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Abstract— The problem is to detect a multi-dimensional source
transmitting an unknown sequence of complex-valued symbols
to a multi-sensor array. In some cases the channel subspace is
known, and in others only its dimension is known. Should the
unknown transmissions be treated as unknowns in a first-order
statistical model, or should they be assigned a prior distribution
that is then used to marginalize a first-order model for a second-
order statistical model? This question motivates the derivation of
subspace detectors for cases where the subspace is known, and
for cases where only the dimension of the subspace is known.
For three of these four models the GLR detectors are known,
and they have been reported in the literature. But the GLR
detector for the case of a known subspace and a second-order
model for the measurements is derived for the first time in this
paper. When the subspace is known, second-order generalized
likelihood ratio (GLR) tests outperform first-order GLR tests
when the spread of subspace eigenvalues is large, while first-order
GLR tests outperform second-order GLR tests when the spread is
small. When only the dimension of the subspace is known, second-
order GLR tests outperform first-order GLR tests, regardless of
the spread of signal subspace eigenvalues. For a dimension-1
source, first-order and second-order statistical models lead to
equivalent GLR tests. This is a new finding.

Index Terms— Detection, generalized likelihood ratio (GLR),
likelihood, multi-sensor array, multivariate normal model
(MVN), scale-invariant detector, subspace signals.

I. INTRODUCTION

Begin with a multisensor array consisting of L elements,
and a measurement plan that records N independent measure-
ments in time. These measurements may carry transmissions
from a dimension-p source, and the detection problem is to
determine whether or not they do. The basic question is this:
should the unknown transmissions be treated as unknowns
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in a first-order statistical model, or should they be assigned
a prior distribution that is then used to marginalize a first-
order model for a second-order statistical model? This question
motivates the derivation of subspace detectors for cases where
the subspace is known, and for cases where only the dimension
of the subspace is known.

There are many motivations for detecting dimension-p
sources. In cognitive radio the problem is to determine whether
a multi-user channel is vacant, so that an opportunistic user
may use the channel without interferring with licensed users
[1]. If the cognitive radio channel supports p independent
single-antenna primary users or a single user transmitting p
independent data streams, then the source transmission may
be modeled as a dimension-p source [2]. In some cases the
subspace is known to be spanned by time-, frequency-, or
code-division multiplexes, and in other cases only the number
of users is known. In modern radars and communication sets,
transmissions may be drawn from a linear combination of
known or unknown modes [3], [4]. In more established tech-
nologies like array processing for radar, sonar, and vibration
analysis, transmissions from a single source are transmitted
over a multipath or dispersive channel. At a receiving array
the propagating wavefront may then be wrinkled, and modeled
as a linear combination of wavefronts drawn from a p-
dimensional basis, which may be known or unknown [5].

Generalized likelihood ratio (GLR) tests based on first-
order statistical models, where an unknown signal is received
through a basis for a known subspace have been derived for the
past two decades for various signal and noise model assump-
tions [6]–[10]. These GLR tests have found numerous appli-
cations, such as radar and sonar [11], passive radar and source
localization [12], and eavesdropper detection [13]. Second-
order statistical models, where the unknown transmitted signal
is assigned a Gaussian prior and then marginalized to yield
binary detection problems on the structure of the covariance
matrix, have been studied in the multivariate statistics literature
[14]–[16]. More recently, GLR tests based on second-order
statistical models have been derived for multiantenna sensing
problems under various signal and noise models [2], [17]–[21].
These tests can be generalized to spacetime detection problems
[22], [23], improper signals [24], or cyclostationary signals
[25], [26]. The Gaussian prior is not the only alternative,
yet a convenient one, and, for instance, [9] marginalizes over
Haar measure on the Grassmann manifold of p-dimensional
subspaces. In addition to the Gaussian prior on the source
signal, a complex inverse Wishart prior can also be defined
on the covariance matrix to derive a maximum a posteriori
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(MAP) estimator [27].
Despite the numerous GLR tests based on first-order and

second-order statistical models, several questions remain unan-
swered: what is the second-order variation on the classical
result in [28] by Anderson when the basis for a dimension-
p subspace is known, and not just its dimension? Are there
cases when a first-order model produces a GLR detector that
is equivalent to the GLR detector that is produced by a
second-order model? Are there problems for which one model
is preferred over another, or is the answer to this question
dependent on the number of array elements L, the source rank
p, the sample support N , the signal-to-noise ratio (SNR), and
the spread of source eigenvalues? These are the questions that
motivate this work.

When only the dimension of the channel subspace is known,
then numerical experiments indicate that the GLR derived
from a second-order model outperforms the GLR derived
from a first-order model. This is consistent with findings
reported in [9] for a detector derived from a non-Gaussian
prior distribution on the source signals. When the subspace is
known, then the relative performance depends on the spread of
the eigenvalues of the signal subspace. GLRs based on second-
order models outperform GLRs based on first-order models
when the eigenvalue spread of the source is large, while
the GLR derived from a first-order model outperforms the
GLR derived from a second-order model when the eigenvalue
spread is small. For a dimension-1 source, we prove that first-
order and second-order statistical models lead to equivalent
generalized likelihood ratio (GLR) tests under both cases,
known subspace and unknown subspace of known dimension.

Notation. In this paper, matrices are denoted by bold-faced
upper case letters, column vectors are denoted by bold-faced
lower case letters, and scalars are denoted by light-face lower
case letters. The superscripts (·)T and (·)H denote transpose
and Hermitian, respectively. The trace and determinant of a
matrix A will be denoted, respectively, as tr(A) and det(A).
The set CL is the complex Euclidean space with the standard
inner product and GL(Cp) denotes the general linear group
of non-singular p × p matrices. An n × n identity matrix is
denoted by In and In⊗IL is a Kronecker product of identities.
The notation 〈H〉 denotes a subspace of the complex vector
space CL spanned by the columns of H and PH denotes the
orthogonal projector onto 〈H〉. The matrix diag(a) denotes a
diagonal matrix whose diagonal is a. The notation CN (0, 1)
denotes a complex Gaussian distribution with zero mean
and unit variance and x ∼ CNL(0,R) denotes a complex
Gaussian vector in CL with zero mean and covariance R. To
say that a random matrix X ∈ CL×N is normally distributed as
X ∼ CNLN (0,Σr ⊗Σc), where Σr and Σc are respectively
N × N and L × L positive definite matrices, is to say that
Σr ⊗Σc is the covariance of the column vector x = vec(X).
This column vector x is a stack of columns of the matrix X.

