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Abstract—In this paper, we propose an algorithm for design-
ing unstructured Grassmannian constellations for noncoherent
multiple-input multiple-output (MIMO) communications over
Rayleigh block-fading channels. Unlike the majority of existing
unitary space-time or Grassmannian constellations, which are
typically designed to maximize the minimum distance between
codewords, in this work we employ the asymptotic pairwise error
probability (PEP) union bound (UB) of the constellation as the
design criterion. In addition, the proposed criterion allows the de-
sign of MIMO Grassmannian constellations specifically optimized
for a given number of receiving antennas. A rigorous derivation
of the gradient of the asymptotic UB on a Cartesian product
of Grassmann manifolds, is the main technical ingredient of the
proposed gradient descent algorithm. A simple modification of
the proposed cost function, which weighs each pairwise error
term in the UB according to the Hamming distance between
the binary labels assigned to the respective codewords, allows
us to jointly solve the constellation design and the bit labeling
problem. Our simulation results show that the constellations
designed with the proposed method outperform other structured
and unstructured Grassmannian designs in terms of symbol
error rate (SER) and bit error rate (BER), for a wide range
of scenarios.

Index Terms—Noncoherent communications, MIMO commu-
nications, Grassmannian constellations, pairwise error probabil-
ity (PEP), union bound (UB), bit-labeling.

I. INTRODUCTION

IN multiple-input multiple-output (MIMO) communications
systems, the channel state information (CSI) is typically

estimated at the receiver side by sending a few known pilots
and then used for decoding at the receiver and/or for precoding
at the transmitter. These are known as coherent schemes.
When the channel remains approximately constant over a long
coherence time (slowly fading scenarios), the channel capacity
for coherent MIMO systems is known to increase linearly
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with the minimum number of transmit and receive antennas
at high signal-to-noise (SNR) ratios [1], [2]. In fast fading
scenarios, however, to obtain an accurate channel estimate
would require pilots to occupy a disproportionate fraction of
communication resources. Even in slowly-varying channels,
CSI acquisition by orthogonal pilot-based schemes can result
in significant overheads in massive MIMO systems [3], and
the performance of coherent massive MIMO systems can be
degraded by channel aging [4]. These scenarios motivate the
use of noncoherent MIMO communications schemes in which
neither the transmitter nor the receiver have any knowledge
about the instantaneous CSI (although they might have some
knowledge about the statistical or long-term CSI such as its
fading distribution).

We consider in this work a block-fading model in which the
MIMO channel matrix with M transmit and N receive anten-
nas remains constant during a T -symbol coherence interval,
after which it changes to a new independent realization for an-
other T symbols. Under additive Gaussian noise, it was proved
by Hochwald and Marzetta [5], [6] that the T × M space-
time transmit matrices that achieve the ergodic noncoherent
capacity for this channel model can be factored as the product
of an isotropically distributed T × M unitary matrix and a
diagonal M×M matrix with real nonnegative entries. Further,
when T >> M the nonzero entries of the diagonal matrix take
the same value, showing that in this regime it is optimal to
transmit unitary space time codewords XHX = IM . Using the
same signal model, Zheng and Tse proved that at high SNR
and when T ≥ 2M , ergodic capacity can be achieved by trans-
mitting isotropically distributed unitary matrices. The pre-log
factor in the high-SNR capacity expression is M∗(1−M∗/T ),
where M∗ = min{M,N} is the minimum between the
transmit and receive number of antennas. This result shows
that despite the absence of instantaneous CSI at the receiver,
noncoherent MIMO communication systems can achieve a
significant fraction of the coherent capacity at high SNR.
Moreover, the noncoherent multiplexing gain approaches the
coherent multiplexing gain as T → ∞. Under the assumption
of equal-energy signals, it is also shown in [7] that unitary
space-time matrices also minimize the asymptotic union bound
on the error probability. Therefore, the use of unitary space-
time constellations in noncoherent MIMO communications is
well justified.

In noncoherent MIMO communication systems information
is carried by the column span of the transmitted T×M matrix,
X, which is not affected by the MIMO channel H. In other
words, the column span of X is identical to the column space
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of XH. The problem of designing noncoherent codebooks
formed by unitary space-time matrices thus becomes equiva-
lent to finding optimal (according to some appropriate distance
or metric) packings in Grassmann manifolds [8], [9]. While at
high SNR, or for codebooks of very high cardinality, the use
of random codebooks (with codewords generated by uniformly
sampling the Grassmann manifold) is essentially optimal, this
is not the case for constellations of moderate cardinality, or
at moderate SNRs. For this reason, there has been extensive
research on the design of noncoherent constellations as opti-
mal packings on the Grassmann manifold [10]–[15]. Existing
constellation designs can be generically categorized into two
groups: structured or unstructured. Structured designs impose
some kind of structure on the constellation points through
parameterized mappings such as the Exp-Map design in [12],
algebraic constructions such as the Fourier-based constellation
in [16], structured partitions of the Grassmannian like the
recently proposed Cube-Split constellation [13], or designs
based on group representations [17], [18]. Structured designs
may simplify either codeword generation/storage or detection,
but the packing efficiency is lower than that achieved by
unstructured codes, which in turn translates into poorer perfor-
mance in terms of symbol error rate (SER). Since our goal is
to design quasi-optimal constellations in terms of SER/BER,
in this paper we focus on unstructured constellations designed
through numerical optimization methods.

Among the unstructured designs we can mention the alter-
nating projection method [14], which enforces in each iteration
both structural and spectral properties of the Gram matrix
formed by the inner products between codewords, as well as
the numerical methods in [10], [11], which minimize certain
distance measures on the Grassmannian. For example, [10]
employs as a suitable distance metric the chordal distance
between subspaces, while [11] uses the spectral distance (the
cosine square of the minimum principal angle). The method
proposed in [10] is computationally costly because it works
on a Grassmann manifold whose dimension grows with the
number of constellation points. All these methods ultimately
aim at maximizing the minimum distance between codewords,
usually using the chordal distance as a suitable metric. As
shown in [19], however, the chordal distance is related to the
pairwise error probability only at low SNR. The criterion that
emerges from the PEP analysis at high SNR is the so-called
diversity product [19], which is the product of the squared
sines of the principal angles between subspaces, while the
squared chordal distance is the sum of the squared sines.
In addition, as it has been shown in [20], maximizing the
minimum chordal distance does not guarantee obtaining full-
diversity codes when M > 1. That is, it is not guaranteed
that the M -dimensional subspaces designed according to the
chordal distance do not intersect each other. These reasons
make the diversity product criterion, also called coherence
criterion, in [19] more appropriate for designing Grassmannian
constellations. A method for designing Grassmannian constel-
lations according to the diversity product criterion has been
recently proposed in [21].

