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Abstract—In this paper we propose two importance sampling
methods for the efficient symbol error rate (SER) estimation
of maximum likelihood (ML) multiple-input multiple-output
(MIMO) detectors. Conditioned to a given transmitted symbol,
computing the SER requires the evaluation of an integral outside
a given polytope in a high-dimensional space, for which a closed-
form solution does not exist. Therefore, Monte Carlo (MC)
simulation is typically used to estimate the SER, although a
naive or raw MC implementation can be very inefficient at
high signal-to-noise-ratios or for systems with stringent SER
requirements. A reduced variance estimator is provided by the
Truncated Hypersphere Importance Sampling (THIS) method,
which samples from a proposal density that excludes the largest
hypersphere circumscribed within the Voronoi region of the
transmitted vector. A much more efficient estimator is provided
by the existing ALOE (which stands for “At Least One rare
Event”) method, which samples conditionally on an error taking
place. The paper describes in detail these two IS methods,
discussing their advantages and limitations, and comparing their
performances.

Index Terms—Multiple importance sampling, symbol error
rate, Monte Carlo, multiple-input multiple-output (MIMO), max-
imum likelihood (ML), detection.

I. INTRODUCTION

Monte Carlo (MC) simulation is a key methodology of
performance evaluation for wireless communication links, for
many of which an exact computation is typically unfeasible.
Monte Carlo simulations are routinely used to estimate the
symbol error rate (SER), the bit error rate (BER), or the
outage probability in block fading channels. However, naive
Monte Carlo simulation can be very inefficient and requires
very long simulation runs when the target probability is small.
For instance, the typical BER for lightwave communication
systems is of the order of 10−9 to 10−12 [1], while ultra-
reliable low-latency communications (URLLC) have stringent
requirements in terms of outage probability (e.g. lower than
10−6 ) [2]. For systems with such a stringent requirements in
terms of SER/BER or outage probability, the need to perform
in excess of 1012 trials makes MC simulation infeasible.

To overcome this limitation of raw MC simulation, this
paper studies efficient SER estimation techniques for multiple-
input multiple-output (MIMO) communication systems based
on importance sampling (IS) techniques. IS has been used as
a method for variance reduction in SER or BER simulations
in a wide range of scenarios since the late seventies [3]–[7].
Despite this, many digital communication researchers are still
unaware of the potential benefits of IS techniques to char-

acterize the statistical performance of digital communication
systems.

The basic IS methodology samples from a proposal distri-
bution that increases the number of errors during simulation,
and then weights the samples by the ratios of the target to
the proposal densities [8]. As a single-proposal distribution
for the MIMO detection problem, we propose in this paper to
use a truncated Gaussian where the mass around its center
has been removed. We call this IS method as truncated
hypersphere importance sampling (THIS). However, covering
the region where both the target density and the function to
be evaluated take significant values with a single proposal
is not possible in general. An alternative is to use more
than one proposal through the so-called multiple importance
sampling (MIS) technique [9], [10]. In this paper we use a
MIS technique called ALOE (“At Least One rare Event”)
[11], which is particularly well suited for SER estimation.
ALOE is extremely efficient to estimate the integral of a
Gaussian in a region defined by a union of half-spaces, which
is precisely the error event in a digital communications system.
Conditioned to a transmitted symbol, an error occurs when
the observation falls in a union of half-spaces or, equivalently,
outside a given polytope. The proposal in ALOE simulates the
system conditionally on an error taking place, which makes
it more efficient than other importance sampling techniques.
However, ALOE requires a perfect knowledge of the Voronoi
region in the lattice of symbols transformed by the channel.

