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a b s t r a c t 

This paper deals with the selection of the training dataset in kernel-based methods for function recon- 

struction, with a focus on kernel ridge regression. A functional analysis is performed which, in the ab- 

sence of noise, links the optimal sampling distribution to the one minimizing the difference between the 

kernel matrix and its low-rank Nyström approximation. From this standpoint, a statistical passive sam- 

pling approach is derived which uses the leverage scores of the columns of the kernel matrix to design a 

sampling distribution that minimizes an upper bound of the risk function. The proposed approach con- 

stitutes a passive method, able to select the optimal subset of training samples using only information 

provided by the input set and the kernel, but without needing to know the values of the function to be 

approximated. Furthermore, the proposed approach is backed up by numerical tests on real datasets. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Machine learning predicts labels by applying decision rules pre- 

iously learned on a training dataset, which consists of a set of in- 

ut samples and their labels. The training objective is to obtain a 

odel that can generalize to previously unseen or unlabeled in- 

uts. While in learning applications the focus is usually on achiev- 

ng a small prediction error, which is heavily influenced by the 

hoice of the training set, there is also the cost of label acquisition 

or training. This cost might be comparable or even superior to the 

rediction cost. For instance, in recommender systems, a request is 

ent to a user to rate an item; but this does not even guarantee

 rating since the request might be ignored. In other areas such 

s sensor networks, medicine, or any scenario with human anno- 

ators, the time to label an input is also non-negligible. Hence, the 

esign of optimal sample selection strategies is of paramount im- 

ortance to improve algorithm performance both in terms of ac- 

uracy and cost. The existing sample selection strategies may be 

ivided into active and passive, with the difference between them 

equiring labeled inputs or not. 
� This work has been funded by the Ministerio de Ciencia e Innovación 

MICINN) of the Spanish Government and by the Agencia Estatal de Investi- 

ación (AEI/10.13039/50110 0 011033) and ERDF funds (PID 2019-104958RB-C41/C43, 
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Active sampling schemes allow to choose the most promising 

et of inputs to label. They implement an iterative scheme that, 

iven the availability of a small starting training set, executes two 

teps repeatedly: first, the function is learned or updated using the 

urrent training set and, second, a criterion is evaluated to decide 

hich should be the next input to be labeled and then added to 

he training set. There exist a variety of criteria for active sampling, 

he most common being based on prediction uncertainty. For in- 

tance, in Gaussian processes [1,2] , the predictive variance serves 

s an uncertainty measure. 

While active sampling schemes generally provide good results, 

heir performance may be degraded when the samples are too 

oisy or when online operation is not possible [3] . There are 

lso batch versions of active sampling which acquire the labels 

n groups, but the issue with noisy samples still remains. More- 

ver, most active learning methods are designed for classification 

asks [4,5] , which often have built-in uncertainty measures, while 

he availability of methods for regression is more limited [6–8] . 

An alternative to active sampling is provided by the passive 

ampling schemes. In passive sampling, the set of inputs to be 

abeled is selected by observing the geometry of the input space 

nly. For instance, the greedy sampling approach in [3] iteratively 

dds new input samples to the training set by choosing the one 

ith the largest distance to the set. By relying only on the input 

pace, passive sampling avoids iteratively recomputing the learned 

unction for every additional input. The selected set of inputs can 

e labeled all at once when it is deemed complete. Furthermore, 

he impact of noisy samples is diminished. 

https://doi.org/10.1016/j.sigpro.2022.108603
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108603&domain=pdf
mailto:p.gimenez@upc.edu
https://doi.org/10.1016/j.sigpro.2022.108603
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This paper addresses passive sampling for function approxima- 

ion in a reproducing kernel Hilbert space (RKHS), with a focus on 

ernel ridge regression (KRR) [9–11] . To do so, a functional analysis 

s conducted which connects the concept of optimal sampling to 

he Nyström approximation [12] - a low-rank approximation to the 

ernel matrix built from a subset of its columns. Building atop this 

nding, a sample selection approach is presented based on select- 

ng the samples by means of the leverage scores [13] of the kernel 

atrix columns. The proposed method enables passive batch sam- 

ling, hence selecting the entire training set without needing any 

abel; only the kernel is needed. Moreover, the use of kernels en- 

bles the direct application of passive sampling to any input space, 

.g., non-metric spaces, provided that a kernel function exists for 

t. 

The paper is organized as follows. Section 2 provides a theoret- 

cal analysis of the sampling procedure in RKHSs and proves that 

yström-based passive sampling is optimal, in the absolute error 

ense, for noiseless samples. Section 3 extends the analysis to KRR 

ith noisy samples. Section 4 introduces the passive sampling ap- 

roach for KRR based on the leverage scores of the kernel matrix. 

inally, Section 5 presents numerical tests and Section 6 offers con- 

lusions. 

Notation. Boldface lower-case fonts denote column vectors, 

oldface upper-case fonts denote matrices, and calligraphic upper- 

ase letters denote sets. The i th entry of a vector f is denoted by

f (i ) , the i th column of a matrix K by K (i ) , and the entry at row

 column j by K i j . The superscript T denotes the transpose, † the 

seudo inverse, and the hat ˆ is used for estimates. The symbol I 

tands for the identity matrix of appropriate size, specified by the 

ontext, and the trace operator is Tr (·) . 

. Optimal sampling and reconstruction in RKHSs 

Let f : X → R be a function defined on an RKHS H N , and X̄ =
 ̄x i } s i =1 

be a set of sampled points in X where |X | = N. Here, we

ocus on the problem of reconstructing f given a set of noiseless 

bservations { ̄y i } s i =1 
such that ȳ i = f ( ̄x i ) ∀ i = 1 , . . . , s . 

The space H N is a Hilbert space of R -valued functions on a 

on-empty set X with inner product 〈·, ·〉 H N 
: H N × H N → R and

nduced norm ‖ f ‖ H N 
= 〈 f, f 〉 H N 

. A function κ : X × X → R is a re-

roducing kernel of H N , and H N is a RKHS if 

• ∀ x ∈ X , κ(·, x ) ∈ H N , 

• ∀ x ∈ X , ∀ f ∈ H N , 〈 f (·) , κ(·, x ) 〉 H N 
= f (x ) , 

here the latter is the reproducing property. In particular, the re- 

roducing property implies that 〈 κ(·, x ) , κ(·, x ′ ) 〉 H N 
= κ(x, x ′ ) . In

iew of the Moore-Aronszajn theorem, one can construct the RKHS 

 N as the completion of the space of functions spanned by the set 

 κ(·, x i ) } N i =1 
, i.e., 

 N := { f : f (x ) = 

N ∑ 

i =1 

αi κ(x, x i ) , αi ∈ R } (1)

ith an inner product given by 〈 f, f ′ 〉 H N 
= 

∑ N 
i =1 

∑ N 
j=1 αi α

′ 
j 
κ(x i , x j ) ,

here { αi } N i =1 
and { α′ 

j 
} N 

i =1 
are the coefficients of f, f ′ ∈ H N , re-

pectively. We refer to κ as the kernel function that spans H N , 

nd to K as its kernel matrix with K i j = κ(x i , x j ) . Note that our

KHS definition (1) differs from the usual one with an infinite- 

imensional RKHS since |X | = N and, therefore, H N is a finite- 

imensional space [9] . 