A second drawback of the existing design criteria is that
most of them optimize only for the worst case error. Although

this may be a reasonable approximation at high SNR, multiple
experiments show that at low or moderate SNRs there are
several pairs of codewords that contribute to the SER, not just
the two closest codewords. To achieve better SER performance
a more appropriate optimization criterion is the (asymptotic)
union bound (UB), which is a sum of diversity products
between pairs of codewords. To the best of our knowledge,
the only work that has considered a metric based on UB
as a design criterion for noncoherent constellations is the
method proposed by McCloud, Brehler and Varanasi in [20].
This method, however, relies on an overparametrization of the
Grassmann manifold which incurs a higher computational cost
and causes a loss of effectiveness due to optimizing over higher
dimensional spaces than necessary.

In this paper, we present a gradient descent algorithm for
minimizing the UB that operates directly on a product of
Grassmann manifolds. The main contributions are summarized
as follows:

• We revisit the calculation of the PEP in non-coherent
communications, deriving an exact formula for the PEP
that can be easily evaluated by means of an integral.
The limit of the integral when the SNR tends to infinity
provides an asymptotic PEP expression that coincides
with the expression originally obtained by Brehler and
Varanasi in [7]. Nevertheless, our proof technique is
different from that of [7].

• We propose a Grassmannian constellation design cri-
terion based on the asymptotic union bound on the
error probability. The method applies a gradient descent
technique on a Cartesian product of Grassmann manifolds
and is particularly effective for designing Grassmannian
constellations of relatively small cardinality (signal con-
stellations with up to 2048 codewords can be designed in
a few minutes).

• Unlike existing methods, the proposed UB cost function,
and consequently the constellation obtained, depend not
only on the coherence time T and the number of transmit
antennas M , but also on the number of receive antennas
N . In noncoherent massive MIMO systems, for instance,
using unitary space-time codes specifically designed for a
given number of receive antennas may have a significant
impact.

• By weighting the pairwise UB terms according to the
Hamming distance between the binary labels assigned to
the respective codewords, the proposed method jointly
solves the constellation design and bit labeling problem
with excellent performance at no extra cost.

• We verify by simulations that the proposed UB Grass-
mannian constellations outperform existing unstructured
and structured Grassmannian constellations in terms of
symbol and bit error probability in a variety of scenarios.

The remainder of this paper is organized as follows. The
system model is presented in Section II. In Section III we
first revisit the PEP analysis for noncoherent multiantenna
systems following a proof technique that is different from
those employed in the foundational works of Hochwald and
Marzetta [6], and Brehler and Varanasi [7]. Then, we describe



CUEVAS et al: UNION BOUND MINIMIZATION APPROACH FOR DESIGNING GRASSMANNIAN CONSTELLATIONS 3

our codebook design and provide the mathematical details for
the computation of the gradient of the UB cost function on the
Grassmann manifold. We next propose a joint constellation de-
sign and bit labeling scheme in Section IV. A comprehensive
set of numerical simulation results to assess the performance of
the proposed method in terms of symbol and bit error rates is
provided in Section V. Finally, Section VI concludes the paper.
In addition, the paper contains a set of appendices describing
required background material on the Grassmann and Stiefel
manifolds as well as the proofs of the mathematical results.

Notation: In this paper, matrices are denoted by bold-faced
upper case letters, column vectors are denoted by bold-faced
lower case letters, and scalars are denoted by light-faced lower
case letters, e.g., a matrix M, a vector v, and a scalar s. The
superscripts (·)T and (·)H denote transpose and Hermitian
conjugate, respectively. The trace and determinant of a matrix
A will be denoted, respectively, as tr(A) and det(A), and In
denotes the identity matrix of size n. A complex Gaussian
vector in Cn with zero mean and covariance matrix R is
denoted as x ∼ CNn(0,R). The factorial of a non-negative
integer n is denoted n! Let us also recall that Γ(n+ 1) = n!,
where Γ is the gamma function. The double factorial of a
number n, denoted as n!!, is the product of all integers from 1
to n that have the same parity (odd or even) as n. For instance,
for n odd, n!! = n(n−2)(n−4) · · · 3·1. The Frobenius norm of
a matrix A is ∥A∥F , its associated Hermitian inner product is
⟨·, ·⟩F , so that for two matrices A,B of the same size we have
∥A∥2F = ⟨A,A⟩F = tr(AHA). As usual, ℜ(z) = (z+ z∗)/2
is the real part of a complex z ∈ C whose conjugate number
is denoted z∗. The complex Grassmann manifold of M -
dimensional subspaces of the T -dimensional complex vector
space CT is denoted as G(M,CT ) and the complex Stiefel
manifold of unitary M -frames in CT is denoted as St(M,CT ).
Points in the Grassmannian are denoted as [A], where A is
a unitary basis for that subspace, and PA = AAH denotes
the orthogonal projection onto [A]. Some background material
about the Stiefel and Grassmann manifolds, which is needed
for the paper, is relegated to Appendix A.

II. SYSTEM MODEL

A. System Model

We consider a noncoherent MIMO communication system
in which a transmitter with M antennas transmits to a receiver
equipped with N antennas over a frequency-flat block-fading
channel with coherence time T symbol periods, with T ≥ 2M .
That is, the channel matrix H ∈ CM×N remains constant
during each coherence block of T symbols, and changes to an
independent realization in the next block. The MIMO channel
H is assumed to be Rayleigh with entries hij ∼ CN (0, 1)
and unknown to both the transmitter and the receiver.

Within a coherence block, the transmitter sends a unitary
matrix X ∈ CT×M , XHX = IM , that is a basis for the
subspace [X] ∈ G

(
M,CT

)
. The transmitted unitary matrices

are sampled uniformly from a codebook C = {X1, . . . ,XK}
of size K that here is assumed to be unstructured. For a given
transmission rate R (in b/s/Hz), the codebook is composed of
K = 2RT unitary matrices.

