Orthogonal Frequency Division Multiplexing (OFDM)

Procesado de Señal en Comunicaciones Inalámbricas

Curso 2023-2024

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Introduction

OFDM

Practical Details

Comercial Systems and OFDM Standards

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Inter-Symbol Interference

- We have already seen how to exploit diversity in order to combat fading (time-variant/selective channels)
- We still don't know how to combat ISI in frequency selective channels
- Under frequency selectivity, the discrete equivalent baseband signal model is x[n] = h[n] * s[n] + r[n]
 - A convolution in time domain is equivalent to a product in frequency domain (Isn't it?)
- ► Consider a block of N_c samples [x[0],...,x[N_c − 1]]
 - ▶ $N_c/f_s \ll T_c$: The channel is time-invariant and frequency selective
 - ► $N_c/f_s \gg 1/B_c$: The block is much longer than the duration of the channel impulse response

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- What happens in the frequency domain?
- In other words: How do we get a product in frequency domain?

OFDM Block Diagram with Cyclic Prefix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What are we doing?

 Traditional (analog) Frequency Multiplexing (filtering + guard frequencies)

OFDM: Overlapped Orthogonal Subcarriers

(日) (四) (日) (日) (日)

System Parameters

- Total bandwidth W divided into N_c subchannels
- Symbol and binary rates: R_s bauds, R_b bps
- Symbol and binary rate per subchannel: R_s bauds, R_b/N_c bps
- Duration of the OFDM symbol: $T = 1/R_s = \frac{N \log_2 M}{R_b}$
- ▶ N_c subcarriers with frequencies $f_k = f_0 + k/T$ for $k = 0, ..., N_c 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Standards: Evolution towards OFDM

Out of Band Spectrum

Abrupt phase transitions at the extremes of the OFDM symbol
Out of band PSD decays very slowly

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Time Windowing

- Out of band PSD decays very slowly
- Solution: Time Windowing
 - At the cost of a small decrease of multipath inmunity: $\tau \leq T_G \beta T_s$

Guard Frequencies

Out of band PSD decays very slowly

Solution: *N_{FG}* guard subcarriers in each OFDM symbol

At the cost of a decrease in the effective binary rate

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Channel Estimation and Synchronization

- The receiver needs to know the channel. We need N_p pilot subcarriers to estimate the channel
- Moreover, we need to track the channel in time and frequency
- Different strategies for continuous or frame transmissions
 - The number and spacing (in time and frequency) is directly related to T_c and B_c

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Receiver

- The use of long symbol periods enables the use of a cyclic prefix
- ► The ISI problem is avoided. Each subcarrier has a flat channel
- Very simple channel estimation and equalization
- Simple combination with MIMO techniques in each subcarrier

Diversity

- The use of OFDM solves the ISI problem, each information symbol is sent over a subcarrier, which sees a flat channel
- The channel response will be better for some subcarriers and worse for others (frequency selectivity)
- We need to exploit the frequency diversity by distributing each information symbol among several subcarriers
- This problem is partially solved by Channel Coding / Error Correcting Codes
- Alternative: Linear Precoding of the information symbols
 - Instead of directly transmitting one information symbol over one subcarrier, we transmit a linear combination of information symbols

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

More details in the Live Script

PAPR

With the standard formulation, the OFDM signal has a high PAPR

- Peak to Average Power Ratio: $PAPR = \frac{max(|x(t)|^2)}{E[|x(t)|^2]}$
- ▶ In time domain, the OFDM signal is the combination of N_c independent symbols \Rightarrow Gaussian Distribution
- Amplitude of OFDM signal ~ Rayleigh
- Instantaneous power: ~ Exponential
- High peaks with high probability
 - Problems with AD's and DA's ranges
 - Problems with Power Amplifiers

Solutions to reduce the PAPR:

- Clipping: Spectral Regrowth and BER degradation
- Back-off: Amplifiers in linear operation zone
- Design of symbol sequences with low PAPR: Computationally complex, reduced R_b
- Linear Precoding: Make the time samples look like symbols again (see Live Script)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multiple Access