In order to motivate the passive sampling approach introduced 

n Section 4 , this section builds on the functional analysis approach 

o the signal reconstruction process from [14] and derives results 

alid for any algorithm operating in a RKHS. 
2 
The recovery of f from the observation set can be thought of as 

he “inversion” of 

f̄ = A f (2) 

here f̄ = [ f ( ̄x 1 ) , . . . , f ( ̄x s )] T , and A : H N → R 

s is a sampling op-

rator evaluating f at { ̄x i } s i =1 
. Leveraging the reproducing property, 

he sampling operator is defined as 

 f = 

s ∑ 

n =1 

〈 f, κ(·, x̄ n ) 〉 H N 
e n (3) 

here e n is the n th vector of the standard basis, i.e., the n th col-

mn of the s × s identity matrix. Let H s ⊆ H N be the subspace 

f dimension s spanned by { κ(·, ̄x n ) } s n =1 
. Then, f = f s + f ⊥ s , where

f s is the projection of f onto H s and f ⊥ s is the projection onto 

he subspace orthogonal to H s , denoted by H 

⊥ 
s ⊂ H N , such that 

 f ⊥ s , κ(·, ̄x ) 〉 H N 
= 0 ∀ ̄x ∈ X̄ . Thus, for x̄ ∈ X̄ , 

f ( ̄x ) = f s ( ̄x ) + f ⊥ s ( ̄x ) = 〈 f s , κ(·, ̄x ) 〉 H N 
+ 〈 f ⊥ s , κ(·, ̄x ) 〉 H N 

= 〈 f s , κ(·, x̄ ) 〉 H N 
= f s ( ̄x ) . (4) 

ince f s ∈ H s , it can be written as 
∑ s 

n =1 ᾱn κ(·, ̄x n ) for some real co-

fficients { ̄αn } s n =1 
. In turn, f ( ̄x ) = 

∑ s 
n =1 ᾱn κ( ̄x , ̄x n ) . Therefore, since

f̄ (i ) := f ( ̄x i ) , A maps f into a new RKHS H s ⊆ R 

s defined as 

 s := { ̄f : f̄ (i ) = 

s ∑ 

n =1 

ᾱn κ( ̄x i , ̄x n ) , ᾱn ∈ R } (5)

ith kernel matrix K̄ ∈ R 

s ×s where K̄ i, j = κ( ̄x i , ̄x j ) so that f̄ = K̄ ̄α,

here ᾱ = [ ̄α1 , . . . , ᾱs ] 
T , and 〈 ̄f , ̄f ′ 〉 H s 

= f̄ 
T 

K̄ 

−1 
f̄ 
′ 

for f̄ , ̄f 
′ ∈ H s as-

uming that K̄ is invertible. With A : H N → H s , its adjoint operator 

s A 

∗ : H s → H N , and by definition it satisfies for any f ′′ ∈ H N and

f̄ 
′ ∈ H s that 

A f ′′ , f̄ ′ 〉 H s 
= 〈 f ′′ , A 

∗ f̄ 
′ 〉 H N 

. (6) 

articularizing (6) for f ′′ = f and f̄ 
′ = f̄ , with f̄ in (2) , we obtain 

A f, f̄ 〉 H s 
= 〈 

s ∑ 

n =1 

〈 f, κ(·, x̄ n ) 〉 H N 
e n , f̄ 〉 H s 

= 

s ∑ 

n =1 

〈 f, κ(·, x̄ n ) 〉 H N 
〈 e n , f̄ 〉 H s 

= 〈 f, 
s ∑ 

n =1 

〈 e n , f̄ 〉 H s 
κ(·, ̄x n ) 〉 H N 

. (7) 

his leads to the definition 

 

∗ f̄ = 

s ∑ 

n =1 

〈 e n , f̄ 〉 H s 
κ(·, x̄ n ) = 

s ∑ 

n =1 

ᾱn κ(·, ̄x n ) (8) 

here 〈 e n , ̄f 〉 H s 
= f̄ 

T 
K̄ 

−1 
e n = ᾱn . The operator A 

∗ maps f̄ back 

nto H N using only the basis functions in H s , hence reversing 

he sampling in (2) and yielding an estimate for f . Moreover, 

he sampled values f ( ̄x i ) 
s 
i =1 

are not modified by A 

∗. Hence, since 

A 

∗ f̄ = f̄ , we have that AA 

∗ = I; this can be seen by substitut-

ng (8) into (3) . 

After the sampling operator and its adjoint have been defined, 

he reconstruction of a function in H N from its samples can be 

chieved through the consecutive application of each operator, i.e., 
ˆ f = A 

∗A f . Hence, P = A 

∗A is an orthogonal projector onto H s 

ince it is a self-adjoint operator, i.e., 〈P f , f ′ 〉 H N 
= 〈 f , P f ′ 〉 H N 

, and

t satisfies P P = P . Then, using (8) the estimate ˆ f is 

ˆ f = P f = A 

∗ f̄ = 

s ∑ 

n =1 

ᾱn κ(·, x̄ n ) = f s . (9) 
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ince an orthogonal projection onto a space yields an element with 

inimum distance to the original function, the reconstruction er- 

or at x ∈ X is upper bounded by 

 f (x ) − P f (x ) | = |〈 f, κ(·, x ) 〉 H N 
− 〈P f, κ(·, x ) 〉 H N 

| 
(a) = |〈 f, κ(·, x ) 〉 H N 

− 〈 f, Pκ(·, x ) 〉 H N 
| 

= |〈 f, κ(·, x ) − Pκ(·, x ) 〉 H N 
| 

(b) ≤ ‖ f‖ H N 
‖ κ(·, x ) − Pκ(·, x ) ‖ H N 

(10) 

