Diversity

Procesado de Señal en Comunicaciones Inalámbricas

Curso 2023-2024

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents

Introduction

SIMO: Receive Spatial Diversity

MISO: Transmit Spatial Diversity

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Fading and Diversity

- Even with the same average energy, the variability of the channel gain has dramatic effects
 - The worst channel realizations dominate the average BER

- If we take into account the channel variability, we can design TX/RX schemes mitigating the fading effect
 - Example: Two receive antennas

- For not too close antennas, we have independent channels
- Reduced probability of both channels being simultaneously bad
 - We can select the best antenna at RX: Antenna Selection

Exploiting Diversity

- Key Idea: TX/RX of information through several independent channel realizations
 - Application in wireless channel with multipath effects
 - Other systems: PLC (Power Line Communications), ADSL
- We can find independent channel realizations in different domains:
 - Spatial Diversity:
 - SIMO: Single Input Multiple Output. Several RX antennas
 - MISO: Multiple Input Single Output. Several TX antennas
 - MIMO: Multiple Input Multiple Output. Several TX and RX antennas
 - Practical coditions: Multipath channel with rich scattering. Isotropic antennas with $d \ge \lambda/2$ (5cm @ 3 GHz)
 - Smart processing needed !!
 - Fequency Diversity:
 - Use non-overlapping (separation > B_c) frequency bands
 - Information symbols traveling through all the frequency bands
 - Time Diversity:
 - Use different (separation > T_c) TX instants
 - Information symbols traveling through all the channel realizations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Key Metrics

- Array Gain: Increase in the average SNR with respect to the original case
 - The effect can be seen in channels with and without fading

Diversity Gain: Increase in the slope of the BER (SER, outage probability) curve in fading channels

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Key Metrics

Multiplexing Gain: Increase in the number of information streams

- In MIMO, the channel can be usually decomposed on several parallel channels. Therefore, we can transmit a different binary stream by each channel
- There exists a tradeoff between diversity and multiplexing gain

Example: Maximum Gain Values in MIMO Channels

	Array Gain	Diversity Gain	Multiplexing Gain
SISO (1x1)	1	1	1
SIMO $(1 x N_R)$	$N_{ m R}$	$N_{ m R}$	1
MISO $(N_{\rm T} {\rm x1})$	$N_{ m T}$	N_{T}	1
MIMO $(N_{\rm T} {\rm x} N_{\rm R})$	N _T N _R	$N_{\rm T}N_{\rm R}$ (*)	$\min(N_{\rm T}, N_{\rm R}) (*)$

(*) Not simultaneously achievable

Discrete Equivalent Channel

 $\mathbf{z}[n] = \mathbf{h}s[n] + \mathbf{r}[n]$

•
$$\mathbf{z}[n] = [z_1[n], z_2[n], \dots, z_{N_R}[n]]^7$$

• $\mathbf{h} = [h_1, h_2, \dots, h_{N_R}]^T$ is the flat fading channel

- ▶ *s*[*n*] is the information symbol
- ► $\mathbf{r}[n] = [r_1[n], r_2[n], \dots, r_{N_R}[n]]^T$ is AWGN $\mathbf{r}[n] \sim C\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- In each receive branch: $SNR_i \propto \frac{|h_i|^2}{\sigma^2}$
- α = [α₁, α₂,..., α_{N_R}]^T are the complex weights (coefficients) for
 the linear combination of the signals

Discrete Equivalent Channel

Optimal Receiver:

- \triangleright z[n] = $\alpha^H \mathbf{z}[n]$
- The weights maximizing the SNR after combining are:
 - MRC (Maximum Ratio Combining): α = h/||h||
 - Requires CSIR (Channel State Information at the Receiver)
 - Equivalent SISO Channel: $z[n] = ||\mathbf{h}||s[n] + r[n]$
 - The resulting SNR is $SNR = \sum_{i=1}^{N_R} SNR_i$
 - For i.i.d channels: $SNR = N_R SNR_i \Rightarrow Array Gain = N_R$

A D N A 目 N A E N A E N A B N A C N

Same concept and derivation as the matched filter

MRC: Diversity Gain in Rayleigh Channels

Diversity $Gain = N_R$

Rayleigh Channel and MRC. BPSK Modulation and N_R receive antennas

Other SIMO Techniques

Antenna Selection:

- Simpler than MRC (only one branch)
- Slightly worse performance than MRC
- For i.i.d. Rayleigh channels:

• Array Gain =
$$\sum_{i=1}^{N_R}$$

- Diversity Gain = N_R
- Equal Gain Combining
 - Similar to MRC, but constant modulus weights (phase changes): $\alpha_i = e^{-j\phi_i}$
- Threshold Combining, Mixed Approaches, etc.