II. MIMO DETECTION

We consider a multiple-input multiple-output (MIMO) spa-
tial multiplexing system with L transmit and receive antennas,
where the channel is unknown at the transmiter but perfectly
known at the receiver side.1 The received signal follows the
well-known baseband model

x = Hs + n, (1)

where H is an L × L matrix whose columns represent the
known complex channel gains from each transmit antenna to
the L receive antennas, s = (s1, . . . , sL)

T is the vector with
the unknown transmitted symbols, and n = (n1, . . . , nL)

T is
the noise vector. The noise is modeled as n ∼ CNL(0, σ2I),
where CNL(0,R) denotes a complex Gaussian distribution

1The extension to MIMO systems with different number of Tx/Rx antennas
is straightforward, but we stick to the square L × L MIMO system for
notational simplicity as well as to ease exposition.



in CL with zero mean and covariance R. Each symbol s
belongs to a discrete constellation that we will assume to be an
square M -QAM (Quadrature Amplitude Modulation) signal.
The average energy per symbol is normalized so that E[|sk|2]
=1.

We will find convenient to reformulate the problem in terms
of real variables as follows(
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(2)
Then, without loss of generality we can focus on the system
model given by (1) but with real vectors and matrices, in this
case the symbols take values on a finite alphabet of integers,
n ∼ N2L(0, σ

2

2 I), and the vector s ∈ D2L belongs to a 2L-
dimensional square real lattice with cardinality |D2L| = ML.

The MIMO detection problem consists of estimating the
complex symbol vector ŝ ∈ D2L in (1) that minimizes the
symbol error probability. Under white Gaussian noise, the
optimal maximum likelihood (ML) decoder is obtained by
solving an Integer Least Squares problem

ŝ = min
s∈D2L

‖x−Hs‖2. (3)

Note that this problem is equivalent to constructing the
Voronoi diagram with all transformed points Hs with s ∈
D2L, and estimating ŝ as the associated point to the re-
gion where x falls. Maximum likelihood decoding therefore
amounts to finding the closest lattice point Hs to a given noisy
observation, x, which is known to be NP-hard for generic
channels [12], [13] meaning that the problem complexity
is exponential on the dimension of the lattice [14]. Using
the Finke-Phost sphere-decoding (SD) algorithm [15], ML
detection can be achieved at an average complexity that is
cubic in the number of transmit antennas, as was shown in
[16]. Later Agrell et al. showed that the Schnorr-Euchner
(SE) enumeration strategy [17] reduces the complexity of
SD algorithms in comparison to [15], and very efficient SD
implementations have been proposed in [18].

A. Problem statement

Let us assume that sm is transmitted and let Vm be its
associated Voronoi region, which is a polytope defined by
the intersection of finitely many hyperplanes in R2L. The
observation x = Hsm +n is the 2L-dimensional lattice point
distorted by the MIMO channel and perturbed by additive
Gaussian noise. Assuming that all symbols are transmitted
with equal probability, the symbol error probability (SER) is

Pe =
1

ML

ML∑
m=1

p(e|sm), (4)

where

p(e|sm) =
∑
j 6=m

Lj,m
L

p(sj |sm) =
∑
j 6=m

Lj,m
L

Prob(Hsm+n ∈ Vj)

(5)

is the conditional SER when sm is transmitted, and Lj,m is
the number of complex symbol errors when sm is transmitted
and sj is detected. Each term Prob(Hsm + n ∈ Vj) is the
integral of a Gaussian distribution centered at rm = Hsm in
the polytope region Vj . Note that transmitting sm and deciding
sj can result in a different number of complex symbol errors
Lj,m ∈ {1, ..., L}; therefore each term in (5) is weighted by
Lj,m/L. The integrals required to evaluate (5) are in general
difficult to compute in closed-form, and therefore Monte Carlo
simulation is typically used to estimate the SER. However,
naive Monte Carlo simulation (also called raw Monte Carlo)
can be very inefficient and requires very long simulation runs,
especially at high signal-to-noise ratios or when either the
constellation size, M , or the number of antennas, L, is large.
Our goal thus is to develop efficient sampling schemes to
estimate p(e|sm) in (5).

III. EFFICIENT SER ESTIMATION VIA IMPORTANCE
SAMPLING

For notational simplicity let us denote the transmitted vector
as s, with associated decision region V ⊂ R2L, and let
p = p(e|s) be the conditional SER of interest, which can be
expressed as

p =

∫
V
h(x)π̃(x)dx, (6)

where π̃(x) , N2L(Hs, σ
2

2 I) is the Gaussian distribution of
the observation, and the function h(x) = `(x)/L is the ratio
of wrongly detected symbols, i.e., `(x) is the number of errors
when s is transmitted and x is received. Note that h(x) = 0
when x falls in the Voronoi decision region for s.