II. LINEAR MEASUREMENT MODEL

The linear measurement model is

z = Hx + v, (1)

where z ∈ CL is the measurement at an L-element array,
H ∈ CL×p is a channel map from p sources to L array
elements, and x ∈ Cp are source transmissions. We assume in
this work that L > 1. The channel matrix H may be expressed
as H = UA, where U is an arbitrarily-chosen unitary basis for
the channel subspace 〈H〉, and A ∈ GL(Cp) is an unknown
non-singular p×p map from the sources into the subspace 〈H〉.
The noise v is modeled as a complex Gaussian vector with
zero mean and covariance σ2IL: v ∼ CNL(0, σ2IL), with
σ2 unknown. The signal x may be treated as an unknown
parameter, or as a random parameter, distributed as x ∼
CN p(0,Cxx), where Cxx is an unknown p × p covariance
matrix. Given N independent and identically distributed (i.i.d.)
realizations, the measurement equation can be written as

Z = HX + V = UAX + V, (2)

where X = [x1, . . . ,xN ] ∈ Cp×N , and Z and V are,
respectively, the measurement and noise matrices. They are
structured as X is structured. This model applies to multivari-
ate normal noise with covariance σ2Σ > 0, with Σ known, in
which case the basis U and measurement Z are pre-whitened
by Σ−1/2.

When A is given the SVD A = FKGH , then the
signal component of the measurement matrix may be written
(UF)K(GHX). So it is as if the symbols GHX are scaled by
the diagonal matrix K and received on the frame UF. Even
if the receiver knows a frame U for the subspace 〈H〉, it does
not know the orthogonal matrix F, so there is no matching to
UF. Only matching to U.

A. First-order measurement model

In a first-order model for the measurements, the signal
matrix X in (2) is assumed to be unknown, with no prior
distribution assigned. Since A and X are both unknown and
unconstrained, AX may be treated as the unknown X. Then,
the binary detection problem in the first-order model is

H0 : Z ∼ CNLN

(
0, σ2IN ⊗ IL

)
,

H1 : Z ∼ CNLN

(
UX, σ2IN ⊗ IL

)
,

(3)

where the unknown signal X appears in the mean value of
the measurements under the alternative hypothesis H1. The
likelihood function for X and σ2, given Z, is

`1 =
1

(πLσ2)N
exp

{
−

tr
[
(Z−UX)(Z−UX)H

]
σ2

}
. (4)

B. Second-order measurement model

When the linear measurement model z = UAx + v
is marginalized with respect to normally distributed source
symbols, x ∼ CN p(0,Cxx), the result is the second-order
model

z ∼ CNL(0,UACxxA
HUH + σ2IL), (5)

where the covariance matrix of the random signal Cxx ap-
pears in the covariance matrix of the measurement under
H1. The measurements under H0 and H1 are i.i.d. real-
izations of zero-mean multivariate normal (MVN) random
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vectors with covariance matrices R0 = σ2IL and R1 =
UACxxA

HUH + σ2IL, respectively. Since the p× p covari-
ance matrix Cxx is unknown, the matrix ACxxA

H is also
unknown. Therefore we may write, without loss of generality,
R1 = σ2

(
UQUH + IL

)
, where Q is an unknown positive

semidefinite matrix. The detection problem under a second-
order measurement model amounts to testing the structure of
the covariance matrix of the observations:

H0 : Z ∼ CNLN

(
0, σ2IN ⊗ IL

)
,

H1 : Z ∼ CNLN

(
0, σ2IN ⊗

(
UQUH + IL

))
.

(6)

The likelihood function for R = Ri, (i = 0, 1), given Z is

`2 =
1

(πL det(R))N
exp{−N tr(R−1S)} (7)

where S = N−1ZZH is the sample covariance matrix.

C. GLR detectors

In a likelihood theory [29], [30], the unknown parameters
under each hypothesis are replaced by their maximum like-
lihood (ML) estimates. In this work, we do not consider the
case that both U and A are known, i.e., H is known, as this
case applies only to coherent communication. It almost never
applies to radar or sonar or any other imaging system where
there is no phase lock. When only the basis U is known, we
say the problem is to detect signal transmissions in a known
subspace 〈H〉. When U is unknown, but the dimension of
H = UA is known, we say the problem is to detect signal
transmissions in an unknown subspace of known dimension.
There are several cases to be considered in this paper.

1) The basis U is known, which is equivalent to saying
only the subspace 〈H〉 is known. If the source transmis-
sion is treated as a sequence of i.i.d. random vectors,
then ACxxA

H , the covariance matrix of Ax, may be
treated only as an unknown and positive semidefinite
matrix, as any special structure imposed on Cxx will be
washed out by A. This case leads to a new detector not
previously reported in the literature. If Ax is treated as
an unknown parameter in the mean of the measurements,
the resulting detector is the multipulse or multi-snapshot
generalization of the scale-invariant matched subspace
detector [6], which has been reported in [31].

2) Neither U nor A is known, but it is known that the
unknown channel matrix H = UA has full rank p,
which is equivalent to saying only the dimension of
the subspace 〈H〉 is known. In this case the received
transmissions UAx are known only to consist of visits
to an unknown subspace of dimension p. These visits
may be treated as unknown, or they may be modeled as
i.i.d. visits with rank-p unknown covariance ACxxA

H .
If treated as unknown, the resulting detector is the gen-
eralization of the matched direction detector [8] reported
in [9]. If treated as a sequence of random vectors, then
the resulting detector is the detector reported by [2],
based on Anderson’s fundamental result [28].