MISO Systems

Multiple Transmit Antennas

- Total power distributed among transmit antennas
- Design and performance depend on CSIT (Channel State Information at the Transmitter)
- How to obtain CSIT?
 - Channel Feedback: Channel estimated (pilots, preambles, blind techniques) at the RX and sent back to TX
 - Reciprocity: Semiduplex link with same carrier $\mathbf{H}_{TR} = \mathbf{H}_{RT}^*$
- MISO with CSIT: MRC at TX
- MISO without CSIT: Orthogonal Space-Time Block Codes (OSTBC, Alamouti)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MISO Systems with CSIT

 $z[n] = \alpha^{H} \mathbf{h} s[n] + r[n]$

- z[n] is the received signal
- ▶ $r[n] \sim C\mathcal{N}(0, \sigma^2)$
- $\mathbf{h} = [h_1, h_2, \dots, h_{N_R}]^T$ is the flat fading channel
- ▶ *s*[*n*] is the information symbol
- $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_{N_R}]^T$ are the complex weights (coefficients) to be applied to the information signal

MISO Systems with CSIT

Optimal Receiver:

- Maximum SNR (minimum BER) for $\alpha = \frac{h}{\|h\|}$
- MRT: Maximum Ratio Transmission (equivalent to MRC at TX)

- More power in the *best* antennas
- Phase changes to ensure coherent combination at RX

MISO Systems with CSIT

MRT Performance:

- Same as MRC: $SNR_{MRT} = \sum_{i=1}^{N_T} SNR_i$
- ► Array Gain (i.i.d. channel): N_T
- ► Diversity Gain (Rayleigh i.i.d. channel): N_T

MISO Systems without CSIT

- If the channel is not available at the TX, we need some smart transmission scheme to ensure that each symbol travels through all the spatial channels
- Space-Time Block Coding (STBC)

- Particular Case: Orthogonal STBC (OSTBC)
 - Simplest Detection: Each symbol is decoded independently of others
 - Optimal receiver based on MRC
 - ▶ Particular case: Alamouti Coding: $N_T = 2$. Only OSTBC with TX rate R = 1

MISO Systems without CSIT

Coding Matrix:
$$\mathbf{C}_{Alamouti} = \begin{bmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{bmatrix}$$

- Alamouti Receiver
 - Observations:

$$\mathbf{z} = \begin{bmatrix} z[1] \\ z^*[2] \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} s[1] \\ s[2] \end{bmatrix} + \begin{bmatrix} r[1] \\ r[2] \end{bmatrix} = \mathbf{H}\mathbf{s} + \mathbf{r}$$

• Equivalent channel with orthogonal columns: $\mathbf{H}^{H}\mathbf{H} = \|\mathbf{h}\|^{2}\mathbf{I}_{2}$

• Multiplying the received vector by \mathbf{H}^{H} yields (with $\mathbf{r}' = \mathbf{H}^{H}\mathbf{r}$):

$$\mathbf{y} = \begin{bmatrix} y[1] \\ y[2] \end{bmatrix} = \mathbf{H}^{H} \mathbf{z} = \|\mathbf{h}\|^{2} \begin{bmatrix} s[1] \\ s[2] \end{bmatrix} + \begin{bmatrix} r'[1] \\ r'[2] \end{bmatrix}$$

MISO Systems without CSIT

Alamouti Performance:

- The channel knowledge is only required at the receiver (CSIR)
- After scaling the observations: $\frac{\mathbf{y}}{\|\mathbf{h}\|^2} = \mathbf{s} + \mathbf{r}''$
 - Equivalent noise $\mathbf{r}'' \sim \mathcal{CN}(\mathbf{0}, \mathbf{C})$
 - Covariance matrix: $\mathbf{C} = \sigma^2 \mathbf{H}^H \mathbf{H} / \|\mathbf{h}\|^2 = \sigma^2 \mathbf{I}_2$
 - The SNR does not change \Rightarrow Array Gain = 1
- Full diversity with i.i.d. Rayleigh channels:

Diversity Gain = $N_T N_R = 2N_R$

BER in MISO Systems

Rayleigh Channel and BPSK Modulation with $N_T = 2$ antennas

