the second term in (10) as

lle %) = Pre (. 0117,

= (K (%) = PK (%), k(. X) = P (-, X))y

=K (%, %) = 2(k (-.X), P (-, X))y + (PK (. X), PK (. X)) 2y

@

=1 (%, %) = 2(kc (-, %), Prc (-, ) )y + (Arc (-, %), Aic (-, %) ),

2k (%, X) = 2(AK (-, X), Ak (-, X)) 77, + (A (-, X), Ak (-, X)) 77,

=k (%, %) — (A (-, X), Ak (-, X)) 7,

=l C 0l — 1A 2 1, (13)

where, using (f. A*f)y, = (Af. f)z, and AA* =1, the identity
(A*Af, A*Af)y = (AA*Af, Af)z, has been applied in (a), and
(f. A Afyuy = (Af, Af)z, in (b). O

Before continuing with the analysis, let us first introduce the
following definition:

Nystrom approximation. Let B C N be a set indexing |B| =1 «
N columns of K € RN*N, Defining R = [K(i)];c;; as the tall matrix
formed by the indexed columns, its transpose R', and C as the
submatrix indexed by {(i, j)} jiesxs, the Nystrém approximation
to K is

N =RC'R". (14)
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The Nystrom approximation is a low-rank approximation that is
used in place of the full-rank kernel matrix in kernel meth-
ods [15] to accelerate the inversion of the kernel matrix. While in
this paper this matrix is not used for this purpose, it arises in the
various analyses conducted from here on. Thus, although (10) ad-
dresses the per-sample error, Lemma 1 enables an upper bound
formulated in terms of the Nystrom approximation when consider-
ing the total reconstruction error across f. This bound constitutes
the main statement in this section and is presented in the theorem
below.

Theorem 1. Let f=[f(x;),..., f(xy)]", and S be an s x N binary
sampling matrix with a non-zero element per row equal to 1 such
that Sf := Af. Moreover, let K be the kernel matrix of Hy, and T :=

KSTR 'K with K = SKS. Then, the absolute error across f, defined
as |f -Pf| = Z%:] | f(xm) — Pf(xm)|, is bounded as

Lf =Pfl < I flls Tr(K —T) (15)

Proof. Using (10), (13), and || fll = F K 'J, it holds that

N
If=Pfl=>"1f(Xn) = Pfxm)l

m=1

N
< W f Ml Y Nk G Xim) = Poc (-, Xm) [13,

m=1

N

= 1l 32 (1l G = 1A G ) )

m=1

N s s
= | fll2y Z (K(Xm,xm) - ZZK()EiaXm)(K_l)i,jK()zj;Xm)>

m=1 i=1 j=1
(16)
= || fll, Tr(K — KSTR™'SK)
= || fllse Tr(K = T). (17)

O

Matrix T constitutes a Nystrém approximation as defined in
(14), with the specificity that its rank, given by s, and the se-
lection of columns is tied to the sampling matrix S. Again, note
that full-rank kernel matrix is not being replaced with an approx-
imation, the Nystrém approximation appears through the analy-
sis conducted in Theorem 1. The result in (15) shows that the
upper bound on the reconstruction error of f is proportional to
the difference between K and T on its diagonal entries. Moreover,
Tr(K —T) = 0 since in (12) [k (-, X)[l3y = [ Ak (-, X) [l Therefore,
designing A to maximize Zﬁzl | Ak (-, %n) |77, = Tr(T) minimizes
the upper bound in Theorem 1.

3. Function sampling and reconstruction in kernel ridge
regression

In KRR, the function to be recovered is a vector f=
[f(x1), ..., Fxw)]T € Hy < RN, where f=Ka, o=]a,..., an]’,
and (f, f')uy = f'K~'f with f'€%#y. Given the s-dimensional
vector of noisy observations y =Sy, where S is an s x N binary
sampling matrix with a single non-zero element per row, y =
W1, -...ynI", yi = f(x) + w; and w; denotes noise, the problem is
formulated as solving

-~

f=argmin |y — SFII5 + 21| fll, (18)
feHy
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or, equivalently,