The signal at the receiver Y ∈ CT×N is

Y = XH+

√
M

Tρ
W, (1)

where W ∈ CT×N represents the additive Gaussian noise,
modeled as wij ∼ CN (0, 1), and ρ represents the signal-to-
noise-ratio (SNR).

Assuming equiprobable codewords, the optimal Maximum
Likelihood (ML) detector that minimizes the probability of
error is

X̂ = argmax
X∈C

tr
(
YHPXY

)
. (2)

where PX = XXH is the projection matrix onto the subspace
[X]. Each codeword carries log2(K) = RT bits of informa-
tion.

III. UNION BOUND CRITERION

A. PEP Analysis

Existing criteria for the design of unstructured Grass-
mannian constellations arise from and are motivated by the
asymptotic analysis of the pairwise error probability (PEP)
Pe(Xi,Xj) (probability of mistaking Xi for Xj when the
optimal decoder is applied). The PEP analysis performed
below follows a somewhat different, perhaps simpler, proof
technique than that employed in the classic works [6], [7], so
it may be of independent interest. The final asymptotic PEP
expression and the conclusions obviously are the same.

Suppose that two T ×M unitary space-time codewords Xi

and Xj are transmitted with equal probability and decoded
with an ML receiver. Then, the pairwise error probability
(PEP) is [6]

Pe(Xi,Xj) =

m∑
n=1

Resw=jan

(
−1

w + j/2

·
M∏

m=1

(
1 + ρT/M

(ρT/M)2(1− d2m)(w2 + a2m)

)N
)
, (3)

where Res is the residue, 1 ≥ d1 ≥ . . . ≥ dM ≥ 0 are
the singular values of the M × M matrix Cij = XH

i Xj

(equivalently, they are the cosines of the principal angles
between the subspaces), and am is given by

a2m =
1

4
+

1 + ρT/M

(ρT/M)2(1− d2m)
. (4)

We assume in (3) that all dm are different from 1, which
is needed for any full-diversity unitary space-time code. This
is the expression in [6, (B.9)] (see also [7]). In [6], the
authors took the real part of (3) and applied the Chernoff
bound to get an upper bound for the pairwise error probability.
In [7] the authors perform the integration in the complex
plane and derived tight asymptotic expressions for the case
ρ → ∞. Here, we first present an alternative expression for the
Pe(Xi,Xj) that is more amenable to numerical optimization.
Further, this alternative expression allows us to derive in a
simple way a high-SNR approximation for the PEP.
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Theorem 1 The following equality holds:

Pe(Xi,Xj) =
1

π

∫ π/2

0

M∏
m=1

 1

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N

dθ.

(5)

Proof: The proof is given in Appendix B.

Corollary 1 The slope of (5) for large ρ, which is related to
the diversity gain of the code, is

lim
ρ→∞

d logPe(Xi,Xj)

d log ρ
= −ND, (6)

where D is the number of singular values of the M ×M matrix
XH

i Xj that are different from 1.

Proof: The proof is given in Appendix C.
The parameter D in Corollary 1 may well be called the
diversity of the pair of codewords. It was shown in [8] that
given a coherence time T , the degrees of freedom increase
with M up to M = T/2 which is optimal.

Therefore we restrict our codebook constructions to the case
M ≤ T/2. Further, we restrict our analysis to full diversity
codes for which D = M ≤ T/2 in (6).

Corollary 2 The pairwise error probability satisfies as ρ →
∞:

Pe(Xi,Xj) ∼ ρ−NM 1

2

(
4M

T

)NM

·

(
1∏M

m=1(1− d2m)

)N
(2NM − 1)!!

(2NM)!!
, (7)

where we have assumed a full diversity code with M ≤ T/2 for
which the number of singular values of XH

i Xj that are different
from 1 is exactly M . The precise meaning of ∼ in (7) is:

lim
ρ→∞

[ρNMPe(Xi,Xj)]

=
1

2

(
4M

T

)NM
(

1∏M
m=1(1− d2m)

)N
(2NM − 1)!!

(2NM)!!

= C. (8)

That is to say, logPe(Xi,Xj) ≈ logC −NM log ρ. Hence,
in order to minimize the probability of error for large ρ one
must maximize

M∏
m=1

(1− d2m) = det
(
IM −XH

i XjX
H
j Xi

)
. (9)

Proof: The proof is given in Appendix C.
The result in Corollary 2 is the same as the result in [7]. The

design criterion that emerges from the high-SNR analysis of
the PEP is the maximization of the so-called diversity product
defined in [19] as

DP = min
i ̸=j

det
(
IM −XH

i XjX
H
j Xi

)
. (10)

B. Union Bound Minimization

We have seen in the previous subsection that the criterion
for minimizing the PEP at high SNR must be to mini-
mize the coherence between the transmitted subspaces. Since
an unstructured codebook with K codewords may produce
K(K − 1)/2 distinct PEPs, it is customary to simplify the
problem and consider only the minimization of the worst PEP.
This simplification is supported by the fact that when the SNR
grows, the worst PEP dominates the behavior of the SER
curve which, ultimately, is the figure of merit to be optimized.
Although this simplification is in general reasonable, some
considerations can be made. For the additive white Gaussian
channel (AWGN), the asymptotic behavior of the PEP with
the SNR is proportional to the Gaussian Q-function, whose
argument depends only on the minimum Euclidean distance
between symbols and the SNR [22]. In this case, the exponen-
tial decrease of the Q-function with the SNR makes the worst
case asymptotic PEP an asymptotically tight lower bound
of the SER. For block-fading Rayleigh channels, such as
those considered in this work, the PEP decreases polynomially
(not exponentially) with the SNR (cf. (7)). This makes that
considering only the worst case probability provides a looser
asymptotic SNR bound for block-fading Rayleigh channels.
Therefore, for Rayleigh block-fading channels and for the
practical SNRs at which communications systems operate, it
may be appropriate to consider other codeword pairs (not
just the worst one) that contribute to the SER. One of the
contributions of this work is precisely to consider the PEP
union bound, which takes into account all codeword pairs, as
the cost function to be optimized.