here (a) uses the self-adjoint property of P , and (b) uses the 

auchy-Schwarz inequality. It can be seen that the error upper 

ound at x depends on the distance between the kernel function 

(·, x ) and its projection onto H s . Note that zero error is obtained

t the sampled points since Pκ(·, ̄x ) = κ(·, ̄x ) ∀ ̄x ∈ X̄ . For x / ∈ X̄ ,

he error can only be zero if κ(·, x ) ∈ H s ; this is the case when

 kernel function is duplicated such that κ(·, ̄x i ) = κ(·, x j ) where

¯ i ∈ X̄ and x j / ∈ X̄ . This might happen, for instance, in a recom- 

ender system where two different users have identical tastes; the 

ernel function evaluated at each of the two users has identical 

alue as well. Assuming no such duplicities exist, 

 f (x ) − P f (x ) | ≤
{

0 if x ∈ X̄ 

‖ f‖ H N 
‖ κ(·, x ) − Pκ(·, x ) ‖ H N 

if x / ∈ X̄ 

(11) 

The absolute error over the function estimate is denoted by | f −
ˆ f | = 

∑ N 
i =1 | f (x i ) − ˆ f (x i ) | , and (11) shows that it can only be zero

hen f ∈ H s so that P f = f . Therefore, in order to have zero error

or any f ∈ H N , then H N = H s must be true. 

The second norm in the last inequality of (10) provides the dis- 

ance in H N between a kernel function and its closest approxima- 

ion built with the functions in H s . Alternatively, this difference 

an be written in terms of A as shown in the lemma below, which

ill be used later. 

emma 1. The distance between κ(·, x ) and its projection onto 

 s ∀ x ∈ X is equal to the difference between the norm of κ(·, x ) in

 N and its sampled counterpart in H s , 

 κ(·, x ) − Pκ(·, x ) ‖ 

2 
H N 

= ‖ κ(·, x ) ‖ H N 
− ‖A κ(·, x ) ‖ H s 

(12)

roof. Let us expand the second term in (10) as 

 κ(·, x ) − Pκ(·, x ) ‖ 

2 
H N 

= 〈 κ(·, x ) − Pκ(·, x ) , κ(·, x ) − Pκ(·, x ) 〉 H N 

= κ(x, x ) − 2 〈 κ(·, x ) , Pκ(·, x ) 〉 H N 
+ 〈Pκ(·, x ) , Pκ(·, x ) 〉 H N 

(a) = κ(x, x ) − 2 〈 κ(·, x ) , Pκ(·, x ) 〉 H N 
+ 〈A κ(·, x ) , A κ(·, x ) 〉 H s 

(b) = κ(x, x ) − 2 〈A κ(·, x ) , A κ(·, x ) 〉 H s 
+ 〈A κ(·, x ) , A κ(·, x ) 〉 H s 

= κ(x, x ) − 〈A κ(·, x ) , A κ(·, x ) 〉 H s 

= ‖ κ(·, x ) ‖ H N 
− ‖A κ(·, x ) ‖ H s 

(13) 

here, using 〈 f , A 

∗ f̄ 〉 H N 
= 〈A f , ̄f 〉 H s 

and AA 

∗ = I , the identity

A 

∗A f, A 

∗A f 〉 H N 
= 〈AA 

∗A f, A f 〉 H s 
has been applied in (a), and

 f , A 

∗A f 〉 H N 
= 〈A f , A f 〉 H s 

in (b). �

Before continuing with the analysis, let us first introduce the 

ollowing definition: 

Nyström approximation. Let B ⊆ N be a set indexing |B| = r �
columns of K ∈ R 

N×N . Defining R = [ K (i )] i ∈B as the tall matrix

ormed by the indexed columns, its transpose R 

T , and C as the 

ubmatrix indexed by { (i, j) } (i, j) ∈B×B , the Nyström approximation 

o K is 

 = R C † R 

T 
. (14) 
3 
he Nyström approximation is a low-rank approximation that is 

sed in place of the full-rank kernel matrix in kernel meth- 

ds [15] to accelerate the inversion of the kernel matrix. While in 

his paper this matrix is not used for this purpose, it arises in the 

arious analyses conducted from here on. Thus, although (10) ad- 

resses the per-sample error, Lemma 1 enables an upper bound 

ormulated in terms of the Nyström approximation when consider- 

ng the total reconstruction error across f . This bound constitutes 

he main statement in this section and is presented in the theorem 

elow. 

heorem 1. Let f = [ f (x 1 ) , . . . , f (x N )] T , and S be an s × N binary

ampling matrix with a non-zero element per row equal to 1 such 

hat S f := A f . Moreover, let K be the kernel matrix of H N , and T :=
 S T K̄ 

−1 
S K with K̄ = S K S T . Then, the absolute error across f , defined 

s | f − P f | = 

∑ N 
m =1 | f (x m 

) − P f (x m 

) | , is bounded as 

 f − P f | ≤ ‖ f‖ H N 
Tr ( K − T ) (15) 

roof. Using (10) , (13) , and ‖ ̄f ‖ H s 
= f̄ 

T 
K̄ 

−1 
f̄ , it holds that 

 f − P f | = 

N ∑ 

m =1 

| f (x m 

) − P f (x m 

) | 

≤ ‖ f‖ H N 

N ∑ 

m =1 

‖ κ(·, x m 

) − Pκ(·, x m 

) ‖ 

2 
H N 

= ‖ f‖ H N 

N ∑ 

m =1 

(‖ κ(·, x m 

) ‖ H N 
− ‖A κ(·, x m 

) ‖ H s 

)

= ‖ f‖ H N 

N ∑ 

m =1 

( 

κ(x m 

, x m 

) −
s ∑ 

i =1 

s ∑ 

j=1 

κ( ̄x i , x m 

)( ̄K 

−1 
) i, j κ( ̄x j , x m 

) 

) 

(16) 

= ‖ f‖ H N 
Tr ( K − K S T K̄ 

−1 
S K ) 

= ‖ f‖ H N 
Tr ( K − T ) . (17) 

�

Matrix T constitutes a Nyström approximation as defined in 

14) , with the specificity that its rank, given by s , and the se-

ection of columns is tied to the sampling matrix S . Again, note 

hat full-rank kernel matrix is not being replaced with an approx- 

mation, the Nyström approximation appears through the analy- 

is conducted in Theorem 1 . The result in (15) shows that the 

pper bound on the reconstruction error of f is proportional to 

he difference between K and T on its diagonal entries. Moreover, 

r ( K − T ) ≥ 0 since in (12) ‖ κ(·, x ) ‖ H N 
≥ ‖A κ(·, x ) ‖ H s 

. Therefore,

esigning A to maximize 
∑ N 

n =1 ‖A κ(·, x n ) ‖ H s 
= Tr ( T ) minimizes 

he upper bound in Theorem 1 . 

