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Abstract—In this paper, we propose a new algorithm for
designing unstructured Grassmannian constellations for non-
coherent MIMO communications over Rayleigh block-fading
channels. The algorithm minimizes the maximum coherence
between subspaces, which is shown to be equivalent to the
diversity product previously proposed in the literature. The
coherence criterion is optimized by means of a gradient ascent
algorithm on the Grassmann manifold. The method is generalized
to optimize a weighted cost function that takes into account
several neighboring codewords. Simulation results suggest that
the constellations designed with the proposed algorithm achieve
better SER performance than existing algorithms for unstruc-
tured Grassmannian constellation designs.

Index Terms—Noncoherent, MIMO communications, Grass-
mannian constellations, coherence.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) communications
systems, it is usually assumed that the channel state informa-
tion (CSI) is typically estimated at the receiver side by periodic
transmission of a few known pilots and then it is used for
decoding at the receiver and/or for precoding at the transmitter.
This is known as the coherent approach. The channel capacity
for coherent MIMO systems is known to increase linearly with
the minimum number of transmit and receive antennas at high
signal-to-noise (SNR) ratio [1], [2] when the channel remains
approximately constant over a long coherence time (slowly
fading scenarios). However, in fast fading scenarios, to obtain
an accurate channel estimate would require pilots to occupy
a disproportionate fraction of communication resources. This
CSI acquisition by orthogonal pilot-based schemes can result
in significant overheads in massive MIMO systems [3] even
in slowly-varying channels, and the performance of coherent
massive MIMO systems can be degraded by channel aging
[4]. These scenarios motivate the use of noncoherent MIMO
communications schemes in which neither the transmitter nor
the receiver have any knowledge about the instantaneous
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CSI (although they might have some knowledge about the
statistical or long-term CSI such as its fading distribution).

Yet the receiver not having CSI, a significant fraction of
the coherent capacity can be achieved in noncoherent MIMO
communication systems at high SNR, as shown in [5]–[7].
These works proved that at high SNR under additive Gaussian
noise, assuming a Rayleigh block-fading channel and when the
coherence interval, T , is larger than or equal to twice the num-
ber of transmit antennas M (T ≥ 2M ), the optimal strategy
achieving the capacity is to transmit isotropically distributed
unitary matrices. The pre-log factor in the high-SNR capacity
expression is M∗(1 − M∗/T ), where M∗ = min{M,N}
is the minimum between the transmit and receive number of
antennas, so the noncoherent multiplexing gain approaches the
coherent multiplexing gain as T → ∞. Codebooks are usually
formed by isotropically distributed unitary space-time matrices
corresponding to optimal packings in Grassmann manifolds
[7], [8]. Therefore, in noncoherent MIMO communication
systems the information is carried by the column span of the
transmitted T × M matrix, X, which is not affected by the
MIMO channel H. In other words, the column span of X is
identical to the column span of XH.

An extensive research has been conducted on the design of
noncoherent constellations as optimal packings on the Grass-
mann manifold [9]–[14]. Some experimental evaluation of
Grassmannian constellations in noncoherent communications
using over-the-air transmission has been reported in [15].
Existing constellation designs can be generically categorized
into two groups: structured or unstructured. The former impose
some kind of structure on the constellation points through
algebraic constructions such as the Fourier-based constellation
in [16], designs based on group representations [17], [18],
parameterized mappings of unitary matrices such as the exp-
map design in [11] or structured partitions of the Grass-
mannian like the recently proposed cube-split constellation
[12]. The constellation structure of these designs facilitates
low complexity constellation mapping and demapping, but the
packing efficiency is lower than that achieved by unstructured
codes, which in turn translates into poorer performance in
terms of symbol error rate (SER). Since our goal is to design
quasi-optimal constellations in terms of SER, in this paper



we focus on unstructured constellations designed through
numerical optimization methods.

Among the unstructured designs we can mention the alter-
nating projection method [13] and the numerical methods in
[9], [10], [19]. For example, [10] uses the spectral distance (the
cosine square of the minimum principal angle), while [9] and
[19] employ as a suitable distance metric the chordal distance
between subspaces. Other design criteria that emerge from the
analyses of pairwise error probability (PEP) [6], [20] are the
maximization of the so-called diversity product [21], which
can be interpreted as the minimum product of the squares of
the sines of the M principal angles, and the minimization of
the asymptotic union bound (UB) [22], [23], which is a sum
of all diversity products between pairs of codewords.

In this paper, we propose a new algorithm that directly
maximizes the minimun diversity product, which as shown
in this paper is equivalent to minimizing the maximum coher-
ence between subspaces [24]–[27]. The method proposed in
[21] applies a computationally complex simulated annealing
algorithm to optimize the coherence criterion. Alternatively,
in this paper we perform the optimization of the coherence
function of by means of a gradient ascent algorithm on the
Grassmann manifold that uses an adaptive step-size. The
method is generalized to optimize a weighted cost function
that takes into account several neighboring codewords.