A. Single-proposal importance sampling

Importance sampling (IS) is a Monte Carlo technique used
when sampling from π̃(x) is either not possible or not effi-
cient. The N samples are simulated instead from a so-called
proposal distribution, q(x), and the estimator of p is built as

p̂ (IS) =
1

N

N∑
n=1

wnh(xn), xn ∼ q(x), n = 1, ..., N, (7)

where wn = π̃(xn)
q(xn)

is the importance weight.
Let us first consider a Gaussian proposal q(x) = π̃(x) =

N2L(Hs, σ
2

2 I). This particular case yields the standard raw
Monte Carlo algorithm whose efficiency decays when σ2

decreases. This is an illustrative example of how IS is an
efficient technique if q(x) is close to h(x)π̃(x). However, the
variance of the IS estimator increases when too many samples
from q(x) fall in V , and hence h(x) takes value zero.

We present here a single-proposal IS method that increases
the efficiency by avoiding the simulated samples to be close to
Hs. We call the method as truncated hypersphere importance
sampling (THIS). The method only requires to know the
distance dmin to the closest neighbor of Hs. Then, we set the IS
proposal to a truncated Gaussian distribution q(x; dmin/2) ∝
π̃(x)IRdmin/2

(x), where Rdmin/2 is the hypersphere of radius
dmin/2, i.e., q(x; dmin/2) is a distribution proportional to the



targeted Gaussian where the mass around its center has been
removed. Note that by construction, q(x; dmin/2) covers all the
support where the integrand of Eq. (6) takes values different
from zero because the hypersphere is inside the Voronoi
decision region of Hs, i.e, Rdmin/2 ⊂ V . The estimator of
THIS is built as

p̂ (THIS) =
Zq
N

N∑
n=1

h(xn), xn ∼ q(x; dmin/2), n = 1, ..., N,

(8)
where Zq is the normalizing constant of the proposal, i.e.,
Zq =

∫
Rdmin/2

N2L(Hs, σ
2

2 I)dx and it can be easily computed.
In Appendix A we describe how to sample from the truncated
Gaussian and the computation of Zq . Note that, for every
sample xn, the SD algorithm is run in order to find the ML
estimate of the transmitted vector of symbols, and hence, the
value of the ratio of errors h(xn). The estimator p̂ (THIS) is
unbiased, consistent, and guarantees a variance reduction w.r.t.
the raw MC estimator, i.e., Var

[
p̂ (THIS)

]
< Var

[
p̂ (MC)

]
. See

Appendix B for more details.

B. Multiple importance sampling

Multiple importance sampling (MIS) is a natural extension
of IS allowing for the simulation from a set of K proposals,
{qk(x)}Kk=1, instead of just one [9]. However, the extension
from one to several proposals is not straightforward and many
sampling and weighting schemes can be devised (see [10] for
a review). A conventional way to proceed is to simulate from
the mixture proposal as

xn ∼ qα =

K∑
k=1

αkqk(x), n = 1, ..., N, (9)

where α = [α1, ..., αK ] is a simplex vector with all non-
negative weights in the mixture such that

∑K
k=1 αk = 1. The

MIS extension of Eq. (7) is

p̂ (MIS) =
1

N

N∑
n=1

h(xn)π̃(xn)

qα(xn)
, (10)

i.e., the new importance weight is now wn = π̃(xn)
qα(xn)

.
We recall that we aim at integrating π̃(x) in region V ,

weighting each sample with h(x) = `(x)
L , the ratio of errors

in the detector when x is received. The region V can be
described as the union of all half-spaces in R2L generated
by the hyperplanes that define the border of V .