We show in this work that, for moderate cardinality constel-
lations, it is possible to consider the PEP union bound, which
takes into account all codeword pairs, as the cost function to
be optimized. The symbol error probability for equiprobable
symbols can be bounded by

Pe ≤
1

K

K∑
i=1

K∑
j=i+1

Pe (Xi,Xj) , (11)

where Pe (Xi,Xj) is the asymptotic PEP in (7). The right
hand side in (11) is the union bound (UB). From Corollary 2,
at high-SNR the UB is, up to a constant,

UB(X1, . . . ,XK) =
∑
i<j

det
(
IM −XH

i XjX
H
j Xi

)−N
,

(12)
which is the function we seek to minimize in this work.
Specifically, the optimization problem is

argmin
X1,...,XK

∑
i<j

det
(
IM −XH

i XjX
H
j Xi

)−N
. (13)

It is interesting to note that unlike the diversity product (DP)
criterion in (10), now the number of receive antennas N ap-
pears explicitly in the UB criterion (13). It is clear that for the
DP criterion maximizing mini̸=j (det(IM −XH

i XjX
H
j Xi))

N

is equivalent to maximizing mini ̸=j det(IM−XH
i XjX

H
j Xi),

so the number of receive antennas plays no role in the
optimization. The situation is different with the UB criterion,
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for which there will be different optimal codebooks for each
set of values (T,M,N,K).

Clearly, the complexity of the UB criterion grows with the
number of codewords K since the number of terms in (13) is
K(K − 1)/2. Despite this difficulty, it is both of theoretical
and practical interest to use the design criterion that best
characterizes the SER, which is the actual figure of merit
for communications. Notice also that the constellations can be
designed offline with sufficient computational resources and,
once they have been designed, the encoding and decoding have
the same complexity as for any other unstructured design.

The UB criterion was already considered in [20], where
an algorithm is suggested to generate codebooks attaining
low values of UB. However, the method in [20] relies on
an overparametrization of the Grassmannian, which implies
high computational cost and a loss of efficiency. Moreover,
the iterative method in [20] is a greedy suboptimal approach,
which at each step adds a new codeword to a previously
optimized constellation of smaller size. This suboptimal ap-
proach is termed in [20] successive updates. Different from
this proposal, we propose a gradient descent approach that
operates directly on the manifold, thus eliminating the need
of extra parameters associated to the overparametrization used
in [20].

The essential technical aspect of the algorithm is the calcu-
lation of the gradient of

UB(X1, . . . ,XK) =
∑
i<j

det
(
IM −XH

i XjX
H
j Xi

)−N

=
∑
i<j

det
(
IM −XH

j XiX
H
i Xj

)−N
,

(14)

in the tangent space. We have the following lemma:

Lemma 3 The gradient of the function UB defined in (12)
(seen as a function defined in G(M,CT ) × · · · × G(M,CT ),
K-times product), at any fixed [X1], . . . , [XK ], is a vector
∇UB([X1], . . . , [XK ]) = (Ẋ1, . . . , ẊK), where each Ẋi ∈
T[Xi]G(M,CT ) is given by:

Ẋi = (IT −XiX
H
i )
∑
j ̸=i

2N det(IM −XH
j XiX

H
i Xj)

−N

·Xj(IM −XH
j XiX

H
i Xj)

−1XH
j Xi. (15)

Proof: The proof is given in Appendix D.

C. Algorithm Implementation
We propose a gradient descent algorithm to minimize the

UB on the Grassmann manifold that, at each iteration, per-
forms the following steps:

1) Compute the gradient ∇UB(X1, . . . ,XK) =
(Ẋ1, . . . , ẊK) using (15), and its norm
||∇UB(X1, . . . ,XK)||1 =

∑
i ||Ẋi||F .

2) Move each Xk a certain amount, defined by the step-size
µ, in the direction of maximally decreasing UB defined
by the gradient

X̃k = Xk − µ
Ẋk∑

i ||Ẋi||F
. (16)

3) Retract X̃k to the manifold by computing the Q factor
in its reduced QR decomposition, which will be the new
Xk.

An important aspect of the proposed algorithm is that the
value of µ is adapted using a line-search procedure to speed up
convergence. The rate at which we change µ is controlled by
a parameter α ∈ [1, 1.1]. After every iteration, if the algorithm
does not improve the UB of the codebook, µ is decreased as
µ = µ/α. Otherwise, if there is an improvement, µ is increased
as µ = µ · α. The proposed algorithm uses three stopping
criteria: a maximum number of iterations, a minimum value
of the stepsize µ and a minimum improvement of the value
of the UB.

D. Complexity Analysis
In this subsection, we provide an in-depth complexity anal-

ysis of the proposed algorithm and a comparison with other
existing techniques.

Each gradient descent step of the proposed method requires
the computation of: the objective function given in 12, the
Riemannian gradient defined in Lemma 3, its norm, and
the retraction to the manifold. The operations of computing
UB(X1, . . . ,XK) are three matrix multiplications, one deter-
minant, and the summation over all pairs of codewords. This
yields a complexity order of O

(
K2
(
M3 + 3TM2

))
. The

operations for computing ∇UB(X1, . . . ,XK) are six matrix
multiplications, one determinant, one matrix inversion, and the
summation over all pairs of codewords, which results in a
complexity order of O

(
K2
(
3M3 + 5TM2

))
. The order of

computing ||∇UB||1 is O
(
K
(
T 2M2

))
. Finally, the complex-

ity of the QR decomposition for the retraction to the manifold
is O

(
KT 2M

)
, which can be neglected. In summary, the total

complexity order of each iteration of the proposed UB-Opt
algorithm is O

(
K2
(
4M3 + 8TM2

)
+K

(
T 2M2

))
.

On the other hand, the computational complexity of the
alternating projection method [14] requires in each iteration
an SVD of a KM × KM matrix, which results in an order
of complexity of O

(
K3M3

)
. We can see that the order of

complexity for this algorithm is at least a monomial of degree
six in the constellation parameters, being greater than the
leading order of our algorithm, which is five. The GMO-
Chordal algorithm needs to compute in each iteration the
objective function (chordal distance) for all codeword pairs, its
gradient for the closest pair of codewords, and the retraction to
the Grassmann manifold. The objective function for all pairs of
codewords yields a leading complexity order of O

(
K2TM2

)
,

the gradient results in an order of O
(
4KT 2M

)
, and the

retraction requires O
(
KT 2M

)
. The total leading order of

complexity of GMO-Chordal is then O
(
K2TM2

)
. Thus, the

leading order of complexity of this algorithm is the same as
the one for the proposed UB-Opt method. However, the latter
performs a higher number of operations of complexity order
five, which shall be justified by its performance advantage
shown in Section V.