II. SYSTEM MODEL

We consider a transmitter with M antennas communicating
in a noncoherent MIMO system with a receiver equipped
with N antennas, over a frequency-flat block-fading channel
with coherence time T symbol periods, such that T ≥ 2M .
Hence, the channel matrix H ∈ CM×N stays constant during
each coherence block of T symbols, and changes in the next
block to an independent realization. The MIMO channel H
is assumed to be Rayleigh with entries hij ∼ CN (0, 1)
and unknown to both the transmitter and the receiver. Within
a coherence block, the transmitter sends a unitary matrix
X ∈ CT×M , XHX = IM , that is a unitary basis for the linear
subspace [X] within CT . The signal at the receiver Y ∈ CT×N

is

Y = XH+

√
M

Tρ
W, (1)

where W ∈ CT×N represents the additive Gaussian noise,
modeled as wij ∼ CN (0, 1), and ρ represents the signal-to-
noise-ratio (SNR).

The optimal Maximum Likelihood (ML) detector that min-
imizes the probability of error, assuming equiprobable code-
words, is given by

X̃ = argmax
X∈C

tr
(
YHPXY

)
, (2)

where tr(X) denotes trace of X, C represents the codebook
of K codewords and PX = XXH is the projection matrix
to the subspace [X]. Each codeword carries log2(K) bits of
information.

III. PROPOSED CODEBOOK DESIGN

A. Preliminaries

The high-SNR capacity for noncoherent MIMO systems
is achieved by transmitting isotropically distributed unitary
space-time matrices X, [5]–[7], that is, transmitting subspaces
of CT represented by points uniformly distributed on a suitable
matrix manifold. The Stiefel manifold parametrizes the set of
all M -dimensional orthonormal frames in CT

St(M,CT ) = {X ∈ CT×M : XHX = IM}, (3)

and the Grassmann manifold G(M,CT ) the set of M -
dimensional subspaces on CT . Each subspace [X] is rep-
resented by an X ∈ St(M,CT ), up to the unitary right-
action XU, with U ∈ U(M). Note that, in the noiseless
case, Grassmannian signaling guarantees error-free detection
without CSI because X and the noise-free observation XH
represent the same point in G(M,CT ). When noise is present,
the span of the received signal Y deviates from that of X with
respect to a distance measure, producing a detection error if
Y is not in the decision region of the transmitted symbol.
Different functions of the principal angles between subspaces
ultimately yield the different distance metrics between sub-
spaces. For example, optimizing the minimal chordal distance
is of particular importance in the context of non-coherent
communications [9], [19]. For simplicity, in order to design
codebooks C = {X1, . . . ,XK} that minimize the SER, a
pairwise error probability bound is used instead [20], which
leads us to use a non-metric cost function described next.

B. Cost function

The symbol error probability for equiprobable symbols can
be bounded by

Pe ≤
1

K

K∑
i=1

K∑
j=i+1

Pe (Xi,Xj) (4)

where Pe (Xi,Xj) is the asymptotic PEP at high-SNR. The
right hand side in (4) is the union bound (UB). Up to a
constant, this is (cf. [20])

UB(X1, . . . ,XK) =
∑
i<j

det
(
IM −XH

i XjX
H
j Xi

)−N
. (5)

The UB is the best proxy for the actual SER which is
the ultimate performance metric in practice. Therefore, min-
imizing the UB is the most principled design criterion for
unstructured Grassmanian constellations. However, the cal-
culation of its gradient involves high computational cost.
The design criterion based on optimizing the dominant term
of the UB is the so-called diversity product defined in
[21] as DP = mini ̸=j det

(
IM −XH

i XjX
H
j Xi

)
. It can be

shown that det(IM − XH
i XjX

H
j Xi) can be written as 1 −

ν([Xi], [Xj ])
2 where ν([Xi], [Xj ]) is the so-called coherence

between subspaces [24]–[27], so maximizing the diversity
product is equivalent to minimizing the coherence between



subspaces. Therefore, the minimum coherence criterion or
coherence criterion solves:

argmax
[X1],...,[XK ]

min
k ̸=j

det(IM −XH
k XjX

H
j Xk). (6)

Thus, the goal is to make the coherence between subspaces as
small as possible or, equivalently, det(IM −XH

i XjX
H
j Xi) as

large as possible. Recall that the SVD of XH
i Xj , i.e. UDVH ,

is given in terms of the cosines of the principal angles between
the subspaces [Xi] and [Xj ], cos θ1, . . . , cos θM , cf. [21], so

det
(
IM −XH

i XjX
H
j Xi

)
= det

(
IM −D2

)
=

M∏
i=1

sin2 θi.