A natural way to adapt this MIS scheme to our problem
is to follow the choice of proposals in [11] called ALOE
for “At Least One rare Event”. In ALOE the number of
proposals is the number of hyperplanes defining the Voronoi
region and each proposal is a truncated version of a Gaussian
centered at the received symbol beyond each hyperplane. More
specifically, qk(x) =

ISk(x)π̃(x)

Pk
, where Pk =

∫
ISk(x)π̃(x)dx

is the integral of the target distribution beyond the hyperplane
Sk = {x ∈ R2L |xTγk ≥ βk} (parametrized by γk and βk),

and V =
K⋃
k=1

Sk. The procedure for the efficient simulation

from a generic truncated Gaussian distribution is described in
[11]. ALOE has recently been used for the SER estimation
of single-input single-output (SISO) AWGN channels with
non-square two-dimensional constellations in [19]. With two-
dimensional lattices or constellations the Voronoi regions are
determined by just a few hyperplanes, which can easily be
computed, and hence an exact implementation of ALOE is
possible. However, for MIMO systems the number of hy-
perplanes determining a Voronoi region can be very large
and computing all hyperplanes is in general not feasible. In
this work we use the SD algorithm to find K lattice points
that belong to a hypersphere centered at Hs, where K is
a fixed number chosen to limit the complexity of this step.
These points determine the K hyperplanes to be used in the
mixture proposal (9). Our experiments suggest that selecting
K = b2 log2(M)L2c provides accurate SER estimates.

Let us summarize the implementation of a modified ALOE
for approximating the integral of Eq. (6). We first define
p =

∑K
k=1 Pk, which is an upper union bound of p. Then,

in ALOE, Eq. (10) yields

p̂ (ALOE) =
1

N

N∑
n=1

h(xn)π̃(xn)

qα(xn)
(11)

=
1

N

N∑
n=1

h(xn)∑K
k=1 αkISk(xn)P−1k

. (12)

The weight of each proposal in the mixture defined in Eq.
(9) is chosen as αk = Pk/p̄, for k = 1, ...,K. Then, ALOE
estimator is

p̂ (ALOE) =
p

N

N∑
n=1

h(xn)∑K
k=1 ISk(xn)

=
p

N

N∑
n=1

h(xn)

C(xn)
, (13)

where C(xn) =
∑K
k=1 ISk(xn) is the number of half-spaces

Sk where xn is present. ALOE estimator is unbiased, and

Var
(
p̂ (ALOE)) ≤ p(p̄− p)

N
,

i.e., the bound of the variance decays with the number of sam-
ples, and the constant factor depends on the true probability,
p. It is straightforward to understand the high performance of
ALOE for high SNR scenarios for which p is small. A deeper
theoretical analysis of ALOE can be found in [11].

IV. SIMULATION RESULTS

We consider an example with L = 6 antennas and M = 64.
As a figure of merit for the different estimators we use the
relative root mean square error, defined as

RRMSE(p̂) =

√
Var(p̂)

p
, (14)

where p is the true probability. We compare the performance
of raw Monte Carlo (Raw-MC), ALOE and THIS. For the
three methods, the SER at each Eb/N0 is estimated with a
total of 105 random samples. More specifically, we generate
100 different vectors of symbols (i.e., lattice points) and, for
each lattice point, N = 1000 samples are drawn from each
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Fig. 1: RRMSE with Raw-MC, ALOE and THIS. Number of
antennas L = 6 and 64-QAM symbols.
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Fig. 2: SER vs. Eb/N0 for Raw-MC (confidence interval in
grey) and ALOE (confidence interval in black).

proposal. The RRMSE results are shown in Fig. 1. We observe
that the gap between raw Monte Carlo, THIS and ALOE
increases as the SNR increases. The SER curves for MC and
ALOE along with their confidence intervals are depicted in
Fig. 2. Moreover, Figs. 3 and 4 show the RRMSE and the SER
curves for the different estimators when L = 12 and M = 4.
Again, ALOE provides extremely accurate SER estimates with
just 105 random samples.