. Function sampling and reconstruction in kernel ridge 

egression 

In KRR, the function to be recovered is a vector f = 

 f (x 1 ) , . . . , f (x N )] T ∈ H N ⊆ R 

N , where f = K α, α = [ α1 , . . . , αN ] 
T ,

nd 〈 f , f ′ 〉 H N 
= f T K 

−1 f ′ with f ′ ∈ H N . Given the s -dimensional 

ector of noisy observations ȳ = S y , where S is an s × N binary 

ampling matrix with a single non-zero element per row, y = 

 y 1 , . . . , y N ] 
T , y i = f (x i ) + w i and w i denotes noise, the problem is

ormulated as solving 

ˆ f = argmin 

f ∈H N 

‖ ̄y − S f ‖ 

2 
2 + μ‖ f ‖ H N 

(18) 
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r, equivalently, 

ˆ = argmin 

α∈ R N 
‖ ̄

y − S K α‖ 

2 
2 + μαT K α (19) 

here μ > 0 is a regularization parameter. The solution to (18) is 

ˆ f = K S T ( S K S T + μI ) −1 S y . (20) 

s shown in Section 2 , the sampling operator in (2) takes the form

 := S , where S is an s × N binary sampling matrix with a single 

on-zero element per row such that S f = f̄ . Its adjoint, derived 

ollowing (6) , is A 

∗ := K S T ( S K S T ) −1 , and the projection operator is

 = K S T ( S K S T ) −1 S . Thus, one observes that the solution (20) is not

btained by applying the projection operator P to y unless μ = 0 . 

owever, since (20) lies on the column span of K S T , the result is a

on-orthogonal projection of y onto H s = span { K S T } , i.e., the space 

panned by the kernel functions evaluated at the sampled inputs. 

till, a direct application of Theorem 1 is not possible unless μ = 0 

nd y is noiseless. 

To evaluate the performance of a specific sampling pattern, the 

isk function [16] , which is equal to the mean squared error (MSE) 

xcept that it takes S as a parameter, will be used. Thus, the risk 

s 

 μ( S ) = E w 

{‖ f − ˆ f ‖ 

2 
2 } 

= 

∥∥( I − K S T ( S K S T + μI ) −1 S ) f 
∥∥2 

2 

+ E w 

{ ∥∥K S T ( S K S T + μI ) −1 S w 

∥∥2 

2 

} 

(21) 

here w = [ w 1 , . . . , w N ] 
T . When μ = 0 , the risk becomes 

 0 ( S ) = 

∥∥ f − K S T ( S K S T ) −1 S f 
∥∥2 

2 
+ E w 

{ ∥∥K S T ( S K S T ) −1 S w 

∥∥2 

2 

} 

= ‖ 

f − P f ‖ 

2 
2 + E w 

{‖ 

P w ‖ 

2 
2 

}
. (22) 

ence, the first term in (22) , i.e., the squared bias, takes a similar

orm as (15) in Theorem 1 , whereas the second term or variance is

he norm of the projection of the vectorized noise onto H s . 

In a noiseless situation, the variance term in (22) would disap- 

ear and therefore the overall error would depend uniquely on the 

ccuracy of the Nyström approximation. With noise, there needs to 

e a balance between bias and variance in order to make the risk 

mall, i.e., sampling the most important points in f while acquiring 

he least amount of noise. However, since the distribution of the 

oise is usually unknown, this strategy is not feasible. Assuming 

ero-mean Gaussian noise with variance ν2 , then E w 

{‖ P w ‖ 2 2 

}
= 

2 Tr (P) = ν2 s since Tr (P) = Tr (( S K S T ) −1 S K S T ) = s . Adapting the

rocedure in the proof of Theorem 1 to the 2-norm, we have that 

 0 ( S ) = ‖ 

f − P f ‖ 

2 
2 + ν2 Tr (P) ≤ ‖ 

f ‖ 

2 
2 Tr ( K − T ) + ν2 s 

his expression shows that adding more samples reduces the ap- 

roximation error to K , and hence the bias, but it also increases 

he variance. 

Since in KRR one typically uses μ > 0 to reduce the impact of 

he noise and risk of overfitting, the passive sampling strategy is 

erived in the next section by analyzing R μ( S ) in (21) . 

. Passive sampling for kernel ridge regression 

The previous sections have shown that the upper bound on the 

ecovery error increases with the trace of the difference between 

he kernel matrix and its Nyström approximation. Since this ap- 

roximation is built from a subset of columns of the kernel ma- 

rix, it is crucial to choose the columns that best approximate the 

pectrum of the full matrix to keep the approximation accurate. In- 

eed, this is known as the column subset selection problem [17] , 

lso related to matrix sketching [18–20] . In regards to the Nyström 
4 
pproximation, while there exist deterministic [21] methods which 

rder the columns according to a metric and then choose the top 

erformers, most implementations opt for statistical approaches. 

n these, a sampling probability is assigned to each column and 

he required number of columns is sampled according to the re- 

ulting distribution. One example of such a technique is in [13,16] , 

hich measures column importance through the so-called leverage 

cores and provides theoretical guarantees on the approximation 

rror. This section presents a passive sampling method based on 

ernel leverage scores, which is derived through an analysis of the 

stimation error in KRR. 

.1. Risk function analysis 

Rewriting the risk function as shown in Appendix A , assum- 

ng Gaussian noise with variance ν2 , and using that ‖ A α‖ 2 ≤
 A ‖ 2 ‖ α‖ 2 for any matrix A of appropriate size, the risk is upper

ounded as 

 μ( S ) = 

∥∥( K − ˜ T ) α
∥∥2 

2 
+ E w 

{ 

1 

μ2 

∥∥( K − ˜ T ) S T w̄ 

∥∥2 

2 

} 

≤
∥∥K − ˜ T 

∥∥2 

2 

(
‖ 

α‖ 

2 
2 + 

ν2 s 

μ2 

)
(23) 

here ˜ T := K S T ( S K S T + μI ) −1 S K is a regularized Nyström approx- 

mation. 