IV. BIT-LABELING

An important practical aspect for the use of non-coherent
communications based on Grassmannian constellations is the
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design of the bit-to-symbol mapping method. That is, it is
necessary to assign a binary label to each point in the constel-
lation. The idea is that constellation points with small distance,
or large PEP, are given binary labels with small Hamming
distance. In coherent communications with standard constel-
lations carved on a regular lattice (e.g., 16-QAM), the optimal
-in the sense of minimizing the average bit error rate (BER)
probability- bit-to-symbol mapping or labeling scheme is the
well-known Gray mapping. This optimal labeling ensures that
adjacent constellation points will only differ in one bit, so in
the most likely case of mistaking a symbol with its closest
one only one bit will be wrong. However, binary labeling
of points in a Grassmannian constellation is a notoriously
more difficult problem, especially in the case of unstructured
constellations. For structured constellations, it is sometimes
possible to find an optimal Gray-like labeling scheme, see for
instance [23] [15]. For other structured codes, like the Reed-
Muller Grassmannian constellations [24], quasi-Gray labeling
schemes have been recently proposed [25]. For unstructured
Grassmannian constellations, the number of symbol neighbors
is usually larger than the number of binary labels, so Gray
labeling is not possible. When Gray labeling is not possible,
finding the optimal labeling for a given constellation C of
cardinality K would require defining a cost function (such
as the average bit error rate) and performing an exhaustive
search over K! different labelings. Therefore, one typically
resorts to suboptimal labeling schemes [26] [27] [28]. All
these suboptimal schemes decouple the problem of designing
a good constellation from the binary labeling problem. An
important advantage of the proposed method is that the UB
cost function can be modified in a simple manner to jointly
solve the constellation design and the bit-to-symbol optimal
mapping problems.

Without loss of generality, a random constellation
X0, . . . ,XK−1 has a natural labeling given by the log2(K)
bits specifying the indices 0, . . . ,K − 1 in binary code. The
idea is to fix this natural labeling and then introduce weights
in the UB function proportional to the Hamming distance
between two given codewords. In this way, two codewords
that differ by more bits will be more weighted in the cost
function and will therefore end up being farther apart after
the optimization process than two codewords with smaller
Hamming distance.

It is therefore natural to consider that every pairwise term in
the union bound error should be weighed by nij , the difference
in bits of the labels of the pair Xi, Xj . Since these numbers
are small, i.e. 1 ≤ nij ≤ log2(K), and each term of the union
bound sum can be orders of magnitude larger, we propose
using the squared bit-differences as weights:

UBw(X1, . . . ,XK) =
∑
i<j

n2
ij ·det

(
IM −XH

i XjX
H
j Xi

)−N
.

(17)
Since the bit labeling is fixed, these numbers are constants
and the BER optimization algorithm simply uses the gradient
of Eq. (15) weighed by these coefficients. The modifications
that need to be made to jointly solve the constellation design
problem and the labeling problem are therefore minor. We

will confirm in the results section that this modification
indeed makes a significant impact in the BER performance of
constellations optimized using the so-called bit-weighed union
bound criterion UBw.

V. PERFORMANCE EVALUATION

We evaluate numerically the performance of our proposed
UB-Opt designs in comparison with other Grassmannian con-
stellations and a coherent pilot-based scheme. The Riemannian
optimization of the UB performed on the manifold is directly
implemented in Matlab without resorting to any existing third-
party optimization toolbox.

A. SER performance of the UB minimization criterion

In this subsection, we analyze the SER performance of the
UB-based constellation design (labeled as UB-Opt in the fig-
ures), and we compare it to other unstructured and structured
Grassmannian constellations that appear in the literature.

First, we check that the asymptotic PEP UB is an accu-
rate approximation of the SER at high SNR. Fig. 1a shows
the analytical expression of the PEP in (5), the high-SNR
asymptotic expression in (7), and the simulated PEP estimated
via Monte Carlo for two randomly selected codewords from
a constellation of 256 codewords for T = 4, M = 2 and
N = 1. Fig. 1a shows that the high-SNR asymptote perfectly
fits the theoretical and simulated curves (which are almost
indistinguishable) for SNRs higher than 25 dB. The high-SNR
pairwise error probability expression can be used to obtain
the UB (see Fig. 1b). This is an easy way to have an upper
bound on the high-SNR behavior of any code or constellation,
avoiding the need of time-consuming Monte Carlo simulation.

Secondly, we study the influence of the number of receive
antennas N on the SER performance of the UB criterion.
Recall that unlike other design criteria proposed in the lit-
erature, the number of receive antennas appears explicitly
in the UB design criterion (cf. (13)). Therefore, there will
be optimal codebooks for each set of values (T,M,N,K).
Fig. 2 shows the SER union bound (analytical result) for a
MIMO system with M = 2 transmit antennas and different
number of receive antennas N = {3, 4, 5}. The coherence
time is T = 4 and the constellation size is K = 64. For
each pair of curves in the figure, the solid line represents the
union bound obtained by a codebook optimized for the correct
value of N , while the dashed line shows the union bound
obtained by a codebook optimized for N = 1. As we can
observe, the SER performance is better when the codebook
is optimized for the correct number of receive antennas.
Interestingly, this difference in performance increases as N
grows, which suggests that using noncoherent constellations
specifically designed for a given number of receive antennas
might have a significant impact in massive MIMO systems.
This is a distinctive feature of the proposed UB criterion.

We also conduct some Monte Carlo simulations to assess
the SER performance of the proposed UB-Opt designs in
different scenarios. Fig. 3 shows the performance of the
UB-Opt designs compared to the method proposed in [29]
(which maximizes the minimum chordal distance using a
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Fig. 1: Analytical vs. Simulated PEP and UB for T = 4,
M = 2, N = 1 and K = 256.

gradient ascent method on the Grassmannian, and hence it is
labeled as GrassmannOpt-Chordal or GMO-Chordal). In this
example, we design constellations with K = 128 codewords
for varying coherence times and number of transmit antennas:
(T = 6,M = 3), (T = 8,M = 4) and (T = 10,M = 5).
The number of receive antennas is N = 1. The union bound
method provides a significant and consistent improvement
over the chordal optimization for all (T,M) pairs. This
suggests that the minimization of the asymptotic pairwise error
probability union bound provides better signal sets than the
minimum chordal distance.