V. DISCUSSION

The integral in Eq. (6) can be approximated using the raw
Monte Carlo by sampling directly from π̃(x). However, the
efficiency of the method decays when most of the samples fall
inside the Voronoi decision region of Hs. Importance sampling
can alleviate this problem by avoiding or at least decreasing
the waste of samples that fall in V . The proposed THIS
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Fig. 3: RRMSE with Raw-MC, ALOE and THIS. Number of
antennas L = 12 and QPSK symbols.

6 8 10 12 14 16 18 20

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Eb/No (dB)

SE
R

N = 12, M = 4

Raw MC (conf. interv.)
ALOE (conf. interv.)
Raw MC
ALOE

Fig. 4: SER vs. Eb/N0 for Raw-MC (confidence interval in
grey) and ALOE (confidence interval in black).

estimator increases the efficiency by avoiding to sample in the
hypersphere centered at Hs with radius dmin/2. The advantage
is that the only information it requires is the closest symbol
to Hs and its distance dmin. The disadvantage is that in higher
dimension, the volume of the 2L-dimensional hypersphere of
radius dmin/2 can be small w.r.t. the total area of the Voronoi
decision region of Hs. In that case, the efficiency of THIS can
deteriorate, although it will always be better than raw Monte
Carlo. The advantage of ALOE is that all samples have at least
one error, i.e., h(xn) > 0 for all xn, which is a key feature of
the algorithm, particularly for high SNR when most samples
in raw Monte Carlo give h(xn) = 0.
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APPENDIX A: SAMPLING IN THIS
THIS samples from the proposal q(x; a) =

N2L(Hs,σ
2

2 I)IRa (x)
Zq

, i.e., an isotropic Gaussian distribution
truncated out of the hyper-sphere a = dmin/2, by using
standard methods used in directional statistics [20]. We
proceed as follows:

1) Simulate r ∼ χ2
(2L)(r|r > a), i.e., from the truncated χ2

distribution with 2L degrees of freedom, defined in the
interval (a,∞). This can be efficiently done as follows:
• Find c as the cdf of the distribution χ2

(2L) at
(
a
σ

)2
.

• Apply a modified inverse transform sampling by
first sampling uniformly u ∼ U(c, 1), and then
obtaining r as the evaluation of u in the inverse
cdf of χ2

(2L).
2) Simulate z ∼ N (0, I) of dimension 2L.
3) Project z in the 2L− 1 unit sphere θ = z

||z|| .
4) Output x = σθ

√
r.

The normalizing constant of the THIS proposal can be com-
puted as Zq =

∫
Rdmin/2

N2L(Hs, σ
2

2 I)dx = 1 − c, where c is
the volume of hypersphere that has been removed from the
Gaussian distribution.

APPENDIX B: THEORETICAL ANALYSIS OF THIS
The unbiasedness of THIS can be shown as

Eq(x;dmin/2)

[
p̂ (THIS)] = Eq(x;dmin/2)

[
Zq
N

N∑
n=1

h(xn)

]

=

∫
V

Zq
N

N∑
n=1

h(xn)q(xn; dmin/2)dxn

=

∫
V

Zq
N

N∑
n=1

h(xn)
π̃(xn)IRdmin/2

(xn)

Zq
dxn

=
1

N

N∑
n=1

∫
V
h(xn)π̃(xn)IRdmin/2

(xn)dxn

=

∫
V
h(xn)π̃(xn)dxn = p,

since V ⊆ Rdmin/2. The variance of the estimator of THIS is

Var
[
p̂ (THIS)] =

1

N2

N∑
n=1

[∫
V

h2(x)π̃2(x)

q(x; dmin/2)
dx− p2

]
=

1

N

∫
V

h2(x)π̃2(x)

q(x; dmin/2)
dx− p2

N

=
Zq
N

∫
V

h2(x)π̃2(x)

π̃(x)IRdmin/2
(x)

dx− p2

N

=
Zq
N

∫
V
h2(x)π̃(x)dx− p2

N
. (15)

Similarly, the variance of the raw MC estimator with q(x) =
π̃(x) can be computed as

Var
[
p̂ (MC)] =

1

N2

N∑
n=1

[∫
V

h2(x)π̃2(x)

π̃(x)
dx−E2

π̃(x)

[
p̂ (MC)]]

=
1

N

∫
V

h2(x)π̃2(x)

π̃(x)
dx− p2

N

=
1

N

∫
V
h2(x)π̃(x)dx− p2

N
. (16)

By simply comparing Eqs. (15) and (16), and since Zq < 1,
it follows that Var

[
p̂ (THIS)

]
< Var

[
p̂ (MC)

]
.