Equation (23) shows that the spectral norm of the difference 

etween the kernel matrix and its regularized Nyström approxi- 

ation, which depends on μ, also determines the risk bound for 

RR. Therefore, it is well-grounded that one may pick the train- 

ng inputs in X by choosing the associated columns in K that best 

uild the regularized Nyström approximation. This section frames 

he sampling of the entries in y as designing the sampling ma- 

rix S that minimizes the error K − ˜ T . Through analyzing the risk 

unction from a probabilistic standpoint, S is cast as a weighted 

ampling matrix with weights set according to the leverage scores 

f the columns of K . Since this process only involves the kernel 

atrix, it is a passive sampling approach. Once S is obtained, the 

orresponding samples are obtained as ȳ = S y and KRR can then 

e applied to recover f . 

Let us first introduce the following lemma proven in 

ppendix B : 

emma 2. The difference K − ˜ T can be written as 

 − ˜ T = μQ �
1 
2 ( � + μI ) −

1 
2 ( I − P ) −1 ( � + μI ) −

1 
2 �

1 
2 Q 

T (24) 

here we have used the eigendecomposition K = Q �Q 

T and 

 := �( � + μI ) −1 − ( � + μI ) −
1 
2 �

1 
2 Q 

T S T S Q �
1 
2 ( � + μI ) −

1 
2 . 

(25) 

Defining 

 = ( � + μI ) −
1 
2 �

1 
2 Q 

T (26) 

nd knowing that the product of two diagonal matrices is commu- 

ative, substituting into (25) yields 

 = V V 

T − V S T S V 

T (27) 

herefore, P is the difference between V V 

T and an approximation 

uilt from a subset of the columns in V , and it is the only element

n (24) depending on the sampling distribution through S . Thus, 

f S is designed to minimize the norm of P so that in (24) ‖ ( I −
 ) −1 ‖ 2 is approximately minimized, a reduction on the difference 

 − ˜ T in (24) and also on the bound on R μ( S ) in (23) will be

chieved. 
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.2. Sampling based on leverage scores 

Let θ be an ordered s -tuple containing indices drawn with re- 

lacement from { 1 , . . . , N} with the probability distribution Pr (i ) =
p i . Here, p i denotes the probability of sampling the i th column 

n K , and θ contains the indices of the sampled columns in non- 

escending order. Moreover, assume a weighted S ∈ R 

s ×N with en- 

ries 

 i, j = 

{ 

1 √ 

sp j 
if θ (i ) = j 

0 otherwise 
(28) 

or i = 1 , . . . , s and j = 1 , . . . , N. Note that, since the indices in θ
re drawn with replacement, there might be repeated rows in S 

ampling the same item. Moreover, a weighted S is necessary in 

rder to satisfy certain theoretical guarantees. 

In [22] it is shown that the optimal probability distribution to 

inimize E { ‖ P ‖ 2 F } in (27) is 

p i = 

‖ 

v i ‖ 

2 
2 

‖ 

V ‖ 

2 
F 

(29) 

ith v i denoting the i th column of V in (26) , and 

 

v i ‖ 

2 
2 = 

N ∑ 

j=1 

σ j 

σ j + μ
q 

2 
j (i ) (30) 

here σi = ( �) ii , and q j is the jth column of Q . Thus, the distribu-

ion obtained with (29) for i = 1 , . . . , N can be expected to reduce

 K − ˜ T ‖ in the risk upper bound (23) . Still, note that this distri-

ution is obtained for a specific value of μ since p i depends on μ
hrough V . 

The KRR regularization parameter μ is usually chosen experi- 

entally via cross-validation to minimize the prediction error on 

 testing dataset. However, as it will be shown in the numerical 

esults, it is possible to further reduce the prediction error by fine- 

uning the sampling distribution. For this reason, we decouple the 

ptimal distribution from the regularization parameter in KRR by 

edefining the i th leverage score as 

 i = 

N ∑ 

j=1 

σ j 

σ j + γ
q 

2 
j (i ) (31) 

here γ > 0 is now a tunable parameter different from the param- 

ter μ. Alternatively, (31) can be obtained as l i = ( K ( K + γ I ) −1 ) i,i .

hen, the chosen distribution is 

p i = 

l i ∑ N 
j=1 l j 

. (32) 

hus, replacing μ in (30) with γ to obtain (31) enables separate 

ptimization of the regularization term in the regression problem 

nd the probability distribution (32) . We refer to the use of this 

istribution to select the training set as leverage score sampling . 

The quantity l i is the so-called regularized leverage score 1 of 

he i th column of K , a concept that often appears in the context 

f random matrix approximations. For instance, [13,16] derive er- 

or bounds on the Nyström approximation when the columns are 

ampled according to their leverage scores. Similarly, [23] relies on 

he leverage scores to sample a subset of columns of the kernel 

atrix and reduce the computational cost of KRR. In [24] , leverage 

cores are used to assess the approximation of the kernel matrix 

ia random Fourier features, whereas [18] uses them to obtain ac- 

urate subspace embeddings. In contrast to these related works, 

ur focus is not on obtaining the best possible kernel matrix ap- 

roximation to reduce computational cost in KRR. We set out to 
1 Hereafter the words leverage score refer to the regularized leverage score. 

p

i

i

5 
erive an optimal approach to select the samples in the training 

et, and the analysis of the risk function has led us to the leverage

cores (31) as a good approach. 

Since the i th leverage score is a weighted average of the i th

ow of the eigenvector matrix Q , a high value indicates that the 

 th input stands out with respect to the other elements. Moreover, 

determines how much weight is given to the notable points, 

ith γ = 0 inducing a uniform probability distribution. Regarding 

omputational cost, it is dominated by the inversion of an N × N

atrix, which could be reducer by replacing the matrix to be in- 

erted with a low-rank approximation. This is for instance pro- 

osed in [16] where, given an N × d binary sampling matrix D , an 

pproximate leverage score is obtained as 

˜ 
 i = 

1 

γ

(
K − K D ( D 

T K D + γ I ) −1 S T K 

)
. (33) 

f the columns of K are sampled according to p i in (32) , the risk for

 given S can be bounded in relation to the risk of the full prob-

em. To do so, let us first introduce the following theorem adapted 

rom [13] to bound the spectral norm of P in (27) : 

heorem 2. [13] Let V ∈ N × N , and S be an s × N sparse weighted 

ampling matrix with S i, j = 

1 √ 

sp j 
if θ (i ) = j ∀ i = 1 , . . . , s, j ∈

 1 , . . . , N} , where p j denotes the probability of choosing the jth col-

mn in K . Then, 

r 
(∥∥V V 

T − V S T S V 

T 
∥∥

2 
≥ t 

)
≤ N exp 

(
−st 2 / 2 

‖ 

V ‖ 

2 
F + t/ 3 

)
. (34) 