III. DETECTORS FOR SIGNALS IN A KNOWN SUBSPACE

In this case, a basis U for the subspace 〈H〉 is known,
which is to say the unitary basis U is known, but the map
A is unknown. In Sec. III-A we derive the GLR under a
second-order model for the measurements, which has not been
reported in the literature. In Sec. III-B we review the GLR
under a first-order model.

A. GLR for a second-order measurement model

The detection problem amounts to testing the structure of
the covariance matrix of the observations as stated in (6), and
repeated here for convenience:

H0 : Z ∼ CNLN

(
0, σ2IN ⊗ IL

)
,

H1 : Z ∼ CNLN

(
0, σ2IN ⊗

(
UQUH + IL

))
.

We adopt a GLR approach, so the problem is to maximize
(7) with respect to the unknown parameters under each hy-
pothesis. To this end, we argue that to maximize likelihood is
to maximize the monotone function of the likelihood

L = log det(R−1S)− tr(R−1S)

under the constraint that R ∈ Ri, where Ri is a set
determining the structure of the covariance matrix. More
precisely, under H0 and H1 the covariance matrix belongs
to the following sets

R0 = {R = σ2IL | σ2 > 0}
R1 = {R = σ2

(
UQUH + IL

)
| Q � 0, σ2 > 0}

which are both cones, since for any R ∈ Ri, i = 0, 1, and for
any a > 0, we have aR ∈ Ri, i = 0, 1.

A lemma proved in [32] shows that in this case the co-
variance that maximizes the likelihood under each hypothesis
satisfies the constraint tr(R̂−1S) = L. Thus, the GLR is a
ratio of determinants,

Λ2 =
det(R̂0)

det(R̂1)
, (8)

where R̂0 and R̂1 are the maximum likelihood (ML) estimates
under H0 and H1, respectively. Under H0, the ML estimate
is

R̂0 =
tr(S)

L
IL. (9)

Under H1, the ML estimates Q̂ and σ̂2 do not generally admit
closed-form solutions. In the following paragraphs, we address
this problem by deriving a solution for σ2 that depends on
the unknown covariance Q, and then proposing an iterative
algorithm for finding a maximizing solution for Q.

The covariance under H1 is

R1 = σ2
(
UQUH + IL

)
, (10)

where recall that U is a unitary basis for the known subspace
〈H〉, and Q is an unknown non-negative definite matrix. Give
Q the eigenvalue decomposition Q = FΛFH , where Λ =



4

diag(λ1, . . . , λp), with λ1 ≥ · · · ≥ λp. Hence, the determinant
and inverse of R1 may be written as

det (R1) = (σ2)L det
(
UQUH + IL

)
= (σ2)L

p∏
i=1

(λi + 1), (11)

and

R−1
1 =

1

σ2

(
IL −U

(
Q−1 + Ip

)−1
UH

)
=

1

σ2

(
IL −UFDFHUH

)
, (12)

where
D = diag

(
λ1

λ1 + 1
, . . . ,

λp
λp + 1

)
. (13)

Discarding constant terms, the log-likelihood under H1 may
be written as

L(Λ,F, σ2) = −L log(σ2)−
p∑
i=1

log(λi + 1)

− 1

σ2

[
tr (S)− tr

(
DFHSHF

)]
, (14)

where SH = UHSU is a quadratic form in an arbitrarily-
chosen unitary basis U for the known subspace 〈H〉, and the
measured sample covariance S. Taking the derivative of (14)
with respect to σ2 and equating it to zero, the ML estimate of
σ2 is

σ̂2 =
1

L

[
tr(S)− tr

(
DFHSHF

)]
. (15)

Substituting this value into (14), the compressed log-likelihood
becomes

L(Λ,F, σ̂2) = −L log
[
tr(S)− tr

(
DFHSHF

)]
−

p∑
i=1

log(λi + 1). (16)

The ML estimate of F is obtained by maximizing (16) or,
equivalently, solving

max
FHF=Ip

tr
(
DFHSHF

)
. (17)

The following Lemma from [33] gives us the maximum of
(17) as a function of D and the eigenvalues of SH.

Lemma 1: (Proposition A.2.a of [33], pp. 786): Let
A = G diag(µ1, . . . , µp) GH be a p × p Hermitian ma-
trix with eigenvalues µ1 ≥ · · · ≥ µp, and let B =
J diag(β1, . . . , βp) JH be a p × p Hermitian matrix with
eigenvalues β1 ≥ · · · ≥ βp, then

max
FHF=Ip

tr
(
FHAFB

)
=

p∑
i=1

µiβi, (18)

and the maximum is attained at F̂ = GJH .
Taking A = SH and B = D in the previous lemma,

we obtain that the maximum value of tr
(
DFHSHF

)
when

evaluated at the ML estimate F̂ is

tr
(
DF̂HSHF̂

)
=

p∑
i=1

µiλi
λi + 1

, (19)

Algorithm 1 ML estimates of the eigenvalues of Q.