REFERENCES

[1] R. Papannanreddy, Lightwave Communication Systems: A Practical
Perspective. Penram Int. Publishing, 2014.

[2] G. Durisi, T. Koch, and P. Popovsky, “Towards massive, ultra-reliable,
and low-latency wireless communication with short packets,” Proc. of
the IEEE, vol. 104, no. 9, pp. 1711–1726, 2016.

[3] P. Balaban, “Statistical evaluation of the error rate of the fiber-guide
repeater using importance sampling,” Bell Syst. Tech. J., vol. 55, no. 6,
pp. 745–766, 1976.

[4] K. S. Shanmugam and P. Balaban, “A modified Monte-Carlo simulation
technique for the evaluation of error rate in digital communication
systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1916–1924, 1980.

[5] D. Lu and K. Yao, “Improved importance sampling technique for
efficient simulation of digital communication systems,” IEEE Journal
on Sel. Area Comm., vol. 6, no. 1, pp. 67–75, 1988.

[6] W. Al-Qaq and J. Townsend, “A stochastic importance sampling method-
ology for the efficient simulation of adaptive systems in frequency
nonselective Rayleigh fading channels,,” IEEE Journal on Sel. Area
Comm., vol. 15, no. 4, pp. 614–625, 1997.

[7] P. J. Smith, M. Shafi, and H. Gao, “Quick simulation: A review of
importance sampling techniques in communications systems,” IEEE
Journal on Sel. Area Comm., vol. 15, no. 4, pp. 597–613, 1997.

[8] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Mı́guez, and P. M.
Djuric, “Adaptive importance sampling: The past, the present, and the
future,” IEEE Signal Process. Mag., vol. 34, no. 4, pp. 60–79, 2017.

[9] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo, “Efficient mul-
tiple importance sampling estimators,” IEEE Signal Processing Letters,
vol. 22, no. 10, pp. 1757–1761, 2015.

[10] ——, “Generalized multiple importance sampling,” Statistical Science,
vol. 34, no. 1, pp. 129–155, 2019.

[11] A. B. Owen, Y. Maximov, and M. Chertkov, “Importance sampling the
union of rare events with an application to power systems analysis,”
Electronic Journal of Statistics, vol. 13, no. 1, pp. 231–254, 2019.

[12] M. Grotschel, L. Lovasz, and A. Schriver, Geometric Algorithms and
Combinatorial Optimization. Springer Verlag, 2nd ed., 1993.

[13] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389–2402, 2003.

[14] R. Zamir, Lattice Coding for Signals and Networks. Cambridge
University Press, 2014.

[15] U. Fincke and M. Phost, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.
Comput., vol. 44, pp. 463–471, 1985.

[16] B. Hassibi and H. Vikalo, “On the expected complexity of sphere
decoding,” in Proc. 35th Asilomar Conf. Signals, Syst., Comput., Pacific
Grove, CA, USA, 2001, pp. 1051–1055.

[17] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,” Math. Programm.,
vol. 66, no. 2, pp. 181–199, 1994.

[18] A. Ghasemmehdi and E. Agrell, “Faster recursions in sphere decoding,”
IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3530–3536, 2011.

[19] V. Elvira and I. Santamaria, “Multiple importance sampling for efficient
symbol error rate estimation,” IEEE Signal Proc. Letters, vol. 26, no. 3,
pp. 420–424, 2019.

[20] K. V. Mardia and P. E. Jupp, Directional statistics. John Wiley & Sons,
2009, vol. 494.


	Introduction
	MIMO detection
	Problem statement

	Efficient SER estimation via importance sampling
	Single-proposal importance sampling
	Multiple importance sampling

	Simulation Results
	Discussion
	References