& = argmin ||y — SKa |3 + na’ Kot (19)

aeRN

where p > 0 is a regularization parameter. The solution to (18) is
f =KS"(SKS™ + ul)~'Sy. (20)

As shown in Section 2, the sampling operator in (2) takes the form
A :=S, where S is an s x N binary sampling matrix with a single
non-zero element per row such that Sf = f. Its adjoint, derived
following (6), is .A* := KS' (SKST)~1, and the projection operator is
P = KST (SKST)~1S. Thus, one observes that the solution (20) is not
obtained by applying the projection operator P to y unless u = 0.
However, since (20) lies on the column span of KS', the result is a
non-orthogonal projection of y onto #s = span{KS'}, i.e., the space
spanned by the kernel functions evaluated at the sampled inputs.
Still, a direct application of Theorem 1 is not possible unless @ =0
and y is noiseless.

To evaluate the performance of a specific sampling pattern, the
risk function [16], which is equal to the mean squared error (MSE)
except that it takes § as a parameter, will be used. Thus, the risk
is

R,,_(S) = IIEw{”f _f||§}
— | —KS"(SKS + u) ') £ |
+IEW{ | KS" (SKST + ,uI)*%ij} (21)

where w = [wy, ..., wy]T. When p = 0, the risk becomes

Ro(S) = | £ - KST(SKS")'SF | + B | ST (sKST) 5w} |

= |If = PFI5 + Ew{IPW]3}. (22)

Hence, the first term in (22), i.e., the squared bias, takes a similar
form as (15) in Theorem 1, whereas the second term or variance is
the norm of the projection of the vectorized noise onto Hs.

In a noiseless situation, the variance term in (22) would disap-
pear and therefore the overall error would depend uniquely on the
accuracy of the Nystrém approximation. With noise, there needs to
be a balance between bias and variance in order to make the risk
small, i.e., sampling the most important points in f while acquiring
the least amount of noise. However, since the distribution of the
noise is usually unknown, this strategy is not feasible. Assuming
zero-mean Gaussian noise with variance v2, then ]Ew{||73w||%} =
V2Tr(P) = v2s since Tr(P) = Tr((SKST)~1SKS") = 5. Adapting the
procedure in the proof of Theorem 1 to the 2-norm, we have that

Ro(S) = |f = PfII5 + v2Tr(P) < | FI5 Tr(K —T) + v%s

This expression shows that adding more samples reduces the ap-
proximation error to K, and hence the bias, but it also increases
the variance.

Since in KRR one typically uses u > 0 to reduce the impact of
the noise and risk of overfitting, the passive sampling strategy is
derived in the next section by analyzing R, (S) in (21).

4. Passive sampling for kernel ridge regression

The previous sections have shown that the upper bound on the
recovery error increases with the trace of the difference between
the kernel matrix and its Nystrém approximation. Since this ap-
proximation is built from a subset of columns of the kernel ma-
trix, it is crucial to choose the columns that best approximate the
spectrum of the full matrix to keep the approximation accurate. In-
deed, this is known as the column subset selection problem [17],
also related to matrix sketching [18-20]. In regards to the Nystrém
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approximation, while there exist deterministic [21] methods which
order the columns according to a metric and then choose the top
performers, most implementations opt for statistical approaches.
In these, a sampling probability is assigned to each column and
the required number of columns is sampled according to the re-
sulting distribution. One example of such a technique is in [13,16],
which measures column importance through the so-called leverage
scores and provides theoretical guarantees on the approximation
error. This section presents a passive sampling method based on
kernel leverage scores, which is derived through an analysis of the
estimation error in KRR.

4.1. Risk function analysis

Rewriting the risk function as shown in Appendix A, assum-
ing Gaussian noise with variance vZ, and using that |Ae|, <
|A|l2|lec]|, for any matrix A of appropriate size, the risk is upper
bounded as

Ru(S) = || - Ta|; +Ew{%” (K- T)STWHi}

IA

2
||1<_T\yj<||a||§+‘;j> (23)

where T := KST (SKST + puI)~1SK is a regularized Nystrém approx-
imation.