Fig. 4 shows the SER performance at 20 dB of SNR
for codebooks with T = 4,M = 2, N = 2 and varying
constellation size K ∈ {16, 32, 64, 128, 256, 512, 1024}, de-
signed with the union bound minimization and the minimal
chordal maximization. We see that the union bound designs
perform consistently better than the chordal designs for any
constellation size in the given range.

Fig. 5 shows the SER for the proposed UB-Opt constellation
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Fig. 2: Union bound for K = 64 codewords, T = 4, M = 2
and N = {3, 4, 5} for different codebooks.
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Fig. 3: Union bound vs. chordal distance optimization for K =
128, fixed N = 1 and varying (T = 6,M = 3), (T = 8,M =
4), (T = 10,M = 5).

compared to the GMO-Chordal [29] and the alternating pro-
jection (AP) method [14] for T = 4, M = 2, N = {1, 2}, and
K = 64 codewords. We can observe that the UB constellations
clearly outperform the other two methods.

B. Joint bit-labeling + constellation optimization

In this subsection we assess the BER performance of the
joint binary labeling and constellation design algorithm via
Monte Carlo simulations. In the first experiment we consider
a scenario with M = 2 transmit antennas, N = 1 receive
antenna and T = 4 coherence time. We compare the results
of a random labeling of the codewords for a constellation
designed with the chordal distance and the UB criteria, with
the joint optimization of the binary labeling and the UB
constellation design. The results are depicted in Figs. 6a and 6b
for K = 64 and K = 128 codewords, respectively. Even with
a random labeling, one can already notice a very significant
BER improvement by using the union bound criterion with
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Fig. 5: SER curves for K = 64 codewords, T = 4, M = 2
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respect to the chordal distance. But more importantly, the
joint optimization of the binary labeling altogether with the
constellation further improves the BER performance in a very
significant amount. It is worth noting the binary labeling opti-
mization essentially comes at no additional cost in comparison
to the conventional UB optimization, since we only have to
weight differently the UB terms.

In the examples of Figs. 7a and 7b we consider a scenario
with T = 2, M = N = 1 and compare the weighed UB-Opt
design with some structured designs that allow Gray-labeling.
In particular, we consider the Cube-Split [13] and the Exp-Map
[12]. We include as a baseline the performance of a coherent
pilot-based scheme. The transmitted signal for the pilot-based
scheme is xcoh = [1, xd]

T /
√
2, where the first symbol is the

constant pilot, which is known at the receiver, and the second
symbol xd is taken from a QAM constellation with cardinality
2B . That is, when B = 4 we use a 16-QAM constellation and
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Fig. 6: BER performance of a random labeling for the chordal
and union bound optimizations vs. the joint binary labeling
and constellation design, for T = 4, M = 2, N = 1 and
K ∈ {64, 128}.

the spectral efficiency is R = 2 b/s/Hz and when B = 6
we use a 64-QAM constellation and the spectral efficiency is
R = 3 b/s/Hz (the Cube-Split and the Exp-Map have similar
spectral efficiencies). The QAM constellations are normalized
such that E[|xd|2] = 1. Therefore, E[xH

cohxcoh] = 1 and hence
the average transmit power of the pilot-based scheme is the
same as that of the noncoherent schemes. Notice also that
the power devoted to the data transmission is the same as the
power devoted to training. This is the optimal power allocation
for T = 2,M = 1 as shown in [30].

These experiments support our proposal that a simple mod-
ification of the union bound cost function, so that it takes
into account the binary code labels of the codewords, yields
improved unstructured and even structured Grassmannian con-
stellation in terms of their BER performance. This is a very
encouraging result to further explore for a simultaneous joint
solution of the binary labeling along with the constellation
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b/s/Hz).

design.

C. Achievable rate

In this subsection, we study the achievable rate obtained
by the UB designs. For comparison, we use the asymptotic
(high-SNR) approximations of the channel capacity derived
in [8].

The achievable rate of our system (in bits/s/Hz) is given by
the input-output mutual information

R = I (X;Y) = h(Y)− h(Y|X) = E

[
log2

p (Y|X)

p (Y)

]
,

(18)
where h(A) is the differential entropy of the random matrix A
and p (A) is the probability distribution of A. From the law of
total probability and assuming that all constellation symbols
are equally likely to be transmitted, we can write
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Fig. 8: Achievable rate of UB constellation for T = 2, M = 1,
N = 1 and different constellation size K in comparison with
the high-SNR approximation of the channel capacity given in
(21).

p (Y) =

K∑
k=1

p (Xk) p (Y|Xk) =
1

K

K∑
k=1

p (Y|Xk) . (19)

Conditioned on X = Xk, Y is a complex Gaussian matrix
with independent columns having the same covariance matrix
RYXk

= XkX
H
k + σ2IT , hence

p (Y|Xk) =
exp

(
− tr{YHRYXk

Y}
)

(πT detRYXk
)
N

(20)

The expectation in (18) does not have a closed form, so we
resort to Monte Carlo simulations to estimate R.

Fig. 8 shows the achievable rate for two different UB
constellations (K = {16, 64}) for T = 4 and M = N = 1.
For comparison, the figure also depicts the asymptotic high-
SNR noncoherent capacity given in [8]

CSNR→∞ = M

(
1− M

T

)
log2 SNR+ c+ o(1), (21)

where c is a constant that is independent of the SNR and its
value is given in [8, Th.9].

VI. CONCLUSION

In this paper, we have presented an approach for design-
ing unstructured Grassmannian constellations for noncoherent
MIMO communications based on the the asymptotic pairwise
error probability union bound. The optimization of the UB
cost function is based on a gradient descent approach with
adaptive step-size that operates directly on a Cartesian product
of Grassmann manifolds. For block-fading channels and SNRs
encountered in practice, our results suggest that minimizing
the UB substantially improves the SER in comparison to
most alternatives in the literature, which usually maximize
a distance measure (usually the chordal distance) for the
two closest codewords. The codebooks designed according to
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the proposed criterion are guaranteed to have full-diversity,
also in contrast to what happens with the maximization of
the minimum chordal distance. Furthermore, the proposed
algorithm also allows to jointly design the constellation and
solve the bit labeling problem. Numerical results show that the
designed constellations outperform other unitary space-time
constellations in the literature, in terms of SER and BER.

