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ABSTRACT

We consider the design of multiuser constellations for a multiple ac-
cess channel (MAC) with K users, with M antennas each, that trans-
mit simultaneously to a receiver equipped with N antennas through
a Rayleigh block-fading channel, when no channel state informa-
tion (CSI) is available to either the transmitter or the receiver. In
full-diversity scenarios where the coherence time is at least T ≥
(K + 1)M , the proposed constellation design criterion is based on
the asymptotic expression of the multiuser pairwise error probabil-
ity (PEP) derived by Brehler and Varanasi in [1]. Although this
PEP expression was previously considered intractable for optimiza-
tion, in this work we derive a closed-form formula for its uncon-
strained gradient and perform Riemannian optimization in the Grass-
mannian manifold to design multiuser constellations for the MIMO
MAC with state-of-the-art performance in terms of symbol error rate
(SER).

Index Terms— Noncoherent communications, MIMO, multiple
access channel (MAC), Grassmannian, Riemannian gradient

1. INTRODUCTION

In multiple-input multiple-output (MIMO) noncoherent wireless
communications over fast fading channels, the channel state infor-
mation (CSI) is assumed to be unknown at both the transmitter and
receiver. In the single-user case and under additive Gaussian noise, it
was proved by Hochwald and Marzetta [2,3] that the T ×M space-
time transmit matrices that achieve the ergodic noncoherent capacity
for the MIMO block-fading model can be factored as the product of
an isotropically distributed T × M truncated unitary matrix, also
called Stiefel matrix, and a diagonal M ×M matrix with real non-
negative entries. Further, when T ≫ M the nonzero entries of the
diagonal matrix take the same value, showing that in this regime it
is optimal to transmit unitary space-time codewords XHX = IM .
Using the same signal model, Zheng and Tse [4] proved that at high
signal-to-noise ratio (SNR) and when T ≥ 2M , ergodic capacity
can be achieved by transmitting isotropically distributed unitary
matrices. Motivated by these information-theoretic results, numer-
ous methods for the design of single-user constellations formed by
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truncated unitary signal matrices, called unitary space-time modu-
lations (USTM), have been investigated and proposed over the last
decades [5–15]. In MIMO noncoherent constellations, information
is carried by the column span (i.e., a subspace) of the transmitted
T × M matrix, X. The problem of designing single-user nonco-
herent codebooks is thus closely related to finding optimal packings
in Grassmann manifolds [4, 16], and the resulting constellations are
referred to as Grassmannian constellations.

In the multiuser case, the design of noncoherent constellations
is significantly more complex, as many of the theoretical results that
exist for the single-user case (as well as the insights gained from
them), such as the optimality of unitary space-time or Grassman-
nian constellations at high-SNR, are no longer true. In this work,
we consider the design of noncoherent constellations for the MIMO
multiple access channel (MAC), a problem for which there is no sat-
isfactory solution yet. In the MAC several users transmit information
simultaneously over the same bandwidth and at the same channel use
or time slot to a common receiver. A common example is the up-
link channel in broadband cellular communications, where several
users communicate with a base station (BS). In the case of coherent
communications with perfect channel state information (CSI) at the
receiver or BS, capacity results for the MIMO MAC can be found
in [17].

For noncoherent communications, however, the full capacity re-
gion of the MIMO-MAC is unknown. For the K-user single-input
multiple-output (SIMO) MAC, it was conjectured by Shamai and
Marzetta in [18] that for block-fading channels with coherence time
T > 1 the sum capacity can be achieved by no more than K = T
users, which is supported by asymptotic analysis and simulation re-
sults. For the two-user MIMO MAC an achievable DoF (degrees of
freedom) region has been proposed in [19]. The optimal DoF region
for a two-user SIMO MAC has been derived in [20]. Existing the-
oretical results however do not provide clear insights regarding the
structure of the transmit space-time matrices for the MIMO MAC.

Of particular importance for the noncoherent K-user MIMO
MAC is the work of Brehler and Varanasi in [1], where the authors
derived an asymptotic expression of the joint pairwise probability of
error (PEP) of the optimum receiver. Moreover, they showed that the
coherence time must be at least T ≥ (K+1)M to ensure full diver-
sity of NM for each user. However, the PEP expression in [1] was
considered to be intractable for optimization, so none of the subse-
quent studies have used it as a criterion to design multiuser constel-
lations. Most of the proposed criteria in the literature either optimize
single-user Grassmannian designs with or without partitioning; that
is, using independently designed single-user codebooks, or design-
ing a large single-user codebook that is then partitioned according



to some subspace distance measure into K smaller single-user code-
books [1, 21–23]. In this work, we derive the gradient of the PEP
expression [1] in the Grassmannian manifold. Using this expres-
sion, we design noncoherent multiuser constellations for the MIMO
MAC in full-diversity scenarios with improved SER performance.