1: Initialize: l = 0, λ̂
(0)
k = 0

2: repeat
3: for k = 1 to p do
4: Compute γ(l)

k as in (22)
5: Estimate λ̂(l+1)

k using (21)
6: end for
7: l = l + 1
8: until convergence

where µ1 ≥ · · · ≥ µp are now the eigenvalues of SH.
Substituting (19) into (16), the compressed log-likelihood
becomes a function solely of the eigenvalues of Q:

L(Λ, F̂, σ̂2) = −L log

(
tr(S)−

p∑
i=1

µiλi
λi + 1

)

−
p∑
i=1

log(λi + 1). (20)

This function is not concave. Therefore, an iterative algo-
rithm is needed to maximize it with respect to the eigenvalues
of Q. A particularly convenient choice is to apply a cyclic
optimization algorithm that, at each iteration, optimizes the
value of a single eigenvalue assuming that the estimates of
the other eigenvalues are fixed. Let us denote the estimate of
λk at the lth iteration as λ̂(l)

k . At each iteration we sequentially
update all p eigenvalues starting from k = 1 till k = p. Then,
to update the k-th eigenvalue at iteration l+1 the rest of eigen-
values take fixed values: λ̂(l+1)

1 , . . . , λ̂
(l+1)
k−1 , λ̂

(l)
k+1, . . . λ̂

(l)
p . In

this way, (20) becomes a univariate concave function whose
maximum can be obtained in closed form as

λ̂
(l+1)
k =

(
γ

(l)
k − Lµk
µk − γ(l)

k

)+

, (21)

where

γ
(l)
k = tr(S)−

k−1∑
i=1

µiλ̂
(l+1)
i

λ̂
(l+1)
i + 1

−
p∑

i=k+1

µiλ̂
(l)
i

λ̂
(l)
i + 1

, (22)

and (x)+ = max(x, 0). A convenient initialization point is
λ̂

(0)
k = 0, ∀k. Iterations are stopped when the difference in

the value of the compressed log-likelihood in two consecutive
iterations is less than a prescribed threshold.

This iterative method, shown in Alg. 1, can be framed as
a block coordinate ascent method with cyclic update rule. At
every step, the subproblem for each eigenvalue is solved for
its unique global optimal solution and, therefore, according to
[34], the proposed method converges to a stationary point of
(20).

Once the ML estimates of the eigenvalues λ̂i of Q have
been obtained, the GLR is

Λ2 =
tr(S)L(

tr(S)−
∑p
i=1

λ̂iµi
λ̂i+1

)L∏p
i=1(λ̂i + 1)

. (23)

There can be no closed-form expression for the distribution
of Λ2 under H0, since it is a function of an iteration that
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stops at some value of K. So certainly one cannot say that a
threshold may be set to achieve a specified probability of false
alarm using a known distribution. But suppose Λ2 is computed
using measurement Z and then replace this measurement by
βZ. It is as if the additive noise has unknown variance β2σ2,
rather than σ2. However, the sequence of iterates for λ̂(l)

k in
(21) is invariant to scale and therefore so also is the statistic
Λ2 under H0. In summary, since Λ2 is scale-invariant, it is
a constant false alarm rate (CFAR) detector with respect to
measurement scaling.

B. GLR for a first-order measurement model

In a first-order model for the measurements, the GLR may
be considered as a multipulse generalization of the matched
subspace detector [6], which has been reported in [31]:

Λ1 =
tr(ZHPHZ)

tr(ZHZ)
, 0 ≤ Λ1 ≤ 1, (24)

where PH = UUH is the orthogonal projector onto 〈H〉.
As this equation shows, the GLR measures the fraction of
total energy that lies in the subspace 〈H〉. This is a coherence
detector. The numerator matches the sample covariance matrix
ZZH to PH, which would be the covariance matrix of a rank-
p signal source of uncorrelated components, each of equal
variance. This is only an interpretation, as no such assumption
has been made in the derivation of the detector.

The detector (24) can be expressed as

Λ1 =
tr(ZHPHZ)

tr(ZHPHZ) + tr(ZHP⊥HZ)
=

X

X + Y
, (25)

where P⊥H is the projection onto the orthogonal complement of
〈H〉. UnderH0, X and Y are independent chi-squared random
variables with 2Np and 2N(L − p) degrees of freedom,
respectively [35]. Therefore, (24) follows under the null a beta
distribution1 with parameters Np and N(L− p):

Λ1 ∼ Beta(Np,N(L− p)).

Remark 1 (The case p = 1): Specializing the GLR Λ1 in
(24) to p = 1, we have

Λ1 =
uHSu

tr(S)
=

µ1

tr(S)
, 0 ≤ Λ1 ≤ 1, (26)

which is invariant to right unitary transformation of the basis
vector u to the basis vector uq, with q unimodular. For the
GLR Λ2 the ML estimate of λ̂ in (21) when p = 1 can be
obtained in closed-form as

λ̂ =

{
LΛ1−1
1−Λ1

, 1/L < Λ1 ≤ 1,

0, 0 ≤ Λ1 ≤ 1/L.
(27)

1A random variable, r, is said to be beta-distributed with parameters α and
β, r ∼ Beta(α, β), if its probability density function is

p(r) =
Γ(α+ β)

Γ(α)Γ(β)
rα−1(1 − r)β−1, 0 ≤ r ≤ 1;

where Γ(x) is the Gamma function.

Plugging this estimate into (23), Λ2 can be expressed in terms
of Λ1 as

Λ2 =


1

L

(
1− 1

L

)L−1
1

Λ1 (1− Λ1)
L−1

, Λ1 >
1
L ,

1, Λ1 ≤ 1
L .

(28)

This shows that Λ2 is constant at 1 for 0 ≤ Λ1 ≤ 1/L, and
monotonically increasing from there to infinity for 1/L <
Λ1 ≤ 1. To compare Λ2 to a threshold of 1 would be to
always detect, and therefore to operate in the Northeast corner
of its ROC curve, where Pd = 1 = Pfa. Therefore every
decision threshold for Λ2 will be greater than 1 and for any
such threshold there will be a corresponding threshold for Λ1

that may be read off the monotone curve relating Λ2 to Λ1.
This makes the detectors Λ2 and Λ1 equivalent in the case of
a dimension-one subspace (p = 1).

Certainly, the equivalence between dimension-one GLR de-
tectors derived from first-order and second-order MVN models
seems to happen only for the case of spatially white noise. A
similar equivalence will not occur under other noise models
or in other scenarios. For example, it is shown in [36] that
when the noise has an arbitrary covariance matrix and there is
a set of noise-only training data available, the GLR detectors
for first-order and second-order models (or conditional and
unconditional models, as referred to in [36]) are different.