Equation (23) shows that the spectral norm of the difference
between the kernel matrix and its regularized Nystrdm approxi-
mation, which depends on w, also determines the risk bound for
KRR. Therefore, it is well-grounded that one may pick the train-
ing inputs in X by choosing the associated columns in K that best
build the regularized Nystrém approximation. This section frames
the sampling of the entries in y as designing the sampling ma-
trix S that minimizes the error K — T. Through analyzing the risk
function from a probabilistic standpoint, § is cast as a weighted
sampling matrix with weights set according to the leverage scores
of the columns of K. Since this process only involves the kernel
matrix, it is a passive sampling approach. Once S is obtained, the
corresponding samples are obtained as y =Sy and KRR can then
be applied to recover f.

Let us first introduce the following
Appendix B:

lemma proven in

Lemma 2. The difference K — T can be written as
K-T=pQX(T+ul)  d-P) ' (Z+uh)tx2Q’ (24)

where we have used the eigendecomposition K = QXQ" and

P=X(Z+uD' = (Z4+u) t22Q'S'SQX? (X + ul) 3.
(25)

Defining
V=(+puhixiQ’ (26)

and knowing that the product of two diagonal matrices is commu-
tative, substituting into (25) yields

P=vvT —vs'sy’ (27)

Therefore, P is the difference between VV' and an approximation
built from a subset of the columns in V, and it is the only element
in (24) depending on the sampling distribution through S. Thus,
if § is designed to minimize the norm of P so that in (24) ||(I —
P)~1||, is approximately minimized, a reduction on the difference
K—T in (24) and also on the bound on R, (S) in (23) will be
achieved.
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4.2. Sampling based on leverage scores

Let 6 be an ordered s-tuple containing indices drawn with re-
placement from {1,..., N} with the probability distribution Pr(i) =
p;. Here, p; denotes the probability of sampling the ith column
in K, and 6 contains the indices of the sampled columns in non-
descending order. Moreover, assume a weighted S € RS*N with en-
tries

1 . . .
if 0(i) = j

Sii={v" (28)
0 otherwise

fori=1,...,s and j=1,...,N. Note that, since the indices in 0

are drawn with replacement, there might be repeated rows in §
sampling the same item. Moreover, a weighted S is necessary in
order to satisfy certain theoretical guarantees.

In [22] it is shown that the optimal probability distribution to
minimize E{||P||} in (27) is

2

v.
— il (29)

IVIIF

with v; denoting the ith column of V in (26), and

2 L o
15 = ] g?@i
lvill3 ; LS (i) (30)

where o0; = (X);;, and gq; is the jth column of Q. Thus, the distribu-
tion obtained with (29) for i =1,...,N can be expected to reduce
|[K —T|| in the risk upper bound (23). Still, note that this distri-
bution is obtained for a specific value of u since p; depends on u
through V.

The KRR regularization parameter w is usually chosen experi-
mentally via cross-validation to minimize the prediction error on
a testing dataset. However, as it will be shown in the numerical
results, it is possible to further reduce the prediction error by fine-
tuning the sampling distribution. For this reason, we decouple the
optimal distribution from the regularization parameter in KRR by
redefining the ith leverage score as

N S (31)
l Doty !

where y > 0 is now a tunable parameter different from the param-
eter . Alternatively, (31) can be obtained as l; = (K(K +yD)~1);;.
Then, the chosen distribution is

ZI]L] lj

Thus, replacing p in (30) with y to obtain (31) enables separate
optimization of the regularization term in the regression problem
and the probability distribution (32). We refer to the use of this
distribution to select the training set as leverage score sampling.
The quantity I; is the so-called regularized leverage score! of
the ith column of K, a concept that often appears in the context
of random matrix approximations. For instance, [13,16] derive er-
ror bounds on the Nystrdm approximation when the columns are
sampled according to their leverage scores. Similarly, [23] relies on
the leverage scores to sample a subset of columns of the kernel
matrix and reduce the computational cost of KRR. In [24], leverage
scores are used to assess the approximation of the kernel matrix
via random Fourier features, whereas [18] uses them to obtain ac-
curate subspace embeddings. In contrast to these related works,
our focus is not on obtaining the best possible kernel matrix ap-
proximation to reduce computational cost in KRR. We set out to

Di (32)

1 Hereafter the words leverage score refer to the regularized leverage score.
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derive an optimal approach to select the samples in the training
set, and the analysis of the risk function has led us to the leverage
scores (31) as a good approach.