Using Theorem 2 , P = V V 

T − V S T S V 

T � t I with probability 

reater than 1 − δ if s ≥ ( 
2 d e f f 

t 2 
+ 

2 
3 t ) log N 

δ
, where d e f f is the so-

alled effective dimension defined as d e f f = 

∑ N 
i =1 l i = ‖ V ‖ 2 F , and 

∈ (0 , 1] ; this condition on s is obtained by equating the right-

and side of (34) to δ. Then, we have that ( I − P ) −1 � 1 
1 −t I and, 

herefore, the eigenvalues of K − ˜ T in (24) are bounded as 

 − ˜ T � μ

1 − t 
I (35) 

ith probability at least 1 − δ. This inequality is obtained by apply- 

ng to (24) the property that the maximum eigenvalue of a matrix 

ultiplication is smaller or equal to the multiplication of the max- 

mum eigenvalue of each matrix [10] . Using (35) , the risk is written 

n relation to the risk of the fully observed problem, i.e., S = I , as

heorem 3 below shows with proof in Appendix C . 

heorem 3. Let f = K α be the function vector to be recovered, R μ(·) 
he KRR risk function in (21) , and S a s × N sparse weighted sam- 

ling matrix with S i, j = 

1 √ 

sp j 
if θ (i ) = j ∀ i = 1 , . . . , s, j ∈ { 1 , . . . , N} ,

here p j denotes the probability of choosing the jth column in K . 

rovided that s ≥ ( 
2 d e f f 

t 2 
+ 

2 
3 t ) log N 

δ
, it holds with probability greater 

han 1 − δ for δ ∈ (0 , 1] that the risk is upper bounded as 

 μ( S ) ≤ R μ( I ) + 

μt 

1 − t 
‖ 

α‖ 

2 
2 + 

ν2 

(1 − t) 2 
Tr ( S T S − I ) . (36) 

Theorem 3 indicates that the excess risk when using s < N

amples increases with the spectral norm of P assumed smaller 

han t , with the second term in (36) being related to the excess 

ias, and the third to the excess variance; see (52) and (55) in 

ppendix C . As expected, increasing s reduces the bias through in- 

ucing a smaller t , whereas a larger number of samples may result 

n higher variance due to the additional noise. 

While it does not have the same theoretical guarantees as the 

robabilistic approach, a greedy approach can also be derived us- 

ng the leverage scores. Greedy methods are concerned with max- 

mizing optimality in the stage at which they are executed, and 
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Fig. 1. NMSE vs. s for the Boston housing data. 

Fig. 2. Grid search for the Boston housing dataset for s = 91 . The minimum is high- 

lighted in a green square, centered at μ∗ = 2 . 2 · 10 −4 , γ ∗ = 2 . 46 . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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o not consider the optimality of the final solution. Applied to the 

assive sampling paradigm we have developed, this means sim- 

ly taking the samples with the highest associated leverage score. 

efining L as the set containing the s leverage scores with the 

ighest value, the s -tuple of observation indices for greedy leverage 

ampling is denoted by 

G = (i ) l i ∈L . (37) 

emark 1 . Sampling based on leverage scores is applicable to the 

election of inducing points in Gaussian processes. Assuming that 

f is a Gaussian process (GP) such that Pr ( f |X ) ∼ N ( 0 , K ) , the dis-

ribution of f conditioned on the observations, inputs and variance 
2 is 

r ( f | ̄m , X , ν2 ) ∼ N 

[
K S T ( ̄K + ν2 I ) −1 ȳ , K − K S T ( ̄K + ν2 I ) −1 K S 

]
. 

(38) 

e observe in (38) that the mean is equal to a KRR with μ = ν2 ,

nd that the covariance matrix is the difference between K and its 

yström approximation. Hence, this suggests that an accurate ap- 

roximation through the design of S should yield a lower variance 

n the posterior distribution of f . Such a design can be produced 

y means of the leverage scores as presented in this section, which 

n turn induces a sampling distribution through ȳ . Hence, to ob- 

ain either a leverage score sampling or greedy leverage sampling 

cheme for GPs, one just needs to calculate the leverage scores as 

n (31) for a specific γ and follow the indicated steps for each of 

he two methods. 

. Numerical tests 

This section presents numerical tests comparing uniform sam- 

ling with p i = 

1 
N to leverage score sampling (32) and greedy 

everage score sampling in (37) for different values of s , for both 

RR and GP regression. Each combination of sampling method and 

lgorithm is labeled as UKRR, LKRR, GKRR, UGP, LGP and GGP, 

here U, L and G stand for uniform, leverage and greedy, respec- 

ively. The optimal hyperparameters μ and γ are found via grid 

earch for each s . The search is performed randomly: intervals 

 μmin , μmax ] and [ γmin , γmax ] are set for μ and γ respectively, and 

00 tuples of values within the intervals are selected at random. 

or the GP algorithm, the noise variance ν2 is estimated through 

he log-likelihood. The s labeled samples form the training set, and 

he RMSE measures the estimation error as 

MSE = 

√ 

1 

N r 

N r ∑ 

i =1 

∥∥ ˆ f i − f 
∥∥2 

F 
(39) 

here N r = 20 is the number of realizations, ˆ f i is the estimation 

t the i th realization, and a new training set is acquired at each 

ealization. For KRR, ˆ f i is given by (20) , whereas for a GP it is

iven by the posterior mean in (38) with ν obtained via maximum- 

ikelihood estimation from the observed samples. 

The Boston housing dataset 2 is the first to be evaluated. The in- 

ut set X is comprised of 506 feature vectors detailing the charac- 

eristics of 506 houses in Boston such as size or number of rooms. 

he variable to be predicted, i.e., f , is the price of each house. 

ere, the sampling algorithm selects a training set s of houses with 

heir features, requests their prices, and estimates the price of the 

emaining ones. The used kernel is the Gaussian kernel applied 

n the feature vectors; its expression is K i, j = exp (‖ x i − x j ‖ 2 2 
/ξ ) ,

here ξ > 0 . Fig. 1 shows the RMSE for different values of s and

he three sampling strategies. The figure shows that leverage score 

ampling attains a smaller error than uniform sampling for both 
2 https://www.cs.toronto.edu/ ∼delve/data/boston/bostonDetail.html . 

i

s

o

6 
RR and GP regression. While the gains are small, they are in line 

ith those obtained by other methods [3,13] . Nevertheless, for this 

articular dataset greedy sampling provides better performance for 

oth algorithms. 