Notation: In this paper, matrices are denoted by bold-faced up-
per case letters, column vectors are denoted by bold-faced lower case
letters, and scalars are denoted by light-faced lower case letters. The
superscript (·)H denotes Hermitian conjugate. The trace and deter-
minant of a matrix A will be denoted, respectively, as tr(A) and
det(A). We let In denote the identity matrix of size n, CN (0, 1)
denote a complex proper Gaussian distribution with zero mean and
unit variance, and x ∼ CNn(0,R) denote a complex Gaussian vec-
tor in Cn with zero mean and covariance matrix R.

2. SYSTEM MODEL AND PEP

2.1. System model

We consider K users in a noncoherent MIMO MAC simultane-
ously transmitting to a common base station. Let the receiver
have N antennas and assume for simplicity that all users have the
same number of transmit antennas M . The channel of user k is
Hk ∈ CM×N , is assumed to remain constant over T symbol peri-
ods, over which communication occurs, and has a Rayleigh fading
distribution (Hk(i, j) ∼ CN (0, 1)). The channels of all users
change to an independent realization in the next transmission block
(block-fading channel). User k transmits at rate Rk (bits/channel
use), so within a coherence block sends a matrix equiprobably cho-
sen from a codebook Ck = {Xk,1, . . . ,Xk,Lk} with Lk = 2RkT .
We will assume that the transmitted matrices are semi-unitary or
Stiefel (XH

k,iXk,i = IM ), although this is not necessarily optimal in
the MAC. We address in this paper the design of the joint codebook
C = {C1, . . . , CK}.

Let us focus on a two-user MIMO MAC and define the T × 2M
matrix of transmitted codewords Fi = [X1,i1 ,X2,i2 ] adhering to
the notation of [1, 24]. The multiuser codeword Fi is not a Stiefel
matrix anymore (FH

i Fi ̸= I2M ) even if Xk,ik are for k = 1, 2. The
set of 2-user codewords is

F = {Fi = [X1,i1 ,X2,i2 ], X1,i1 ∈ C1,X2,i2 ∈ C2},

and has cardinality |F| = |C1 × C2| = L1L2. Due to different
path losses the two users can have different SNRs. Without loss of
generality, we take the SNR of user 1 as a reference and denote it as
ρ, while the SNR of user 2 is β2ρ. The model generalizes to K users.
When the 2-user codeword Fi is transmitted, the received signal is

Y = X1,i1H1 +
√

β2X2,i2H2 +

√
M

Tρ
W, (1)

where W ∈ CT×N represents the additive Gaussian noise, modeled
as wij ∼ CN (0, 1).

Conditioned on the transmitted signal, each column of Y fol-
lows a zero-mean complex normal distribution with covariance ma-
trix Ri = X1,i1X

H
1,i1 + β2X2,i2X

H
2,i2 + M

Tρ
IT , so the density of

Y|Fi is

p(Y|Fi) =
1

πTN det(Ri)N
exp tr

(
−R−1

i YYH
)
. (2)

The optimum Maximum Likelihood (ML) detector when codewords
are chosen with equal probability is

F̂i = arg min
Fi∈F

tr
(
YHR−1

i Y
)
+N log det(Ri). (3)

Notice that the ML detector at the BS needs to know the SNR of all
users. The SNR depends primarily on the path loss and therefore
varies on a much slower temporal scale than the multipath fading. It
is therefore feasible to have this long-term CSI available at the BS.

2.2. Noncoherent pairwise error probability (PEP)

Assuming full-diversity scenarios where the coherence time is at
least T ≥ (K+1)M , Brehler and Varanasi derived in [1] the asymp-
totic joint pairwise error probability of the ML detector in the nonco-
herent case. Since this result forms the starting point of the proposed
design criterion, we summarize it in this subsection.

Let us introduce the following notation for the orthogonal pro-
jection matrix onto the orthogonal complement of the subspace
spanned by the columns of M:

P⊥
M = I−M(MHM)−1MH.

Following [1], when comparing two joint hypotheses Fi vs. Fj , the
single-user codewords are to be reordered within the multiuser code-
word so that the terms in error appear first, i.e., Fi = [F

(e)
i F(c)] and

Fj = [F
(e)
j F(c)], where F(c) are the codewords common to the two

hypotheses or multiuser codewords, and F
(e)
i , F

(e)
j the codewords

of the users in error between the two different hypotheses. With these
conventions in place, the following proposition shows the expression
derived in [1] for the asymptotic PEP P(Fi → Fj).

Proposition 1 (Asymptotic Pairwise Error Probability [1]) Let
us assume no correlation between the channel fading coefficients,
equal SNR users 1, and that F

(e)H
i P⊥

Fj
F

(e)
i has full rank (i.e.