IV. DETECTORS FOR SIGNALS IN AN UNKNOWN SUBSPACE
OF KNOWN DIMENSION

A. GLR for a second-order measurement model

In this case, the covariance matrix UACxxA
HUH is

an unknown rank-p covariance matrix. The GLR for this
model when the noise variance is unknown is derived from
Anderson’s fundamental result [28] as reported in [2]

Ω2 =

(
tr(S)
L

)L
(
∏p
i=1 λi(S))

(∑L
i=p+1 λi(S)

L−p

)L−p , (29)

which is a ratio of determinants Ω2 = det(R̂0)

det(R̂1)
. The ML

estimate under the alternative hypothesis, R̂1, was derived by
Anderson in [28], and R̂0 = tr(S)

L IL is a standard result. The
test for dimension-one signals under a second-order MVN has
also been studied extensively in the cognitive radio literature
[17]–[19]. When p ≥ L − 1, the GLR in (29) reduces to the
well-known sphericity test [37]. The exact null distribution
for the sphericity test for the case of two sensors, L = 2, and
three sensors, L = 3, with an arbitrary number of samples N
can be found in [38] and [39], respectively. For L > 3, exact
null distributions are quite complicated expressions involving
the Meijer G-function and hence appear to be of limited
usefulness. Approximate expressions for the null distribution
of the sphericity test based on fitting some known moments
can be found in [40]. When p < L−1 closed-form expressions
for the null distribution are not known.

Other variants and generalizations of this result have ap-
peared in the literature. For example, the rank contrained ML
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estimate, R̂1, when the noise variance is known or when only
a lower bound on the noise power is available is obtained
by thresholding the eigenvalues of the sample covariance
matrix (29), as shown in [21]. When lower and upper bounds
on the noise level are available and additional persymmetric
constraints are enforced on the solution, the ML estimate of
the covariance matrix (or MAP estimate if a prior is also given
to R1) is derived in [27]. The corresponding GLRs can readily
be obtained from these ML estimates.

B. GLR for a first-order measurement model

In this case, only the dimension of the signal subspace is
known. The GLR is the extension of [8] reported in [9]:

Ω1 =

∑p
i=1 λi(ZZH)

tr(ZHZ)
,

1

L
≤ Ω1 ≤ 1, (30)

where λi(ZZH) denotes the ith eigenvalue of ZZH . This, too,
is a coherence detector, where a known subspace is replaced
by the span of the p dominant eigenvectors Fp of the sample
covariance matrix. That is, with ZZH = FΛFH , the detector
may be written

Ω1 =
tr(ZFpF

H
p ZH)

tr(ZHZ)
=

tr(ZPpZ
H)

tr(ZHZ)
, (31)

where the unitary slice Fp stands in for U, and Pp = FpF
H
p

stands in for PH. The numerator matches the sample covari-
ance matrix ZZH to an estimate of the sample covariance
matrix for a p-dimensional source of uncorrelated components,
each of common variance. This is only an interpretation, as
no such assumption is made in the derivation of the detector.

For the particular case of p = 1 and L = 2, the distribution
under the null of Ω1 = λ1(ZZH)/tr(ZHZ) has been derived
in [8] and is given by

f(Ω1|H0) = cΩN−2
1 (1− Ω1)

N−2
(2Ω1 − 1)

2
,

1

2
≤ Ω1 ≤ 1,

where c = Γ(2N)
Γ(N)Γ(N−1) . For other values of p and L closed-

form expressions for the null distribution of Ω1 are not known.
In the following remark, we prove that for dimension-one

signals, the tests derived from first-order and second-order
MVN models are equivalent. Thus, the distribution for L = 2
and first-order models can be used for second-order models.

Remark 2 (The case p = 1): For this case, the first-order
GLR, Ω1, is

Ω1 =
λ1(ZZH)

tr(ZHZ)
,

1

L
< Ω1 ≤ 1. (32)

The GLR Ω2 in (29) can be written in terms of Ω1 as

Ω2 =
1

L

(
1− 1

L

)L−1
1

Ω1 (1− Ω1)
L−1

.

This transformation is monotonically increasing in the interval
1/L < Ω1 ≤ 1, making both GLRs equivalent. Interestingly,
this transformation between Ω1 and Ω2 coincides with the
transformation between the GLRs Λ1 and Λ2 on the interval
1/L < Ω1 ≤ 1.

V. SIMULATION RESULTS AND PERFORMANCE
COMPARISONS

The second-order and first-order detectors of Section III
have been derived for the case where the subspace 〈H〉 is
known, which is to say a unitary basis U is known, but
the actual channel map H = UA is unknown. The second-
order and first-order detectors of Section IV have been derived
for the case where only the dimension of the subspace 〈H〉
is known. The question is, how do these detectors, which
are summarized in Table I, perform against measurements
Z = UAX + V?

The p×N signal matrix X is the signal or symbol matrix.
If X is a matrix of i.i.d. unit variance symbols, then the
covariance of the signal matrix is IN ⊗ UAAHUH . If X
is a draw from the Stiefel, then XXH = Ip. We favor these
two models, as they model independent sources. In one case
each source transmits a sequence of independent unit variance
symbols, and in the other case each transmits a unit power
sequence. The matrix A may be written A = FKGH , where
F is a p × p unitary matrix, K = diag(k1, . . . , kp), and
GH is a p × N unitary slice, so that the signal model is
(UF)K(GHX). For normal draws, the distributions of X
and GHX are identical; for Stiefel draws, X and GHX are
indistinguishable as draws from the Grassmannian. So signal
measurements are written as (UF)KX, with corresponding
covariance, if modeled stochastically, UFK2FHUH . It is as if
the signal or symbol matrix X is poured through the diagonal
scaling matrix K, which may also be viewed as the spectrum
of the covariance UFK2FHUH , into the unknown frame UF
for the subspace 〈U〉. This suggests that performance will be
determined by the profile of squared eigenvalues (k2

1, . . . , k
2
p).