Since the ith leverage score is a weighted average of the ith
row of the eigenvector matrix Q, a high value indicates that the
ith input stands out with respect to the other elements. Moreover,
y determines how much weight is given to the notable points,
with y =0 inducing a uniform probability distribution. Regarding
computational cost, it is dominated by the inversion of an N x N
matrix, which could be reducer by replacing the matrix to be in-
verted with a low-rank approximation. This is for instance pro-
posed in [16] where, given an N x d binary sampling matrix D, an
approximate leverage score is obtained as

Ii= %(K —KD(D'KD + yI)~'S'K). (33)

If the columns of K are sampled according to p; in (32), the risk for
a given S can be bounded in relation to the risk of the full prob-
lem. To do so, let us first introduce the following theorem adapted
from [13] to bound the spectral norm of P in (27):

Theorem 2. [13] Let V € N x N, and S be an s x N sparse weighted
. . . ‘l . . . . .

sampling matrix with Si_jzﬁ if 6()=j Vi=1,...,s, je

{1,....N}, where p; denotes the probability of choosing the jth col-

umn in K. Then,
—st2/2
Pr(|vv" —vs'SVT||, > t) < Nexp (2/> (34)
IVIIE+t/3

Using Theorem 2, P=VVT —vS'SVT <tI with probability
greater than 1—6 if s> (Ztiesz +%)log, where d,; is the so-
called effective dimension defined as deffzzf\’:] i = ||V||§, and
8 € (0, 1]; this condition on s is obtained by equating the right-
hand side of (34) to 8. Then, we have that (I - P)~! < ﬁl and,
therefore, the eigenvalues of K — T in (24) are bounded as

= [

K-T< it (35)
with probability at least 1 — . This inequality is obtained by apply-
ing to (24) the property that the maximum eigenvalue of a matrix
multiplication is smaller or equal to the multiplication of the max-
imum eigenvalue of each matrix [10]. Using (35), the risk is written
in relation to the risk of the fully observed problem, i.e., S =1, as
Theorem 3 below shows with proof in Appendix C.

Theorem 3. Let f = Ka be the function vector to be recovered, Ry ()

the KRR risk function in (21), and S a s x N sparse weighted sam-
. . . L ‘l . . — s .

pling matrix with §; ; = oo ifo()=j Vi=1,...,s, je{l,...,N},

where p; denotes the probability of choosing the jth column in K.

Provided that s > (Zdesz + %) log ¥, it holds with probability greater
than 1 —§ for § € (0, 1] that the risk is upper bounded as

t
R (S) = Ru() + 2 lell3 + _Tr(S'S — I, (36)

V2
1-1t)

Theorem 3 indicates that the excess risk when using s < N
samples increases with the spectral norm of P assumed smaller
than t, with the second term in (36) being related to the excess
bias, and the third to the excess variance; see (52) and (55) in
Appendix C. As expected, increasing s reduces the bias through in-
ducing a smaller t, whereas a larger number of samples may result
in higher variance due to the additional noise.

While it does not have the same theoretical guarantees as the
probabilistic approach, a greedy approach can also be derived us-
ing the leverage scores. Greedy methods are concerned with max-
imizing optimality in the stage at which they are executed, and
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do not consider the optimality of the final solution. Applied to the
passive sampling paradigm we have developed, this means sim-
ply taking the samples with the highest associated leverage score.
Defining £ as the set containing the s leverage scores with the
highest value, the s-tuple of observation indices for greedy leverage
sampling is denoted by

0c = (Djyec- (37)

Remark 1. Sampling based on leverage scores is applicable to the
selection of inducing points in Gaussian processes. Assuming that
f is a Gaussian process (GP) such that Pr(f|x) ~ N (0, K), the dis-
tribution of f conditioned on the observations, inputs and variance
V2 is