T ≥ (e+K)M , with e the number of symbols in error). Then, the
total pairwise error probability of the optimal detector, for detecting
Fj when receiving Fi, approaches (when the SNR grows) arbitrarily
closely to

P(Fi → Fj) =
σ2eNM ∑eNM

n=0

(
2eNM−n

eNM

)
(n!)−1(ĉij)

n

det(F
(e)H
i P⊥

Fj
F

(e)
i )N

, (4)

where ĉij = N log
FH

i Fi

FH
jFj

≥ 0, condition that can always be guaran-

teed by relabeling the hypothesis accordingly; σ2 is the noise vari-
ance.

3. PROPOSED JOINT CONSTELLATION DESIGN

The PEP expression in (4) has not been used as an optimization crite-
rion so far as it was considered untractable for optimization. Further,
it was thought not to give clear insights for constellation design, as
discussed in [22] and [23]. In this section, we propose a simplified
union-bound criterion for the design of noncoherent MAC constella-
tions based on this expression.

Notice that the denominator in P(Fi → Fj) is the factor that
encodes for the distance between joint codewords in error, since for
K = 1 it reduces to the coherence design criterium of [15]. Hence,
for simplicity, we focus on optimizing these factors by neglecting
the sum term in the numerator. This leads us to consider a multiuser
union-bound cost function for the design of noncoherent multiuser
constellations:

f(C) =
∑
i ̸=j

σ2eNM det(F
(e)H
i P⊥

Fj
F

(e)
i )−N , (5)

1To consider users with different SNRs simply requires introducing a
fixed diagonal matrix in the cost function.



where the sum is over all the joint multiuser codewords in C. Single-
user noncoherent constellations using the union-bound criterion have
been obtained in our previous works [15, 25].

Notice that e in (5) can take values from 1 symbol in error to
all the K users in error, which makes the number of terms in the
sum increasingly large: as the size of |C| = L1 · · ·LK grows, the
number of pairs of hypothesis i, j, i.e. number of terms in the sum
(5), grows as ∼ |C|2. For example, for two users K = 2, and
e = 1, there are L1(L1 − 1)L2 + L1L2(L2 − 1) terms in Eq. (5),
whereas for e = 2 there are L1L2(L1 − 1)(L2 − 1) terms, that
is, the number of terms with two symbols in error grows with one
order higher. This would make the multiuser optimization problem
computationally unfeasible as the number of users and codewords
grows. However, the contribution of the factor σ2eNM is σ2NM for
the less numerous one-error terms and σ4NM for the more numerous
two-error terms. Since σ is inversely proportional to the SNR, the
two-error terms are weighed two orders of magnitude less than the
one-error terms. Because of this, and in order for the optimization
to become feasible computationally, we propose to consider only the
one-symbol-in-error terms, that is

F (C) =
∑

Fi ̸=Fj∈C
e=1

det(F
(e)H
i P⊥

Fj
F

(e)
i )−N . (6)

The proposed design criterion for full-diversity scenarios finally is:

argmin
C1, ..., CK

F (C). (7)

3.1. Gradient formula

We propose to perform a gradient descent algorithm over the pack-
ing C to minimize the cost function (6), which is an approximation to
the PEP union bound. Since the users transmit Grassmannian con-
stellations (USTM codes), we need the Riemannian gradient vector
of F (C) in the Grassmannian product manifold. First, the following
theorem gives the unconstrained gradient of FC).

Theorem 1 Let Mj := FH
jFj , Gij := F

(e)H
i P⊥

Fj
F

(e)
i , and Fij =

det(Gij)
−N . The unconstrained Euclidean gradient of F (C) with

respect to codeword X is:

DXF (C) =
∑

Fi ̸=Fj∈C
e=1

DXFij(F
(e)
i ,Fj), (8)

where for a codeword in error, X = X(e), the gradient matrix is
given by the corresponding block of M columns in the following
expression

DX(e)Fij(F
(e)
i ,Fj) =

− 2NFij

[
P⊥

Fj
F

(e)
i G−1

ij

]
[i1(X

(e)) : iM (X(e))], (9)

where the notation F[i1(X) : iM (X)] has been used to denote the
extraction of the M columns in F corresponding to the position of
the codeword X inside the concatenated matrix.

Similarly, for X = X(c), a codeword not in error, we have:

DX(c)Fij(F
(e)
i ,Fj) =

2NFij

[
(IT − FjM

−1
j FH

j )F
(e)
i ·

· G−1
ij F

(e)H
i FjM

−1
j

]
[j1(X

(c)) : jM (X(c))]. (10)

Proof: Detailed proof of this result can be found in [26, Theorem 1].
□

3.2. Grassmannian optimization

Since USTM optimization must be performed on the Grassmannian
manifold, the unconstrained gradient given in Theorem 1 must be
projected in the tangent space. The tangent space projector for the
Grassmann manifold is PX(Ż) = (IT − XXH)Ż, for any tangent
matrix Ż at point X, and the retraction function RX from the tangent
space to the manifold is the QR decomposition. Algorithm 1 shows
the general Riemannian manifold optimization method for design-
ing noncoherent MIMO MAC constellations for K users, using the
proposed cost function F (C).