A bulk measure of the eigenvalue spread is given by the
spectral flatness, defined as the ratio of the geometric over the
arithmetic mean of the eigenvalues k2

i :

η =

(∏p
i=1 k

2
i

)(1/p)
1
p

∑p
i=1 k

2
i

. (33)

The spectral flatness parameter in (33) takes values between
0 and 1. For η = 1 all eigenvalues are identical and the spec-
trum is maximally flat, while lower values of η are associated
to spectra with larger spreads. Note that the spectral flatness
is invariant to either a constant gain or to a permutation of the
k2
i . Admittedly, there is an infinity of profiles that produce

the same spectral flatness, and each profile determines its
own performance. Spectral flatness is merely a one-parameter
characterization of a profile.

In our simulations we use a profile

k2
i = a(i−1), i = 1, . . . , p, (34)

with spectral flatness

η =
a(p−1)/2(1− a)p

1− ap
, (35)

where 0 < a < 1 is a parameter chosen to get the desired
spectral flatness. That is, for each choice of the pair (p, η),
the value of a is determined from a line search on the interval
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Known subspace Unknown subspace of known dimension

First-order GLR Λ1 =
tr(ZHPHZ)

tr(ZHZ)
(derived in [31]) Ω1 =

∑p
i=1 λi(ZZH )

tr(ZHZ)
(derived in [9])

Second-order GLR Λ2 =
tr(S)L(

tr(S)−
∑p
i=1

λ̂iµi
λ̂i+1

)L∏p
i=1(λ̂i+1)

(derived in this work) Ω2 =

(
tr(S)
L

)L
(
∏p
i=1 λi(S))

(∑L
i=p+1

λi(S)

L−p

)L−p (derived in [2])

TABLE I: First-order and second-order detectors for known subspace and unknown subspace of known dimension.

0 < a < 1 for the solution to (35). With this simple one-
to-one map from the single parameter a to spectral flatness
η, spectral flatness uniquely determines the profile. Of course
this is not generally true, as noted above.

The proposed exponential profiles, while certainly not
unique to a given spectral flatness, allow us to gain insight
about the performances of the detectors based on first- and
second-order statistical models. Further, the power delay pro-
file in channel modeling is widely agreed to be an exponen-
tially decreasing function characterized by the delay spread.
Why parameterize by k2

i and not ki? Because the k2
i model

the power spectrum of the source, and it is the power spectrum
of the source that is the natural parameterization.

The input and output signal-to-noise ratios (SNR) are de-
fined as follows:

SNRin =10 log10

(
tr(K2)

Lσ2

)
SNRout = SNRin + 10 log10N.

We use the following simulation setup:
1) For given L, p,N and SNRin, we can wlog set σ2 = 1,

and solve for the required tr(K2):
p∑
i=1

k2
i = L 10SNRin/10.

2) We determine a in (35) for a given spectral flatness and
generate the corresponding profile of eigenvalues K2 =
diag(k2

1, . . . , k
2
p). These are then scaled to get the desired

SNRin.
3) In each realization we randomly generate a unitary basis

for the channel U. To this end, we generate an L × L
matrix B with i.i.d. CN (0, 1) entries, perform its QR
decomposition, B = QR, and then take U as the first
p columns of Q. According to the Bartlett Factorization
Theorem [41], U is drawn uniformly from the Stiefel
manifold. Of course, a single draw could have served
for all realizations, as the detectors are invariant to left
unitary transformations and the noise is white.

4) The signal matrix X may be a matrix with i.i.d. complex
normal entries, a random draw from the Siefel manifold
of p-dimensional frames in CN , or a matrix with i.i.d.
draws from discrete constellations. Performance is only
weakly dependent on the distribution of the entries of
X, provided these entries are i.i.d., as in independent
sources, each of which transmits a sequence of i.i.d.
symbols. Unless otherwise stated, we chose to generate
the signal matrix as X ∼ CNLN (0, IN ⊗ Ip).

5) Finally, the noise is generated as V ∼
CNLN (0, IN ⊗ IL) and the observations are

Z = UFKX + V, with F a randomly-drawn
p× p unitary matrix unknown to the receiver.

6) For those cases where the subspace is assumed known,
the randomly-generated U is given to the corresponding
detectors, Λ1 and Λ2. When only the dimension of
the subspace is assumed known, then the randomly-
generated U is unknown to the corresponding detectors,
Ω1 and Ω2.

A. Experiments for the case of known subspace

In this set of experiments the performances of the detectors
Λ2 and Λ1, derived in Sections III-A and III-B, respectively,
are simulated and compared for a variety of parameter choices
and signal-to-noise-ratios.

Experiment 1. In the first experiment we consider a sample-
rich scenario with L = 8 antennas and N = 64 snapshots
(N/L = 8). The input SNR is SNRin = −10 and the output
SNR is SNRout ≈ 8 dB). Fig. 1 shows the probability of
detection vs. the spectral flatness for a fixed Pfa = 10−2 and
different values of p. For dimension-one signals, the GLRs Λ1

and Λ2 provide the same performance as we proved in Remark
1. For higher dimension signals and low spectral flatness (or,
equivalently, the spread of the signal subspace eigenvalues is
large), the test Λ2 performs better than Λ1. For spectral flatness
values close to one, Λ1 perfoms better than Λ2. Interestingly,
the performance of the GLR test Λ1, derived from a first-order
model, is almost independent of the spectral flatness.

Experiment 2. In the second experiment, we consider a
sample-poor scenario with L = 32 antennas and N = 32
snapshots, so that N/L = 1. The SNRin = −14 (SNRout ≈ 1
dB) and the false alarm rate is fixed to Pfa = 10−2. In the
sample-poor regime the question of which detector performs
best depends again on the spectral flatness, as shown in Fig.2.
For sufficiently large eigenvalue spreads, a second-order model
outperforms a first-order model.