Using the proposed UB criterion constellations of cardi-
nality K = 2048 codewords have been readily designed.
As a future line of work, we will investigate the design of
Grassmannian constellations of higher cardinality, probably
with some structured design to allow for more efficient detec-
tion schemes. Another interesting line of work is to explore
potential applications of noncoherent communications with
other technologies of recent interest such as Reconfigurable
Intelligent Surfaces (RIS). Similar to [31], [32], noncoherent
schemes could be used during the beam training process in
RIS-assisted networks. The best phase configuration for the
RIS could be selected by measuring the average energy re-
ceived in the subspaces defined by the noncoherent codebook.

APPENDIX

A. Preliminaries

The material in this section is standard and can be found
for example in [33] and [34] (although the main focus of
these classic works is in the real case, the formulas carry over
directly to the complex Grassmannian). We recall some basic
notions. The complex Grassmannian G(M,CT ) is the set of
M–dimensional complex subspaces of CT , with T > M , that
is a complex manifold of dimension M(T −M). Elements in
G(M,CT ) are represented by matrices in the Stiefel manifold
A ∈ St(M,CT ), that is A ∈ CT×M , AHA = IM . This
representation is not unique, since A and AU with U a unitary
M ×M matrix represent the same element in G(M,CT ), so
formally we should denote elements of the Grassmannian as
[A] where A ∈ St(M,CT ) is a unitary basis for that subspace,
PA = AAH denotes the orthogonal projection onto [A] and
[A] is the class of A under the quotient by the set of M ×M
unitary matrices UM .

The tangent space to the Grassmann manifold at [A] is

T[A]G(M,CT ) ≡= {(IT −AAH)B : B ∈ CT×M}.

The following lemma is fundamental for the computation
of gradients in the Grassmannian that will be used in the UB
optimization algorithm.

Lemma 4 Let φ : CT×M → R be a C1 mapping, defined
at least in some open neighborhood of the Stiefel manifold
St(M,CT ) ⊆ CT×M , and assume that φ can be defined as
a function on G(M,CT ), that is, we have:

φ(A) = φ(AU) for A ∈ St(M,CT ), U ∈ UM .

Then, the gradient of φ at A ∈ St(M,CT ) as a Grassmannian
mapping is:

∇φ(A) = (IT −AAH)∇uncφ(A),

where ∇uncφ is the unconstrained gradient of φ as a function
on the ambient space CT×M .

Proof: A proof of this result can be found in [34].

B. Proof of Theorem 1

We will depart from (3) and write down this sum of residuals
as a complex integral. First, since am > 0 for all m, we
note that all the residuals of the form w = jan lie in the
upper complex half–plane. Hence, for large enough R > 0
the expresion in (3) equals the contour integral

Pe(Xi,Xj) = − 1

2πj

∫
w∈C+

R

1

w + j/2

·
M∏

m=1

(
1 + ρT/M

(ρT/M)2(1− d2m)(w2 + 1/4) + 1 + ρT/M

)N

dw,

(22)

where C+
R is the oriented curve given by the segment [−R,R]

followed by the half circunference Rejθ, θ ∈ [0, π]. Since the
function inside the integral in (22) is a rational function whose
denominator is a polynomial of degree at least 3 and whose
numerator is a constant, we can bound its modulus above by
A
|z|3 for some constant A ∈ R. For large R, the integral along
the semicircumference z = Rejθ, 0 ≤ θ ≤ π, is bounded
above by ∫ π

0

RA

R3
dθ =

πA

R2
→

R→∞
0.

Hence, taking limit R → ∞ in (23) we conclude that

Pe(Xi,Xj) = − 1

2πj

∫ ∞

−∞

1

w + j/2

·
M∏

m=1

(
1 + ρT/M

(ρT/M)2(1− d2m)(w2 + 1/4) + 1 + ρT/M

)N

dw.

(23)

We further simplify algebraically by noting that

1

w + j/2
=

w

w2 + 1/4
− j/2

w2 + 1/4
,

which gives two integrals. The first of them equals 0 because
we integrate an odd function, and up to a factor of 2 the
second one can be considered only in [0,∞) because it is an
even function. We thus conclude that

Pe(Xi,Xj)

=
1

2π

∫ ∞

0

1

w2 + 1/4

·
M∏

m=1

 1

1 +
(ρT/M)2(1−d2

m)(w2+1/4)
1+ρT/M

N

dw

θ=arctan(2w)
=

1

π

∫ π/2

0

M∏
m=1

 1

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N

dθ.

To some extent, this proof has been obtained by reversing the
ideas in the proof of (3) appearing in [6].
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C. Proof of Corollary 1 and Corollary 2

We will use Lebesgue’s Dominated Convergence Theorem,
a classical result which gives sufficient conditions to guarantee
the interchange of integral and limit, see for example [35, Th.
16.5]. It is easier to prove first Corollary 2.

1) Proof of Corollary 2: From Theorem 1, we have

lim
ρ→∞

[ρNMPe(Xi,Xj)]

= lim
ρ→∞

1

π

∫ π/2

0

M∏
m=1

 ρ

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N

dθ. (24)

where we have assumed that all M singular values dm of
XH

i Xj are distinct from 1. That is, we have assumed a full
diversity unitary space-time code.

The integrand is bounded above by some constant indepen-
dent of ρ and θ. This constant plays the role of the dominating
function g(x) in Lebesgue’s Dominated Convergence Theorem
and hence we can interchange limit and integral which yields:

lim
ρ→∞

[ρNMPe(Xi,Xj)]

=
1

π

∫ π/2

0

lim
ρ→∞

M∏
m=1

 ρ

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N

dθ

=
1

π

∫ π/2

0

M∏
m=1

(
4(T/M) cos2 θ

(T/M)2(1− d2m)

)N

dθ

=

(
4M

T

)NM
1∏M

m=1(1− d2m)N

1

π

∫ π/2

0

cos2NM θ dθ.