Algorithm 1 Grassmannian optimization for the K-user MAC

Input:
∑K

k=1 Lk uniformly distributed points in CT×M

Output: Optimized joint constellation C
1. Compute unconstrained gradient DXF (C) for every code-

word X = Xk,i in Ck, (k = 1, . . . ,K, i = 1, . . . , Lk).

2. Project down to the chosen manifold tangent space at every
X:

∇XF (C) = PX(DXF (C)).

3. Compute the norm of the full gradient:

||∇F (C)|| =

√√√√ K∑
k=1

Lk∑
i=1

||∇Xk,iF (C)||2F .

4. Move every codeword a step h in the direction of steepest
ascent (descent) retracting back onto the manifold:

Xnew = RX

(
±h

∇XF (C)
||∇F (C)||

)
.

5. Evaluate F (Cnew) and repeat step 4 with smaller h until cost
function improves its value with respect to F (C).

6. Update constellation by substituting X 7→ Xnew for every
codeword.

7. Repeat 1 − 6 until the number of iterations or improvement
in F (C) reach a threshold.

8. Return constellation Ck = {Xk,i}Lk
i=1, for every user k =

1, . . . ,K.

4. RESULTS

We study the symbol-error-rate (SER) performance of 2-user MIMO
MAC designs obtained using the proposed joint optimization method
(7). Moreover, we assume that: i) the two users have the same av-
erage SNR, ii) there is no correlation between the channel fading
coefficients, and iii) the scenarios allow for full diversity, which for
a 2-user MAC means T ≥ 3M .

In Fig. 1 we study the case of T = 3 symbol periods, M = 1
transmit antennas, N = 5 receive antennas, and B = 5 bits per
codeword. We compare the joint multiuser design obtained from the
proposed criterion (labeled as “Min-UB’ in the figure) versus single-
user designs obtained from the chordal distance optimization [14]
(labeled as “Chordal”) and the coherence criterion of [15] (labeled
as “Coherence”), along with the multiuser designs obtained from the
criteria proposed in [27] (labeled as “J1/2”, “β”, and “δ”, which are
proxy functions for the PEP). The design labeled “MinMax-PEP” is



a simplified version of (7) where only the worst PEP term of (6) is
improved at every iteration, instead of the union bound. The pro-
posed design Min-UB shows a very significant improvement in per-
formance over the rest of the designs in this scenario.

SNR (dB)

S
E

R

T = 3, M = 1, N = 5, L = 32

Chordal

Coherence

J
1/2

Beta

Delta

MinMax-PEP

Min-UB

Fig. 1. Comparison of different multiuser noncoherent constellation
designs for a 2-user MAC with T = 3, M = 1, N = 5 and L = 32
codewords.

SNR (dB)

S
E

R

T = 6, M = 2

J
1/2

Beta

Delta

MinMax-PEP

Min-UB

N = 2

L = 16

N = 4

L = 32

Fig. 2. Comparison of different multiuser noncoherent constellation
designs for a 2-user MAC with T = 6, M = 2, N ∈ {2, 4} and
L ∈ {16, 32}.

In Fig. 2 we compare the different multiuser design criteria in
a scenario with T = 6, M = 2, and a different number of receive
antennas and joint codewords. The gap in performance between the
proposed criterion and the proxy functions of [27] seems to be re-
duced when increasing the number of codewords but still, the former
outperforms all designs studied so far. It is important to point out that
the performance of a given optimized constellation in the MAC de-
pends on many parameters: number of users, number of antennas,
coherence time, etc. In particular, the number of antennas affects the

diversity (the slope of the SER vs. SNR curve) and thus can lead to
important differences in performance. For example, Fig. 1 shows
the performance of constellations in projective space whereas Fig.
2 shows codebooks in a proper Grassmannian manifold. This may
explain the differences observed between the two figures. Overall,
we may conclude that our proposed design method provides state-
of-the-art multiuser constellations for the MAC in the full-diversity
case.

5. CONCLUSION

We have proposed a Riemmanian optimization criterium for design-
ing noncoherent constellations for the MIMO MAC in full-diversity
scenarios, i.e. T ≥ (K + 1)M , for any number of users. The cost
function is a union bound of the dominant terms of the asymptotic
joint PEP, corresponding to those where only one of the users of the
MAC channel is in error. Moreover, we have provided, for the first
time in the literature, explicit closed-form formulas for the gradi-
ent of the dominant term of this function. Finally, we have shown
that constellations optimized with this criterium outperform existing
single-user and multi-user design methods.
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