Fig. 2 depicts the result of the grid search for the Boston hous- 

ng dataset for the LKRR method with s = 91 . We observe that, out

f all the evaluated points, the combination of μ and γ minimizing 

he error is μ∗ = 2 . 2 · 10 −4 , γ ∗ = 2 . 46 . This plot corroborates that

ecoupling the hyperparameter for the design of the sampling dis- 

ribution from the one in the KRR regularization yields a smaller 

rror. 

To gain further insight into the impact of γ , Fig. 3 shows the 

ampling probability distribution for several values of γ . We ob- 

erve that setting a very small value or one large enough results in 

 more uniform distribution, although for γ = 10 the largest peaks 

till remain visible. On the other hand, an in-between value en- 

ances the variability between probabilities. Thus, in the specific 

ase in Fig. 2 with s = 91 , the optimal γ is the one that main-

ains the largest sampling probabilities while promoting uniformity 

mong the rest. 

Fig. 4 shows the results for the Mushroom dataset. The vec- 

or to be recovered is of length 5 , 0 0 0 and the kernel is obtained

rom the Pearson correlation matrix of the features. Here, the fea- 

ure vectors contain details about each mushroom such as shape 

r size, and the objective is to determine whether a mushroom 

s edible or poisonous. For KRR, both greedy and leverage score 

ampling show a much lower error than uniform sampling. On the 

ther hand, in GP regression greedy sampling results in worse per- 

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Fig. 3. Leverage scores and probabilities for the Boston housing dataset for different 

values of γ . 

Fig. 4. RMSE vs. s for the Mushroom data. 

Fig. 5. RMSE vs. s for the Labor data. 
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Fig. 6. RMSE vs. s for the Stocks data. 

Fig. 7. RMSE vs. s for the Wine data. 
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3 https://rdrr.io/rforge/Ecdat/man/Mroz.html . 
4 https://rdrr.io/cran/ISLR/man/Smarket.html . 
5 https://archive.ics.uci.edu/ml/datasets/wine . 
ormance when compared to uniform sampling. Note that, since 

his is a binary classification problem with classes [2 , −1] , the 

MSE evaluates the difference between the regression result and 

he actual numerical value of the class before applying any deci- 

ion rule. 
7

Figs. 5 , 6 and 7 show the test results for the Labor 3 , Stocks 4 

nd Wine 5 datasets, respectively, using the Gaussian kernel. Over- 

ll, we observe that the passive sampling approaches are able to 

educe the error with respect to uniform sampling, with the re- 

uction being more noticeable for greedy sampling in the Stocks 

nd Wine datasets. 

We can conclude that, for KRR, both the random leverage sam- 

ling and the deterministic greedy sampling result in smaller error 

han uniform sampling for the test data. However, greedy sampling 

s more vulnerable to a badly designed kernel and outliers as it 

lways chooses the most distinct points; this can be mitigated in 

everage sampling by setting a more uniform distribution. More- 

ver, it should be noted that the reported results show the average 

rror over several realizations for leverage sampling whereas for 

reedy sampling they correspond to a single realization since the 

ampled set is deterministic. 

.1. Computational cost evaluation 

In order to reduce the computational cost, one may resort 

o approximate leverage scores. Fig. 8 shows the time required 

o complete the passive sampling using the approximate scores 

n (33) plus the KRR (18) for the Mushroom data. We observe that 

he cost is reduced in proportion to the factor d 
N . Moreover, since 

he cost to calculate the leverage scores is constant for different s 

s it only depends on 

d 
N , the increase in time with s is due to the

RR step. Fig. 9 shows the resulting probability distribution for the 

ifferent factor values and first 100 indices. Finally, Fig. 10 com- 

ares the error for KRR using exact leverage scores, and approxi- 

ate leverage scores with 

d 
N = 0 . 8 . We observe that at this value

https://rdrr.io/rforge/Ecdat/man/Mroz.html
https://rdrr.io/cran/ISLR/man/Smarket.html
https://archive.ics.uci.edu/ml/datasets/wine
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Fig. 8. Runtime for different values of d 
N 

on the Mushroom data. 

Fig. 9. Sampling probabilities of the first 100 points in the Mushroom data for dif- 

ferent d 
N 

. 

Fig. 10. RMSE vs. s for the Mushroom data using exact leverage scores, and approx- 

imate leverage scores with d 
N 

= 0 . 8 . 
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he performance is not significantly degraded, while the computa- 

ional cost is reduced. 

. Conclusions 

This paper has studied how the prior information embedded 

n the kernel functions spanning an RKHS can be used to deter- 
8 
ine which inputs are the most important to label in order to 

ecover the complete function. First, through functional analysis, 

t has been shown that the recovery error of a sampled func- 

ion in an RKHS is directly tied to the Nyström approximation 

o the kernel matrix. Hence, in the noiseless case, the error can 

e minimized by finding the best possible Nyström approxima- 

ion and labeling the inputs corresponding to the chosen columns. 

his sampling approach is passive since it only involves knowl- 

dge of the input space and kernel matrix, which presents ben- 

fits over active sampling schemes which require online opera- 

ion and are more vulnerable to noise. Given the theoretical back- 

round, the Nyström-based sampling approach has been applied to 

RR and GP regression for the picking of the training set. In this, 

he weighted sampling matrix is designed according to the lever- 

ge scores of the kernel matrix, which measure the importance 

f each column in achieving a good Nyström approximation. Nu- 

erical tests have shown that the proposed approaches work well 

or the recovery of sampled vectors when compared to uniform 

ampling. 
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ppendix A. Risk function for KRR 

For KRR, the MSE is 

SE := E w 

{‖ f − ˆ f ‖ 

2 
2 

}
= E w 

{ ∥∥ f − K ̂

 α
∥∥2 

2 

} 

. (39) 

lugging the estimator from (20) into (39) yields 

SE = E w 

{ ∥∥ f − K S T ( S K S T + μI ) −1 ( S f + w̄ ) 
∥∥2 

2 

} 

= 

∥∥( I − K S T ( S K S T + μI ) −1 S ) f 
∥∥2 

2 

+ E w 

{ ∥∥K S T ( S K S T + μI ) −1 w̄ 

∥∥2 

2 

} 

(40) 

here w̄ = S w , and we have used that E { w } = 0 . Further, the first

nd second terms in (40) are the squared bias and variance of the 

RR estimator, respectively. If we substitute f = K α into the first 

erm of (40) , we obtain the squared bias as 

 