- The use of OFDM allows Multiple Access without the drawbacks of conventional FDMA systems
- OFDMA (Orthogonal Frequency Domain Multiple Access)
 - A predetermined subset of carriers is assigned to each user
- FH-OFDMA (Frequency Hopping Orthogonal Frequency Domain Multiple Access)
 - A subset of carriers is assigned to each user in each time slot
 - The assignment follows a predetermined pattern/code
 - In combination with channel coding or linear precoding of the symbols, provides frequency diversity

DAB

DAB (Digital Audio Broadcast)

	Mode I	Mode II	Mode III	Mode IV
Number of Subcarriers (N)	1536	384	192	768
Subcarrier Spacing (Δf)	1 KHz	4 KHz	8 KHz	2 KHz
Symbol Period (T_s)	1.246 ms	311.5 μs	155.8 μ s	623 μs
Guard Time (T_G)	246 <i>µ</i> s	61.5 μs	30.8 µs	123 μ s
Carrier (f_0)	<375 MHz	<1.5 GHz	<3 GHz	<1.5 GHz
TX Separation (f_0)	<96 Km	<24 Km	<12 Km	<48 Km

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DQPSK Modulation

- Binary Rate $R_b = 2N/T_s \simeq 2.47$ Mbps
- ▶ Bandwidth $W = N\Delta f \simeq 1.536$ MHz
- Convolutional Code (between 1/4 and 8/9)

DVB-T

DVB-T (Digital Video Broadcast - Terrestrial)

	2k Mode I	8k Mode	
Number of useful Subcarriers (N_u)	1705	6817	
Subcarrier Spacing (Δf)	4.464 KHz	1.116 KHz	
FFT Time (T)	224 μ s	896 µs	
Guard Time (T_G)	7-56 μs	28-224 μs	
Guard Frequencies	171	687	

QPSK, 16QAM or 64QAM Modulation

- ▶ Binary Rate: From $R_b = 12.2$ Mbps (2k, QPSK) to $R_b = 44.3$ Mbps (8k, 64QAM)
- Reed-Solomon (204,188) and Convolutional (1/2, 2/3, 3/4, 5/6 or 7/8)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

802.11 WiFi

802.11 a/g: WLAN standard with OFDM @ 2.4 Ghz (802.11 g) and 5 GHz (802.11 a)

Number of useful Subcarriers (N_u)	52	
Subcarrier Spacing (Δf)	312.5 KHz	
Symbol Period (T_s)	4 μs	
Guard Time (T_G)	800 ns	
Bandwidth	16.56 MHz	

- BPSK, QPSK, 16QAM or 64QAM Modulation
- Binary Rate: From $R_b = 6$ Mbps to $R_b = 54$ Mbps (8k, 64QAM)
- Convolutional Code (1/2, 2/3, 3/4)
- ▶ 802.11 n: MIMO 4x4 + channel aggregation (20/40 MHz) \Rightarrow 600 Mbps
- ► 802.11 ac: MU-MIMO 8x8 + 256QAM + (40/80/160 MHz) ⇒ 6.24 Gbps
- ► 802.11 ad @ 60GHz: SC/OFDM + 2.16 GHz + beamforming ⇒ 6.76 Gbps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

802.16 (WiMAX)

WMAN standard with OFDMA @ 2.5 GHz, 3.5 GHz and 5.8 GHz

Number of Subcarriers (<i>N</i>)	128	512	1024	2048
Subcarrier Spacing (Δf)	10.94 KHz			
Symbol Period (T_s)	102.9 μs			
Guard Time (T_G)	11.4 µs			
Bandwidth (MHz)	1.25	5	10	20

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- MIMO with QPSK, 16QAM or 64QAM Modulation
- Binary Rate up to 100 Mbps
- Convolutional Code (1/2, 2/3, 3/4, 5/6)
- Convolutional Turbo-Code (1/2, 2/3, 3/4, 5/6)
- Frames with 1 preamble symbol for synchronization
- Mobile WiMAX up to 120 Km/h (802.16e)