(7)
It is also evident from the coherence criterion that to achieve
full diversity no pair of subspaces should have nontrivial
intersection, i.e. we must have [Xi] ∩ [Xj ] = {0}, i ̸= j.
In other words, to achieve full diversity the cosines of the
principal angles between all pairs of subspaces must not be
equal to one. Full-diversity codebooks for which this condition
holds attain the maximum slope of the SER vs. SNR curve,
which is NM .

Unlike other criteria like [19] which use the chordal distance
optimization to design Grassmannian constellations, the func-
tion det(IM −XH

k XjX
H
j Xk) is not a mathematical distance

between subspaces (for example, it does not satisfy the triangle
inequality). The following lemma provides the main technical
result to optimize the coherence criterion on the Grassmann
manifold by means of a gradient ascent algorithm.

Lemma 1 Let Xj ∈ St(M,CT ) represent some fixed element
in G(M,CT ), and let φ : G(M,CT ) → [−∞,∞) be given
by φ(Xk) = log det(IM −XH

k XjX
H
j Xk). Then, φ is smooth

whenever it is not −∞ and the gradient of φ at Xk is

∇φ(Xk) = −2(IT −XkX
H
k )XjX

H
j Xk

· (IM −XH
k XjX

H
j Xk)

−1. (8)

Using the singular value decomposition (SVD) XH
j Xk =

UDVH , this can be written as

∇φ(Xk) = −2(IT −XkX
H
k )XjUD(IM −D2)−1VH . (9)

PROOF. The smoothness of the logarithm and determinant
yield that φ is smooth unless φ(Xk) = −∞. Its gradient is

∇φ(Xk) = (IT −XkX
H
k )Dφ̃(Xk), (10)

where Dφ̃(Xk) is the unconstrained gradient of the func-
tion φ̃(Xk) = log det(IM − XH

k XjX
H
j Xk) defined for

Xk ∈ CT×M , and the parenthesis is the projector onto the
Grassmannian tangent space. The directional derivative of this

function follows from Jacobi’s formula for the derivative of
the determinant:

Dφ̃(Xk)(Ẋk) =
d

dt

∣∣∣∣
t=0

(
φ̃(Xk + tẊk)

)
=

d

dt

∣∣∣∣
t=0

[
log det(IM − (Xk + tẊk)

HXjX
H
j (Xk + tẊk))

]
=− tr

(
(IM −XH

k XjX
H
j Xk)

−1

· (ẊH
k XjX

H
j Xk +XH

k XjX
H
j Ẋk)

)
=−ℜ⟨2XjX

H
j Xk(IM −XH

k XjX
H
j Xk)

−1, Ẋk⟩F ,

the last step follows from the circularity of the trace operator
and the definition of Frobenius Hermitian product. Thus, the
Euclidean gradient of φ̃ at Xk is

Dφ̃(Xk) = −2XjX
H
j Xk(IM −XH

k XjX
H
j Xk)

−1, (11)

and the lemma follows from (10) and (11).

C. Coherence-NN optimization

Focusing on the dominant term of the UB in Eq. (5) leads
naturally to explore improved optimization approaches that
consider not only the closest codeword but a number L of
nearest neighbors. Here we understand “closeness” between
codewords as those with higher PEP, i.e. those with lower
values of the determinant function (and consequently higher
coherence values). Although a rigorous treatment of this
problem seems difficult to address, it is possible to imagine
different heuristic mechanisms that consider a number of
nearest neighbors in the optimization process. Here we present
one that provides a good compromise between performance
and computational complexity.

Because all the pairwise determinantal terms of the coher-
ence criterion appear in the union bound, we propose using the
gradients of additional PEP terms and not just the dominant
one, so that moving the codeword in a weighted direction
improves several of those terms at the same time. That is,
we consider moving every codeword in an averaged direction
by weighting the gradient ascent directions of the L-nearest
neighbors with weights inversely proportional to the order (see
step 8 in Algorithm 1).

This is motivated by the fact that separating a codeword
from its nearest neighbor may bring it closer to another one,
so the ideal optimization step would be to move a codeword
in a direction that separates it, if possible, from its L nearest
neighbors. Clearly, the essential aspect of the method is how
to weight the gradients on the manifold corresponding to the L
neighbors. The proposed solution is to use weights according
to the harmonic series. That is, the gradient of the nearest
codeword is weighed by 1, that of the next nearest by 1/2
and so on up to the gradient of the Lth nearest codeword
whose gradient is weighed by 1/L. Although there is no
theoretical basis for the optimality of this choice of weights, in
practice it provides good results. The proposed Grassmannian
constellation design is summarized in Algorithm 1 and is
termed Coherence-NN.