Experiment 3. In the third experiment, we evaluate the
probability of miss-detection vs. the number of snapshots,
N . The array has L = 20 sensors, the source dimension is
p = 5, and the input SNR is SNRin = −10 dB. Fig. 3
shows the results for two extreme values of the spectral flatness
parameter. When η = 0.96 (almost flat eigenvalue spectrum),
Λ1 outperforms Λ2; when η = 10−4 (eigenvalue spectrum
with a large spread), Λ2 outperforms Λ1.

Experiment 4. In the fourth experiment, we evaluate the
probability of miss-detection vs. the signal dimension p. The
array has L = 32 antennas and the number of snapshots is
N = 256 (N/L = 8). The input SNR is SNRin = −16dB
and the output SNR is SNRout ≈ 8 dB. Fig. 4 shows the
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Fig. 1: Large SNRout and rich sample support. Probability
of detection vs. η, for fixed L = 8, N = 64 (N/L = 8),
Pfa = 10−2 and SNRin = −10 dB (SNRout ≈ 8 dB).
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Fig. 2: Low SNRout and poor sample support. Probability
of detection vs. η, for fixed L = 32, N = 32 (N/L = 1),
Pfa = 10−2 and SNRin = −14 dB (SNRout ≈ 1 dB).

results for two extreme values of spectral flatness. When the
spectral flatness parameter is close to one, Λ1 outperforms Λ2

regardless of source rank. When the spectral flatness parameter
is η = 10−4, Λ2 outperforms Λ1 regardless of source rank.

B. Experiments for the case of unknown subspace of known
dimension

Here we consider the case where the subspace is unknown
but its dimension is known. To simplify the comparison
between the cases of known subspace and unknown subspace
of known dimension, we conduct experiments with similar
parameters as those used in Section V-A.

Experiment 5. In the fifth experiment we evaluate the
probability of detection vs. spectral flatness. The array has
L = 8 antennas, and N = 64 snapshots. The input SNR
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10−4

10−3

10−2

10−1

100

Number of snapshots (N)

P
ro

ba
bi

lit
y

of
m

is
s-

de
te

ct
io

n

Λ1 (η = 0.96)

Λ2 (η = 0.96)

Λ1 (η = 10−4)

Λ2 (η = 10−4)

Fig. 3: Moderate SNRout and variable sample support. Prob-
ability of miss-detection vs. N , for fixed L = 20, p = 5,
Pfa = 10−2, SNRin = −10 dB, and different values of η.
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Fig. 4: High SNRout and rich sample support. Probability of
miss-detection vs. p, for fixed L = 32, N = 256, Pfa = 10−2,
SNRin = −16 dB, and different values of η.

is SNRin = −8 dB and the output SNR is SNRout ≈ 10
dB. Fig. 5 shows the probability of detection vs. the spectral
flatness. When the source dimension is 1, Ω1 and Ω2 have
identical performances, as proved in Remark 2. When the
source dimension exceeds 1, Ω2 provides better perfomance
than Ω1 regardless of the spectral flatness. The performance
of both tests degrades when the spectral flatness is close to
one.

Experiment 6. In this experiment, we consider a sample-
poor scenario with L = 32 antennas, N = 32 snapshots
(N/L = 1). The input SNR is SNRin = −10 dB and the
output SNR is SNRout = 5 dB. The probability of detection
vs. η for different source dimensions is depicted in Fig. 6. For
all values of spectral flatness, the GLR Ω2 is slightly better
than the GLR Ω1, regardless of the source dimension. The
difference in perfomance between them is not as significant
as in the sample-rich scenario of Fig. 5.
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Fig. 5: High SNRout and rich sample support. Probability of
detection vs. η, for fixed L = 8, N = 64 (N/L = 8), Pfa =
10−2 and SNRin = −8 dB (SNRout ≈ 10 dB).
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Fig. 6: Moderate SNRout and poor sample support. Probability
of detection vs. η, for fixed L = 32, N = 32 (N/L = 1),
Pfa = 10−2 and SNRin = −10 dB (SNRout ≈ 5 dB).

Experiment 7. In this experiment, we consider a scenario
with L = 20 sensors and p = 5 sources. The input SNR
is SNRin = −8 dB. The number of snapshots is variable.
Fig. 7 shows the miss-detection probability vs. the number of
snapshots. The second-order GLR Ω2 outperforms the first-
order GLR Ω1. The improvement is small when the spectral
flatness is close to one, but it becomes more significant when
the spectral flatness is η = 10−4.

Experiment 8. In this experiment, we evaluate the probabil-
ity of miss-detection vs. the signal dimension p. The array has
L = 32 antennas and the number of snapshots is N = 256
(N/L = 8). The input SNR is SNRin = −14dB and the
output SNR is SNRout ≈ 10 dB. Fig. 8 shows the results
for two extreme values of spectral flatness. The GLR Ω2

outperforms Ω1 regardless of the source dimension and the
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Fig. 7: Variable SNRout and variable sample support. Prob-
ability of miss-detection vs. N , for fixed L = 20, p = 5,
Pfa = 10−2, SNRin = −8 dB, and different values of η.
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Fig. 8: High SNRout and rich sample support. Probability of
miss-detection vs. p, for fixed L = 32, N = 256, Pfa = 10−2,
SNRin = −14 dB, and different values of η.

spectral flatness. The benefit of Ω2 over Ω1 is insignificant
for η = 0.96, but significant for η = 10−4.