Pr(flm, x,v?) ~ N[KS" (K +v’1)~'y, K — KS" (K + v’I)'KS].
(38)

We observe in (38) that the mean is equal to a KRR with p = v2,
and that the covariance matrix is the difference between K and its
Nystrom approximation. Hence, this suggests that an accurate ap-
proximation through the design of S should yield a lower variance
on the posterior distribution of f. Such a design can be produced
by means of the leverage scores as presented in this section, which
in turn induces a sampling distribution through y. Hence, to ob-
tain either a leverage score sampling or greedy leverage sampling
scheme for GPs, one just needs to calculate the leverage scores as
in (31) for a specific ¥ and follow the indicated steps for each of
the two methods.

5. Numerical tests

This section presents numerical tests comparing uniform sam-
pling with p; =% to leverage score sampling (32) and greedy
leverage score sampling in (37) for different values of s, for both
KRR and GP regression. Each combination of sampling method and
algorithm is labeled as UKRR, LKRR, GKRR, UGP, LGP and GGP,
where U, L and G stand for uniform, leverage and greedy, respec-
tively. The optimal hyperparameters p and y are found via grid
search for each s. The search is performed randomly: intervals
[mins Mmax] and [Ymin. Ymax] are set for i and y respectively, and
100 tuples of values within the intervals are selected at random.
For the GP algorithm, the noise variance v? is estimated through
the log-likelihood. The s labeled samples form the training set, and
the RMSE measures the estimation error as

18 .
w2 71,

where N; = 20 is the number of realizations, fi is the estimation
at the ith realization, and a new training set is acquired at each
realization. For KRR, fl- is given by (20), whereas for a GP it is
given by the posterior mean in (38) with v obtained via maximum-
likelihood estimation from the observed samples.

The Boston housing dataset? is the first to be evaluated. The in-
put set X is comprised of 506 feature vectors detailing the charac-
teristics of 506 houses in Boston such as size or number of rooms.
The variable to be predicted, i.e., f, is the price of each house.
Here, the sampling algorithm selects a training set s of houses with
their features, requests their prices, and estimates the price of the
remaining ones. The used kernel is the Gaussian kernel applied
on the feature vectors; its expression is K; j = exp(||x; —xj||§/.§),
where £ > 0. Fig. 1 shows the RMSE for different values of s and
the three sampling strategies. The figure shows that leverage score
sampling attains a smaller error than uniform sampling for both

RMSE = (39)

2 https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html.
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Fig. 1. NMSE vs. s for the Boston housing data.
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Fig. 2. Grid search for the Boston housing dataset for s = 91. The minimum is high-
lighted in a green square, centered at pu* =2.2- 1074, y* = 2.46. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

KRR and GP regression. While the gains are small, they are in line
with those obtained by other methods [3,13]. Nevertheless, for this
particular dataset greedy sampling provides better performance for
both algorithms.

Fig. 2 depicts the result of the grid search for the Boston hous-
ing dataset for the LKRR method with s = 91. We observe that, out
of all the evaluated points, the combination of ;£ and y minimizing
the error is u* =2.2-1074, y* = 2.46. This plot corroborates that
decoupling the hyperparameter for the design of the sampling dis-
tribution from the one in the KRR regularization yields a smaller
error.

To gain further insight into the impact of y, Fig. 3 shows the
sampling probability distribution for several values of y. We ob-
serve that setting a very small value or one large enough results in
a more uniform distribution, although for y = 10 the largest peaks
still remain visible. On the other hand, an in-between value en-
hances the variability between probabilities. Thus, in the specific
case in Fig. 2 with s =91, the optimal y is the one that main-
tains the largest sampling probabilities while promoting uniformity
among the rest.