The method includes a line-search procedure to speed up
convergence, with adaptive step-size µ, and three stopping
criteria: a maximum number of iterations, Nmax, a minimum
value of the step-size, µmin, and a minimum improvement of
the value of the coherence criterion, δmin.

Algorithm 1: Coherence-NN Algorithm
Input: T , M , K, initial step-size µini, µmin, adaptation rate

α, Nmax, δmin, L
1 Generate K random subspaces [X] in G

(
M,CT

)
2 Obtain initial minimum coherence d0.
3 Initialize µ = µini and n = 1
4 do
5 for k = 1 : K do
6 Find the L closest elements Xj1 , . . . ,XjL to

codeword Xk ordered by coherence
7 Construct the matrices ∆kj1 , . . . ,∆kjL that yield

the best direction to get Xk away from each
Xj1 , . . . ,XjL using the corresponding gradient
(e.g. normalizing Eq. 8)

8 Compute the weighted direction defined by these
neighbors as

∆k = ∆kj1 +
1

2
∆kj2 +

1

3
∆kj3 + · · ·+ 1

L
∆kjL

9 Move Xk in the normalized weighted direction
X̃k = Xk + µ∆k/||∆k||F

10 Retract X̃k to the manifold by computing the Q
factor in its reduced QR decomposition, which will
be the new Xk

11 end for
12 Obtain new minimum coherence dn
13 if dn > dn−1 then
14 Update codebook C with the new codewords X̃k,

k = 1 : K
15 if dn − dn−1 < δmin then
16 End optimization
17 end if
18 Increase step-size µ = αµ
19 Move to next iteration n = n+ 1
20 else
21 Decrease step-size µ = µ/α
22 ∗(note that in this case lines 6, 7 and 8 will not be

computed again)
23 end if
24 while (n ≤ Nmax and µ ≥ µmin)

IV. PERFORMANCE EVALUATION

In this section, we assess the performance of the pro-
posed algorithm (labeled as Coherence-NN) and compare
it to other numerical optimization algorithms for designing
unstructured Grassmannian constellations. Fig. 1 depicts the
histograms of the diversity product or coherence function
det

(
IM −XH

k XiX
H
i Xk

)
for Coherence-NN codebooks us-

ing L ∈ {1, 2, 10, 64} neighbors for a MIMO system with
coherence time T = 4 symbol periods, M = 2 transmit
antennas, and K = 64 codewords. Here we can clearly observe
that the minimum value of the diversity product increases as
the number of neighbors L in the cost function grows. This
improvement in the minimum diversity product will translate
into an improvement of the PEP and, consequently, the SER.

In addition, we see that a small number of neighbors (e.g.,
L = 10) brings most of the possible improvement without a
significant increase in computational cost.

Fig. 1. Improvement of the distribution of pairwise coherence values by using
an increasing number of neighboring points for K = 64 codewords, T = 4
and M = 2.

Fig. 2 shows the SER for the proposed Coherence-NN
codebooks compared to the method proposed in [19] (which
maximizes the minimum chordal distance using a gradient
ascent approach on the Grassmannian, and hence is labeled
as GMO-Chordal), and the alternating projection (AP) method
[13] for T = 4, M = 2, N = {1, 2} and K = 64 codewords.
In this case, the Coherence-NN algorithm uses 10 neighbors
for the cost function. We can see that the Coherence-NN
constellation clearly outperforms the other two methods, and
this gain in SER performance becomes more significant as we
increase the number of receive antennas N .
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Fig. 2. SER curves for K = 64 codewords, T = 4, M = 2 and N ∈ {1, 2}.

Finally, in Fig. 3 we show the SER curves for the



Coherence-NN constellation compared to the GMO-Chordal
for T = 4, M = 2, N = 1, and different constellation sizes
K ∈ {16, 64, 256}. For this simulation, Coherence-NN uses
around 15 % of the total constellation size as neighbors for the
cost function. As it can be observed, in all cases the proposed
Coherence-NN constellations clearly outperforms the GMO-
Chordal in terms of SER.
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Fig. 3. SER curves for K ∈ {16, 64, 256} T = 4, M = 2 and N = 1.

V. CONCLUSIONS

We have proposed a new algorithm for designing unstruc-
tured Grassmannian constellations for noncoherent communi-
cations, which is based on a gradient ascent approach that
operates directly on the Grassmann manifold. The proposed
design criterion minimizes the maximum coherence between
subspaces, which is equivalent to the diversity product pre-
viously proposed in the literature. A natural extension of
the method leads us to employ a weighted sum of diversity
products (or coherences) for L nearest neighbors. Simulation
results show that Coherence-NN outperforms other numerical
optimization methods, such as AP or GMO-Chordal, in terms
of symbol error rate.
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