This last integral has a known value π/2 · (2NM −
1)!!/(2NM)!!, which yields the result.

2) Proof of Corollary 1: The limit to be computed is

lim
ρ→∞

d logPe(Xi,Xj)

d log ρ
= lim

ρ→∞

ρ

Pe(Xi,Xj)

· d
dρ

 1

π

∫ π/2

0

M∏
m=M−D+1

 1

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N

dθ

 .

(note that we only need to consider the product for m from
M − D + 1 to M since the inner parenthesis equals 1 if
dm = 1). There exists some hypotheses under which the
interchange of derivative and integral signs are allowed: these
are sometimes called Leibniz’s rule for differentiation under
the integral sign, see for example [35, Th. 16.11]. In our case,
since we are integrating a smooth function such that both it
and its first derivative are bounded above by a constant in a

compact interval, we can make this interchange getting

d

dρ

 1

π

∫ π/2

0

M∏
m=M−D+1

 1

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N

dθ


= −N

π

M∑
m=M−D+1

∫ π/2

0

M∏
m=M−D+1 1

1 +
(ρT/M)2(1−d2

m)
4(1+ρT/M) cos2 θ

N
d
dρ

(
1 +

(ρT/M)2(1−d2
i )

4(1+ρT/M) cos2 θ

)
1 +

(ρT/M)2(1−d2
i )

4(1+ρT/M) cos2 θ

dθ.

Computing the derivative and multiplying the numerator and
denominator by ρND we then get

lim
ρ→∞

d logPe(Xi,Xj)

d log ρ
= −N

M∑
m=M−D+1

lim
ρ→∞

∫ π/2

0

∏M
m=M−D+1

(
ρ

1+
(ρT/M)2(1−d2

i
)

4(1+ρT/M) cos2 θ

)N

Qi(ρ, θ) dθ

∫ π/2

0

∏M
m=M−D+1

(
ρ

1+
(ρT/M)2(1−d2m)

4(1+ρT/M) cos2 θ

)N

dθ

,

where

Qi(ρ, θ) =
4(T/M) cos2 θ + 2ρ2T 2/M2(1− di)

2

4(1 + ρT/M) cos2 θ + (ρT/M)2(1− d2i )

− ρT/M

1 + ρT/M
.

Exactly as in the proof of Corollary 2, we can apply
Lebesgue’s Dominated Convergence Theorem again to inter-
change limit and integral both in the numerator and the denom-
inator, since all the functions are bounded above by a constant
independent of θ and ρ. Now, we have limρ→∞ Qi(ρ, θ) = 1
for all i, 1 ≤ i ≤ D, which implies

lim
ρ→∞

d logPe(Xi,Xj)

d log ρ
= −N

D∑
i=1

1 = −ND,

as claimed.

D. Proof of Lemma 3

As shown in Lemma 4, the real function UB is defined in a
neighborhood of the product of Stiefel manifolds and is well
defined as a mapping in the product of Grassmmanians. Then,
it suffices to consider the gradient of UB defined as a mapping
in CT×M × · · · × CT×M , which is a vector in the Cartesian
product of the ambient tangent spaces. Denote this gradient
by (Ẏ1, . . . , ẎK) ∈ CT×M × · · · × CT×M , whose defining
property is given by its relation with the directional derivative
of φ:

Dφ(A)(Ȧ) = ℜ(⟨(Ẏ1, . . . , ẎK), Ȧ⟩F ),
∀Ȧ = (Ȧ1, . . . , ȦK) ∈ CT×M × · · · × CT×M .

(25)
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From Section A, in order to get the gradient of UB in
G(M,CT ) we just need to project each Ẏi onto the tan-
gent space of the Grassmann manifold T[Xi]G(M,CT ) by
Ẋi = (IT − XiX

H
i )Ẏi, so that ∇UB([X1], . . . , [XK ]) =

(Ẋ1, . . . , ẊK) ∈ T[X1]G(M,CT )× · · · × T[XK ]G(M,CT ).

Now we obtain each Ẏi by vector calculus standard routine
using (25): begin by computing the derivative using Jacobi’s
formula for the derivative of the determinant,

DUB(X1, . . . ,XK)(Ż1, 0, . . . , 0)

=
d

dt

∣∣∣∣
t=0

UB(X1 + tŻ1,X2, . . . ,XK)

=
∑
j>1

N det(IM −XH
j X1X

H
1 Xj)

−N

· tr
(
(IM −XH

j X1X
H
1 Xj)

−1L1j

)
,

where L1j = XH
j Ż1X

H
1 Xj +XH

j X1Ż
H
1 Xj . The inner trace

has 2 summands a, b, corresponding to these two parts of L1j

(we use the circular property of the trace operator tr(AB) =
tr(BA)):

a = tr
(
XH

1 Xj(IM −XH
j X1X

H
1 Xj)

−1XH
j Ż1

)
,

b = tr
(
ŻH

1 Xj(IM −XH
j X1X

H
1 Xj)

−1XH
j X1

)
.

Using now tr(BHAH) = tr((AB)H) = (tr(AB))
∗, where

()∗ denotes complex conjugate,

b∗ = tr
(
ŻH

1 Xj(IM −XH
j X1X

H
1 Xj)

−1XH
j X1

)∗
= a,

we thus have

a+ b = 2ℜ
(
tr
(
ŻH

1 Xj(IM −XH
j X1X

H
1 Xj)

−1XH
j X1

))
= ℜ

〈
2Xj(IM −XH

j X1X
H
1 Xj)

−1XH
j X1, Ż1

〉
F
.

All together, we have proved that

DUB(X1, . . . ,XK)(Ż1, 0, . . . , 0)

= ℜ

〈∑
j>1

2N det(IM −XH
j X1X

H
1 Xj)

−N

·Xj(IM −XH
j X1X

H
1 Xj)

−1XH
j X1, Ż1

〉
F

,

which by Eq. (25) yields

Ẏ1 =
∑
j>1

2N det(IM −XH
j X1X

H
1 Xj)

−N

·Xj(IM −XH
j X1X

H
1 Xj)

−1XH
j X1.

There is nothing special in having computed Ẏ1 or Ẏi. We
just change 1 to i and j > 1 to j ̸= i to get the general
expression for Ẏi, and then compute Ẋi = (IT −XiX

H
i )Ẏi.

This is what we claim in the lemma.
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