C. Known subspace detectors (Λ2, Λ1) vs. unknown subspace
detectors (Ω2, Ω1)

Experiment 9. In this experiment, we analyze the value of
knowing the subspace in which the source transmissions lie
versus knowing only its dimension. To this end, we compare
the performance of the detectors Λi (known subspace) vs.
the detectors Ωi (unknown subspace of known dimension).
The array has L = 16 sensors, the number of snapshots is
N = 64 (N/L = 4) and the number of sources is p = 4.
The input SNR is SNRin = −11dB and the output SNR is
SNRout ≈ 7 dB. Fig. 9 shows the probability of detection vs.
the spectral flatness for a fixed Pfa = 10−2. In this simulation
the assumed subspace for Λ2 and Λ1 is matched to the actual
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Fig. 9: Large SNRout and rich sample support. Probability of
detection vs. η, for fixed L = 16, N = 64 (N/L = 4), p = 4,
Pfa = 10−2 and SNRin = −11 dB (SNRout ≈ 7 dB).

signal subspace, so this simulation demonstrates the value of
exploiting subspace knowledge when it is available. We do
not present simulation results for the case where the assumed
subspace is mismatched to the actual signal subspace, as in
this case the performance of the known-subspace detectors
can be arbitrarily bad. So the detector that assumes only
known dimension is always the robust alternative if subspace
knowledge is not trustworthy.

D. Performance comparison for different distributions of X

Experiment 10. So far all the experiments have been
performed with source signals generated as random matrices of
i.i.d. complex normals. This experiment demonstrates the very
weak dependence of detector perfomance on the distribution
of the signal matrix X. To this end, we consider a scenario
with L = 16 antennas, p = 4 sources and N = 64 snapshots.
The 4 × 64 source matrix, X, is generated according to one
of the following distributions:

• A random matrix of i.i.d. complex normals, CN (0, 1).
• A draw from the Stiefel manifold of p-dimensional

frames in CN . The draws are uniform with respect to
the Haar measure on the manifold.

• A random matrix of i.i.d. unit-norm quadrature phase
shift keyed (QPSK) symbols.

Fig. 10 shows the probability of detection vs. the spectral
flatness for a fixed Pfa = 10−2 when the subspace is known
(detectors Λ1 and Λ2), while Fig. 11 shows the results when
only the dimension of the subspace is known (detectors Ω1

and Ω2). For all four detectors, the performance depends only
weakly on the univariate distribution of the elements of X. One
explanation for this behavior could be that all detectors use
second-order statistics (in fact, eigenvalues) in their designs
and implementations. And these second-order statistics are
relatively invariant to the univariate distribution of elements
of X.
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Fig. 10: Performance of detectors Λ1 and Λ2 for different
distribution of the source signal X. The scenario has fixed
L = 16, N = 64 (N/L = 4), p = 4, Pfa = 10−2 and
SNRin = −11 dB (SNRout ≈ 7 dB).
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Fig. 11: Performance of detectors Ω1 and Ω2 for different
distribution of the source signal X. The scenario has fixed
L = 16, N = 64 (N/L = 4), p = 4, Pfa = 10−2 and
SNRin = −10 dB (SNRout ≈ 8 dB).

VI. CONCLUSIONS

In this paper we have studied the problem of detecting
a subspace signal from multiple snapshots in a multi-sensor
array. Each snapshot consists of a subspace signal plus additive
Gaussian noise. The covariance of the noise is known, up to
unknown scale. There are two models for the subspace signal:
the subspace may be known or only its dimension may be
known. To say the subspace is known is to say a basis U for
the subspace 〈H〉 is known, but not the actual channel map
H = UA. To say only the subspace dimension is known is
to say that only the dimension of the subspace 〈H〉 is known.

There are two statistical models for the measurements: in
a first-order model, the subspace signal appears in the mean-
value vector of a multivariate normal measurement and the
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additive noise variance determines its covariance matrix; in
a second-order model, the covariance of the subspace signal
adds to the covariance of the additive noise to make the covari-
ance matrix of a multivariate normal measurement. Thus, there
are four variations on the detection problem: known subspace
and first-order statistical model; known subspace and second-
order statistical model; known subspace dimension (only) and
first-order statistical model; and known subspace dimension
(only) and second-order statistical model. For three of these
models the GLR detectors are known, and they have been
reported in the literature. But for a known subspace and a
second-order model for the measurements, the GLR is derived,
we believe for the first time, in this paper. This is our first
original result.

All four detectors are scale-invariant, as we insist they must
be when the additive noise variance is unknown. It is shown
that for a dimension-1 source radiating or transmitting to a
multi-sensor array, the GLR based on a first-order statistical
model is equivalent to the GLR based on a second-order
statistical model. That is, each is a monotone function of the
other, and there can be no difference in performance. This
equivalence holds for the case where the subspace is known
and for the case where only the subspace dimension is known.
This is our second original result.

Our experimental findings are based on a one-parameter
spectral profile that is determined by the one-parameter spec-
tral flatness. When the channel subspace is known, the perfor-
mance of the GLR based on a second-order statistical model
depends significantly on the spread of the signal subspace
eigenvalues. The performance of the detector based on a
first-order model, however, does not depend much on the
eigenvalue spread. For large eigenvalue spreads, the GLR
based on a second order statistical model outperforms the GLR
based on a first-order statistical model. For small eigenvalue
spreads, the GLR based on a first-order statistical model
outperforms the GLR based on a second-order model.

For the case where only the subspace dimension is known,
the GLR based on a second-order statistical model outperforms
the GLR based on a first-order statistical model, regardless of
the eigenvalue spread, and for all choices of the parameters
(L, p,N,SNR). This claim is consistent with the findings of
[9], based on their experiments. Depending upon the eigen-
value spread and the ratio of sensors to sources the difference
in performance may be significant or it may be negligible.

There remains the question of model mismatch. In first-
order models, no assumption is made about the spacetime
signal sequence. It may be stationary in time or transient. In the
second-order model it is assumed stationary. So if the signal
sequence is transient, it is expected that the performance of
the second-order detector will degrade, whereas the first-order
detector will not. This issue remains to be explored.
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