2 = 

∥∥( I − K S T ( S K S T + μI ) −1 S ) K α
∥∥2 

2 

= 

∥∥( K − K S T ( S K S T + μI ) −1 S K ) α
∥∥2 

2 

= 

∥∥( K − ˜ T ) α
∥∥2 

2 
(41) 

here ˜ T := K S T ( S K S T + μI ) −1 S ) K is the regularized Nyström ap- 

roximation of K . On the other hand, the variance term is 

 ar = E w 

{ ∥∥K S T ( S K S T + μI ) −1 w̄ 

∥∥2 

2 

} 

= E w 

{ 

1 

μ2 

∣∣∣∣K S T ( S K S T + μI ) −1 (μI + S K S T − S K S T ) ̄w 

∣∣∣∣2 

2 

} 

= E w 

{ 

1 

μ2 

∥∥K S T − K S T ( S K S T + μI ) −1 S K S T w̄ 

∥∥2 

2 

} 
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[

= E w 

{ 

1 

μ2 

∥∥( K − K S T ( S K S T + μI ) −1 S K ) S T w̄ 

∥∥2 

2 

} 

= E w 

{ 

1 

μ2 

∥∥( K − ˜ T ) S T w̄ 

∥∥2 

2 

} 

. (42) 

dding the two terms in (41) and (42) , and assuming a fixed S , we

btain the risk in (23) . 

ppendix B. Proof of Lemma 2 

With the eigendecomposition K = Q �Q 

T , we can write 

 − ˜ T = K − K S T ( S K S T + μI ) −1 S K 

= Q �
1 
2 

[ 
I − �

1 
2 Q 

T S T ( S Q �
1 
2 �

1 
2 Q 

T S T + μI ) −1 S Q �
1 
2 

] 
�

1 
2 Q 

T 
. (43) 

pplying the Matrix Inversion Lemma to the matrix inside the 

quare brackets of (43) , we arrive at 

 − �
1 
2 Q 

T S T 
(

S Q �
1 
2 �

1 
2 Q 

T S T + μI 

)−1 

S Q �
1 
2 

= 

(
I + 

1 

μ
�

1 
2 Q 

T S T S Q �
1 
2 

)−1 

. (44) 

hat in turn implies 

 − ˜ T = μQ �
1 
2 

(
μI + �

1 
2 Q 

T S T S Q �
1 
2 

)−1 

�
1 
2 Q 

T 

= μQ �
1 
2 

(
� + μI − � + �

1 
2 Q 

T S T S Q �
1 
2 

)−1 

�
1 
2 Q 

T 

= μQ �
1 
2 

[ 
( � + μI ) 

1 
2 

(
I − ( � + μI ) −

1 
2 �( � + μI ) −

1 
2 

+( � + μI ) −
1 
2 �

1 
2 Q 

T S T S Q �
1 
2 ( � + μI ) −

1 
2 ) 

)

( � + μI ) 
1 
2 

] −1 

�
1 
2 Q 

T 

= μQ �
1 
2 ( � + μI ) −

1 
2 ( I − P ) −1 ( � + μI ) −

1 
2 �

1 
2 Q 

T (45) 

ith P given in (25) . 

ppendix C. Proof of Theorem 3 

Let us first introduce the following lemma: 

emma 3. Let Ǩ = K ( K + μI ) −1 K . Then, 

 − Ǩ = μK ( K + μI ) (46) 

roof. Let 

 − Ǩ = K ( I − 1 

μ
( 

1 

μ
K + I ) −1 K ) . (47) 

sing the Matrix Inversion Lemma, 

 

−1 + A 

−1 B ( D − C A 

−1 B ) C A = ( A − B D 

−1 C ) −1 (48) 

ith A = B = D = I and C = − 1 
μ K , we have that 

 ( I − 1 

μ
( 

1 

μ
K + I ) −1 K ) = K ( 

1 

μ
K + I) −1 = μK ( K + μI ) −1 . (49)

�

Knowing that R μ( S ) = R μ( I ) + (R μ( S ) − R μ( I )) , we first write

he bias in terms of the one for the full problem, namely b I , as

 

2 = ‖ ( K − ˜ T ) α‖ 

2 
2 ≤ ‖ ( K − Ǩ ) α‖ 

2 
2 + ‖ ( ̌K − ˜ T ) α‖ 

2 
2 

= b 2 I + ‖ ( ̌K − ˜ T ) α‖ 

2 
2 (50) 
9 
rovided that s ≥ ( 
2 d e f f 

t 2 
+ 

2 
3 t ) log N 

δ
, from (35) we know that K −

˜ 
 � μ

1 −t K ( K + μI ) −1 with probability 1 − δ. Hereafter assume that 

ny equation involving t is satisfied with probability 1 − δ. Thus, to 

ound the last term in (50) we use Lemma 3 to show that 

ˇ
 − ˜ T = ( K − ˜ T ) − ( K − Ǩ ) 

� μ

1 − t 
K ( K + μI ) −1 − μK ( K + μI ) −1 

= 

μt 

1 − t 
K ( K + μI ) −1 ≤ μt 

1 − t 
(51) 

pplying the identity ‖ ( ̌K − ˜ T ) α‖ 2 
2 

≤ λmax ( ̌K − ˜ T ) ‖ α‖ 2 2 yields 

 

2 = b 2 I + 

μt 

1 − t 
‖ 

α‖ 

2 
2 . (52) 

ext, we proceed to calculate an upper bound to the difference 

etween the variance of the sampled problem and that of the 

ull problem, which is denoted as v ar K . Assuming Gaussian noise 

ith variance ν2 in (42) , let v ar = 

ν2 

μ2 Tr (( K − ˜ T ) 2 S T S ) and v ar I =
ν2 

μ2 Tr (( K − ˜ T ) 2 ) . Then, 

 ar − v ar I = 

ν2 

μ2 
Tr (( K − ˜ T ) 2 S T S ) − ν2 

μ2 
Tr (( K − ˜ T ) 2 ) 

= 

ν2 

μ2 
Tr (( K − ˜ T ) 2 ( S T S − I )) (53) 

pplying the property K − ˜ T � μ
1 −t from (35) , this difference can 

e upper bounded as 

ν2 

μ2 
Tr (( K − ˜ T ) 2 ( S T S − I )) ≤ ν2 

(1 − t) 2 
Tr ( S T S − I ) (54) 

hus, 

 ar ≤ v ar I + 

ν2 

(1 − t) 2 
Tr ( S T S − I ) . (55) 

dding together (52) and (55) yields the upper bound in the theo- 

em. 
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