Fig. 4 shows the results for the Mushroom dataset. The vec-
tor to be recovered is of length 5,000 and the kernel is obtained
from the Pearson correlation matrix of the features. Here, the fea-
ture vectors contain details about each mushroom such as shape
or size, and the objective is to determine whether a mushroom
is edible or poisonous. For KRR, both greedy and leverage score
sampling show a much lower error than uniform sampling. On the
other hand, in GP regression greedy sampling results in worse per-
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Fig. 3. Leverage scores and probabilities for the Boston housing dataset for different
values of y.
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Fig. 5. RMSE vs. s for the Labor data.

formance when compared to uniform sampling. Note that, since
this is a binary classification problem with classes [2, 1], the
NMSE evaluates the difference between the regression result and
the actual numerical value of the class before applying any deci-
sion rule.
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Fig. 7. RMSE vs. s for the Wine data.

Figs. 5, 6 and 7 show the test results for the Labor?, Stocks*
and Wine® datasets, respectively, using the Gaussian kernel. Over-
all, we observe that the passive sampling approaches are able to
reduce the error with respect to uniform sampling, with the re-
duction being more noticeable for greedy sampling in the Stocks
and Wine datasets.

We can conclude that, for KRR, both the random leverage sam-
pling and the deterministic greedy sampling result in smaller error
than uniform sampling for the test data. However, greedy sampling
is more vulnerable to a badly designed kernel and outliers as it
always chooses the most distinct points; this can be mitigated in
leverage sampling by setting a more uniform distribution. More-
over, it should be noted that the reported results show the average
error over several realizations for leverage sampling whereas for
greedy sampling they correspond to a single realization since the
sampled set is deterministic.

5.1. Computational cost evaluation

In order to reduce the computational cost, one may resort
to approximate leverage scores. Fig. 8 shows the time required
to complete the passive sampling using the approximate scores
in (33) plus the KRR (18) for the Mushroom date:j. We observe that

the cost is reduced in proportion to the factor §. Moreover, since

the cost to calculate the leverage scores is constant for different s
as it only depends on %, the increase in time with s is due to the
KRR step. Fig. 9 shows the resulting probability distribution for the
different factor values and first 100 indices. Finally, Fig. 10 com-
pares the error for KRR using exact leverage scores, and approxi-

mate leverage scores with % = 0.8. We observe that at this value

3 https://rdrr.io/rforge/Ecdat/man/Mroz.html.
4 https://rdrr.io/cran/ISLR/man/Smarket.html.
5 https://archive.ics.uci.edu/ml/datasets/wine.
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Fig. 10. RMSE vs. s for the Mushroom data using exact leverage scores, and approx-
imate leverage scores with ¢ = 0.8.

the performance is not significantly degraded, while the computa-
tional cost is reduced.

6. Conclusions

This paper has studied how the prior information embedded
in the kernel functions spanning an RKHS can be used to deter-
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mine which inputs are the most important to label in order to
recover the complete function. First, through functional analysis,
it has been shown that the recovery error of a sampled func-
tion in an RKHS is directly tied to the Nystrém approximation
to the kernel matrix. Hence, in the noiseless case, the error can
be minimized by finding the best possible Nystrém approxima-
tion and labeling the inputs corresponding to the chosen columns.
This sampling approach is passive since it only involves knowl-
edge of the input space and kernel matrix, which presents ben-
efits over active sampling schemes which require online opera-
tion and are more vulnerable to noise. Given the theoretical back-
ground, the Nystrom-based sampling approach has been applied to
KRR and GP regression for the picking of the training set. In this,
the weighted sampling matrix is designed according to the lever-
age scores of the kernel matrix, which measure the importance
of each column in achieving a good Nystrom approximation. Nu-
merical tests have shown that the proposed approaches work well
for the recovery of sampled vectors when compared to uniform
sampling.
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Appendix A. Risk function for KRR
For KRR, the MSE is

MSE :=1Ew{||f—j‘||§}:Ew{||f—1(&||§}. (39)
Plugging the estimator from (20) into (39) yields
MSE — IEW{ | £ — KS (SKS" + uD)~' (Sf + W) Hi}

= |a—KS"(SKS” + uD) ') £ |

+ EW{ | KT (sKs” + ul)”v'v”j} (40)
where w = Sw, and we have used that E{w} = 0. Further, the first
and second terms in (40) are the squared bias and variance of the

KRR estimator, respectively. If we substitute f = Ko into the first
term of (40), we obtain the squared bias as

b2 = || (1 - KS" (SKS" + uD)"'S)Ka |}
— || (¢ — KST(SKS" + uD)~'SK)at |
= | - Dree] (a1)

where T := KST(SKS” + uI)~1$)K is the regularized Nystrém ap-
proximation of K. On the other hand, the variance term is

var = ]Ew{ | KS" (SKS™ + ul)”WHi}

EW{ % ||KS" (SKS + juI)~" (ul + SKS™ — SKS™ )W | E}

o % | KT~ KST (SKS” + ) 'sKS ]}
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1 _ 12
_ IEW{ 2 | (K - ST (SKS™ + ) 151087 2}

=Ew{%“(K—T)STWH§}. (42)

Adding the two terms in (41) and (42), and assuming a fixed S, we
obtain the risk in (23).

Appendix B. Proof of Lemma 2

With the eigendecomposition K = QXQ7, we can write
K-T=K-KS"(SKS" + ul)~'SK

—Q3} [1 _3tQsT(sQziziQTS + ,LLI)”SQE%]E%QT. (43)

Applying the Matrix Inversion Lemma to the matrix inside the
square brackets of (43), we arrive at

_vloTeT ixloTsT o5t
1-%:Q's"(sQx:x:Q"S" + ulI) SQX

-1

- (1+ %E%QTSTSQE%) . (44)

That in turn implies
-1
K—T=uQxt </u+ ):%QTSTSQ):%) 31T
1 1 1 71 1

— QX! (z ful—-%+ zfQTsquzi) siQ’
— QX! [(z + ol (1 (B4 pD) IS 4+ )}

H(E+uhtEiQSTSQE (T + m)*%))

1 -1 1

(+unt]| T
—pQE (T4 ul) F(I-P) (T4 uh 2 xiQ (45)
with P given in (25).

Appendix C. Proof of Theorem 3

Let us first introduce the following lemma:

Lemma 3. Let K = K(K + uI)~'K. Then,

K- K= KK+ ul) (46)
Proof. Let
. 1.1
K-K=K(I-—(=K+I)7'K). (47)
nop

Using the Matrix Inversion Lemma,
A'+A'BID-CA"'B)CA=(A—-BD'C)"! (48)
withA=B=D=1Iand C= —%K. we have that
K- l(lK +D7'K) = K(lK +D)7' = uK(K +uh™'. (49)
nopn 128
O

Knowing that R, (S) =Ry (I) + (Ru(S) — R, (I)), we first write
the bias in terms of the one for the full problem, namely bj, as

b? = (K - Teel|3 < || (K — K)et||3 + || (K — T)ex|13
= b} + || (K — T)ex|l3 (50)
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Provided that s > (zigff + %) log¥, from (35) we know that K —

T < £ KK + wul)~1 with probability 1 — 8. Hereafter assume that
any equation involving t is satisfied with probability 1 — §. Thus, to
bound the last term in (50) we use Lemma 3 to show that

K-T=K-T)- K -K)

< %K(K D)t — K (K + )
- K KK+ uh™' < M (51)
1t =1t
Applying the identity ||(K — T)et[13 < Amax (K — T)||t||3 yields
t
b = b2 + %uanﬁ. (52)

Next, we proceed to calculate an upper bound to the difference
between the variance of the sampled problem and that of the
full problem, which is denoted as varg. Assuming Gaussian noise
with variance v? in (42), let var = Z—zzTr((K—T)ZSTS) and vary =

Z—zzTr((K— 7)2). Then,
v 72T v? 712
var — vary = PTr((K —T)*°S'S) — mTr((K -T)%)

= ;—ZZTr((K—T)z(STS—I)) (53)

Applying the property K — T < % from (35), this difference can
be upper bounded as

Z—ZzTr((K —T)2(sTS—1)) < %Tr(STS ) (54)

Thus,

var < vary + l)72Tr(STS -I. (55)
(1-1)?

Adding together (52) and (55) yields the upper bound in the theo-
rem.
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